CORRECTION FOR BIAS INTRODUCED BY A TRANSFORMATION OF
VARIABLES!

By Jerzy NEYMAN AND ErizaserH L. Scorr

Unaversity of California, Berkeley

1. Introduction. The problem of ‘“‘normalizing” transformations has two dif-
ferent facets: one is concerned with the identity of transforming functions suit-
able for variables following a distribution with a particular shape or properties
and the other with the nature of the statistics capable of serving as unbiased
estimates in cases where a given transforming function appears to be successful.
The literature on the first problem is rich (see, for example, [1], [2] and [8]).
This paper is concerned with the second problem. Our purpose is to deduce mini-
mum variance unbiased estimates of the effects of experimental treatments
expressed in the original units. The solution is obtained for a broad category of
transforming functions.

The estimates of treatment effects expressed in the original units are cus-
tomarily obtained by the inverse transformation of the estimates in transformed
units. As is well known [1], [6], [7], this traditional estimate is biased. Occasionally,
this bias is important. Further, the bias gains importance when a number of
similar estimates of the same effect, obtained from independent sets of observa-
tions, are averaged in order to estimate the average effect. The random errors
of the particular effects tend to average out but, in general, not the bias.

2. Statement of the problem. Qur basic assumption in this paper is that the
transformation used in the analysis of an experiment is faultless so that the
transformed variables exactly follow normal distributions with some postulated
means and with the same unknown variance o”. Generically, these normal vari-
ables will be denoted by the letter £(¢) where ¥ identifies the expectation of the
variable concerned. Thus £(¥) is the transformed variablein the experiment. The
variable that is directly observable will be denoted by X (¢). It will be assumed
that

(1) X)) = flEW)l,

where f is a strictly increasing function defined for all real values of its argument.
Later on, we shall introduce further limitations on f. It will be noticed that f
is the inverse of the function used for transforming the observable variable X.
For example, with the square root transformation the function f is the square

of its argument.
The problem treated is concerned with a particular pair of variables of the
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family considered, namely with £(x) and X (u), where u is the mean of £(x) and
is a well-defined but unknown number. Specifically, we are concerned with
estimating

(2) 0 = E[X(u)].

Our problem arises when the variables £(u) and X (u) are not directly observable.
On the other hand, the variables that are observable in the given experiment
yield a pair of statistics, 2 and S°, mutually independent and jointly sufficient
for u and o*. The first is a normal variable with mean x and variance A’s*, where
A is a known number. The second statistic, S°, is the residual sum of squares
and, divided by o°, is distributed as x° with a certain number » of degrees of
freedom. Our problem is to devise a function, say 8(4, S%) such that its expecta-
tion equals  identically in u and o”. Because of the familiar result of Lehmann
and Scheffé [5] that the sufficient system of statistics (£, S°) is boundedly com-
plete, it follows that the function 8(4, S*) is unique and is the minimum variance
unbiased estimate of 4.

Before proceeding to the construction of the estimate 6(&, S*) we give two
illustrative examples.

3. Example 1: An experiment in randomized blocks. Denote by « and 8 two
unknown parameters capable of assuming values within a certain open set, and
by £(a, 8) a normal random variable with expectation

(3) Ef(e,B)] =+ 8
and with a fixed variance o”. Correspondingly,

A randomized block experiment will yield particular values of mn independent
random variables X(a;, 8;) fori =1,2,--- ,mandj = 1, 2, ---, n, with
> B8; = 0. Here the 8’s represent the familiar block effects and o stands for the
“transformed effect” of the sth treatment in the hypothetical average conditions
of the experiment. The analysis of the experiment ordinarily involves the estima-
tion in original units (pounds, inches, number of surviving insects, etc.) of the
effect of the 7th treatment if it were applied in the average conditions of the
experiment. In order that this estimate can be conveniently combined, by averag-
ing, with similar estimates derived from other experiments involving the same
treatment, the estimate sought should be unbiased. The quantity to estimate®
is, then,

(5) 0 = E[X(a:, 0)] = E{f[t(as, 0)]}

where £(a;, 0) is a normal variable with an unknown mean a; = u and with

2 Of course, the definition of the ‘“‘effect of the sth treatment in the average conditions
of the experiment’’ by means of Formula (5) is not the only possible definition of this con-
cept. An alternative definition might be the average over j of the quantities E{f[¢(a: , 8;)]}.
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variance ¢°. While £(a;, 0) and X (a; , 0) are not directly observable, the experi-
ment yields an estimate of u, namely,

n

ZE#:

=1

S

(6) i=

which, according to traditional theory, is normal with mean u = «; and variance

(7 a; = A* = o*/n.
Also, in the usual notation,
(8) S = Z; JZ; (8 — & — E;+ £

is the sum of squares of the residuals which, combined with {, forms a sufficient
system of statistics for 4 and o*. It is independent of £, and is distributed as the
product of o® by a x* with » = (m — 1) (n — 1) degrees of freedom. Our problem
is to devise a function, (&, 8%), which is an unbiased estimate of 6.

4. Example 2: Regression analysis of a randomized cloud seeding experiment.
An experiment is performed to check whether the “‘seeding” of clouds, intended
to increase the precipitation in a “target area” T, has an effect. Also, it is in-
tended to estimate the amount of this effect measured in inches of actual pre-
cipitation. A certain number s = 1 of adjoining areas, presumed to be unaffected
by seeding, are used as controls. We shall use the symbol X; to denote the rain-
fall from a particular storm falling in the 7th control area and the vector symbol
X = (X1, X, ---, X,) to denote the precipitation from the same storm in
all the controls. For each X we consider the random variable Y (X') representing
the target precipitation in conditions when the precipitation in the controls is X
and there is no seeding. All these variables are measured in inches.

Now suppose that a storm, with control precipitation equal to X’, is seeded
and yields Y’ inches of rain in the target. In order to estimate the effect of this
seeding it is necessary to have an estimate of the rain which would have fallen
in the target from the same storm if there were no seeding. In other words, we
need an estimate of E[Y(X’)] = 6. The hypotheses usually made about the
variables X and Y (X) are that, by means of some suitable change of scale,
X; = f(&), etc., they can be replaced by transformed variables ¢ and 5(£),
respectively, such that, for each £, the variable n(£) is (approximately) normally
distributed with a mean

(9) Fin()] = o + 3 ek,

where the o’s are unknown constants, and with a variance o’ independent of £.
With these assumptions, the quantity 6 to be estimated is

(10) 0 = E{f[n(£)]1},
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where £ stands for the transformed value of X’. Denote by u the expectation
of n(¢),

(11) b=t X aiki,

and by 4 its minimum variance unbiased estimate obtained from the regression
analysis of a random sample of unseeded storms. The same analysis provides
the sum S° of squares of residuals, whlch is stochastically independent of & and,
when divided by o°, is dlstrlbuted as x with a certain number of degrees of
freedom ». The variance of £ is A*(¢)o”, where and factor A*(¢’) depends upon
the value of ¢ and, in fact, grows without limit when & diverges from the average
£ of the control precipitation from the nonseeded storms used to evaluate f.
Our problem consists in determining a function 6(4, S°) such that

(12) El4(a, 8] =

The difference between ¥’ and (4, S°) is the estimated effect of seeding, ex-
pressed in inches.

5. Method and auxiliary formulas. Since the normalizing transformations are
supposed to amount to a change in scale of measuring the observable random
variables, it is natural to assume that the function f determining the observable
random variable X in terms of the normal variable ¢ is fairly regular. Our method,
to be termed the expansion method, of constructing 6(4, S°) is limited to the case
where (i) 6 = E{f[£(n)]} exists, (ii) f is an entire function, and (iii) the ex-
pectation # may be obtained by taking expectations, term by term, of the Taylor
expansion of f, so that

(13) 0 = E{fle(w)]} = f(0) + Z 1 BIE" ()],

where f stands for the nth derivative of f evaluated at zero. Then, for each n,
we determine a homogeneous combination

(14) T, = kZoA,.,k"‘S"""
such that

(15) E(T.) = E[£"(w)],

and show that

(16) o5, & = 1(0) + 3 = 5T,

is the solution of the problem.

Also, for functions f of a particular family, we give an alternative easy method
of constructing (4, S°). Before proceeding we must recall certain formulas and
deduce certain bounds.
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For every m = 1, 2, ---, we have
(17) B[S = (2")"T(3» + m)/T(3).
Also
m - (2m)v! 2 2 /0 \m—k
(18) E[£"(u)] = k;) @nim — o X2

and it follows that

ag) g < menol s BG4 )
Similarly
mt-1 o (2m 4+ 1)! 2%, 2 10\ m—k

In order to obtain convenient bounds on E(| £™*'|), we notice first that
(2 ! m m m
@) u| C2EDNGa)m < pmEn )| < B .

Further, by Schwarz’ inequality and because of (19),
E| £ () | < (EE(WIEE™(w)])}

22
(22) < (4o )*(

(4m) 2 2 m
) (6 + o2)/21n

However, it is easy to see that

m! (am)\' [ & (4k —3)(4k — 1)}
23) @m F+ 1) <(2m)!> = { Iz } <l

Consequently, we may write

IMI—LL+

D! (/2)m < B¢ | < 2t D!

(24) W+ ",

for all m.

6. Term by term evaluation of the expectation of a Taylor series. In this section
we use the bounds found in Section 5 in order to prove certain theorems.

TaEOREM 1. In order that the series in the right-hand side of (13) be convergent
irrespective of the values of u and o, it is necessary and sufficient that the radii of
convergence of the two series

(25) > 1

n=0 n'

f(2n) n and Z f(2n+l) n
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both be infinite, so that

. 1 em )\ . 1| e (N
im (= [F77]) = lim (= [f I

(26) 1 1
— = (2n) |\1l/n = Tim = (2n+1) (\1/n —
= lim L (|£% )" = lim 2 (7% )" = 0

It will be noticed that conditions (26) are stronger than the assumption that
the Taylor expansion of f,

(27) @ =3 Ly,

is convergent for all real £ In fact, the conditions necessary and sufficient for
this to happen may be written as

(28) hm ( Famyin _ E (Fem0yn _ .

Thus, if the radii of convergence of (25) are infinite, then that of (27) will also
be infinite, but the converse is not necessarily true.

In order to prove the therem we simply notice that inequalities (19) and (24)
imply that, for all m,

(29) lf“"') | (¢*/2)" = (2 N [f*™ | BE™ (W] S — lf(z"" [ [(u* + a*)/2]",

| f(2m+l) l ( /2)m (2 il'|_ 1)‘ lf(2m+l)E[£2m+l(/‘)] I
) ™ .
< ;_L! lf(Zm—H) l [uz + 02]m-

If we assume that the series (13) is convergent for all values of x and ¢, then
this will imply that the middle terms in (29) and (30) tend to zero as m — .
In turn, this implies that, for all ¢° and for sufficiently large m,

6o (He) <A (R <,

m!

which is equivalent to (26). On the other hand, if we assume that conditions
(26) are satisfied, then the two series (25) are absolutely convergent. for all
values of the argument and the right inequalities (29) and (30) imply absolute
convergence of (13).

TarorEM 2. Under the conditions of Theorem 1, that vs, under conditions (26),

(32) 0= B =50 + 3~ F B (W)

for all p and o°.
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In other words, if conditions (26) are satisfied then the expectation of f can
be obtained by taking expectations term by term of the Taylor expansion of
this function.

Theorem 2 is implied by inequality (24) showing that in the middle part of
Formula (30) the expectation of £™(x) may be replaced by the expectation of
the absolute value | €™ (u) |.

For convenience of reference we shall adopt the following definition.

DEerINITION. An entire function f is called of second order if it satisfies condi-
tions (26).

It will be seen that every indefinitely differentiable function whose derivatives
at a particular point are bounded is necessarily a second order entire function.
Also, the sum of two second order entire functions is itself a second order entire
function.

7. Lack of complete generality of the expansion method. At this point it may
be interesting to indicate a purely mathematical formulation of the general
problem treated in this paper. This is as follows

For a given positive integer v, for a given positive number N and for a given function
1, defined on the real line and such that

Feo 2/s2
(33) f [f(z) | ¥ de < +

for all real u and for ¢ > 0, to determine a function of two arguments 6(z, y*), inde-
pendent of p and o, such that

+oo
220225 (1) [ F(z)e =P gy

(34) +0 ©
- [ g HEmN? f Y e, o) dy do,
© 0

identically in u and o > 0.

The expansion method provides the solution of this problem when the function
f is entire of second order. However, it is easy to construct entire functions f
satisfying (33) which are not of the second order. One example is exp { —2%}.
To such functions the expansion method is not applicable and we are not certain
whether the solution of equation (34) exists.

8. Minimum variance unbiased estimate of the expectation of a second order
entire function. From now on we shall deal exclusively with functions f(¢) which
are entire of the second order.

Let i be a normal variable with expectation u and variance A’ where A’
is a known number. Also, let S* be independent of £ and such that S*/¢” is dis-
tributed as x* with » degrees of freedom. Finally, forn = 0,1, 2, -- -,

u @) T(3»)

k=0
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and

n 2n + 1)! ety 2 —_— T (3v)
(36) T2n+l = Z(zk—l—l)'(n—k)'” +[ZS(1 _)\)] m’

k=0

By direct computation it is easy to verify that, foreverym = 1,2, -- -,
(37) E(Tw) = E[£"(u)].

TraEOREM 3. If f 1s a second order entire function, then
(38) o4, 8) = £(0) + 3 7T

is convergent for all values of fi and S and is an unbiased estimate of

0 = E{f[&(w)]}. ,
Comparing (35) and (36) with (18) and (20), noticing that

(39) r(3v»)/TGv+n —k) < (2/n)""
and referring to (19), we find that

2n)! on
(40) T | < &Ly

and, in a similar manner,

I o ) I
(41) |T2”+1]<IMI%LY,
with
(42) Y = [vi® 4+ S*(1 + N*)]/2».

Because f is a second order entire function, it follows that the series (38) is
absolutely convergent for all values of 4 and S°. In order to prove that the ex-
pectation of 8(4, S°) as defined by (38) can be obtained by taking expectations
term by term, it is sufficient to show the convergence of the series obtained
from (38) by replacing each T, by the expectation of its absolute value. This
is easily accomplished by noticing that | T'» | cannot exceed the expression ob-
tained by replacing in formulas (35) and (36) the value of & by that of | i | and
1 — A’, which may be negative, by 1 + \°. Further computations, similar to
those leading to (19) and (24), indicate then that

0

(43) > VB Ta] < 4.
Because of (37), it follows that (4, S°) as defined by (38) has the desired
property of being an unbiased estimate of 4.
Formula (38) has the advantage of, so to speak, exhausting the method;
it provides the minimum variance unbiased estimate of § whatever the second
order entire function f may be. This generality is paid for by the complexity of
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the solution provided by (38). In the next section we give a somewhat simpler
formula for 8(f, S°) which is applicable when the function f satisfies a certain
differential equation.

9. Alternative solution applicable to recursive type second order entire func-
tions. We shall say that the function f is of recursive type if it satisfies the second
order differential equation

(44) f"(z) = A + Bf(z),

where A and B are arbitrary constants. However, in order to eliminate the
trivial case where f is linear, we shall assume that at least one of the constants
differs from zero. It is easy to verify that every recursive function is necessarily
a second order entire function. This section will be limited to consideration
of recursive type functions f. We shall be particularly interested in the expecta-
tion of their Taylor expansion about the point u. Because the odd central
moments of the normal variable are all equal to zero, we shall be concerned
only with the derivatives of f of even order. We have, for all n,

(45) f”(z) = AB"™™ + B"f(x)
and, if B 5 0,

0= Bk = 1) + 35 LB + BYIH/2)"

(46)
= fWe " + £ (87— 1),

Alternatively, if B = 0, that is, if f is quadratic,
(47) 0 = f(u) + Ad°/2.

Similarly, for B # 0,
(48) BIf(8)] = f(w)e™ ™" + (4/B) (™" — 1)
and, for B = 0,
(49) BIf(£)] = f(u) + AN'G"/2.

Eliminating f(u) from (46) and (48) and from (47) and (49), we find
(50) 6 = RER(R)] + (A/B)[4T — 1) for B # 0
and
(51) 0 = E[f(4)] + A(1 — \")o"/2 for B = 0.

The last formula indicates that, when B = 0, the minimum variance unbiased
estimate of 6 is given by

(52) 6, 8% = f(8) + A1 = \)S*/2v.
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If B % 0 then, in order to obtain (4, S%), it is sufficient to determine a function,
say ®(asS’, v), independent of &, such that its expectation equals exp(as’/2).
Taking into account the expansion

(53) e = 3 L aatso)n
n=0 n!
we easily find
il 1
o(asy) = 50 L TG (o /4yn

(54) “on! TGv + n)

= (525) " sV

where I,(z) is the Bessel function of imaginary argument.
It follows from (50) that

(55) b(4, 8% = ®[B(1 — N)S", 4]lf (&) + (4/B)] — (4/B),

which is the general formula for the minimum variance unbiased estimate of 6
corresponding to the case where f is a recursive function. It will be seen that,
generally, 8(£, S°) is a linear function of the traditional estimate f(4) of 8, with
coefficients depending upon S?, A and ». If > = 1, that is, if the variance of £
coincides with that of £(x), then 8(4, 8*) = f(£). Otherwise f(4) is biased. In
the particular case B = 0, the correction for bias is additive, as indicated in
(52). This makes the square root transformation very convenient (provided,
of course, it provides effective normalization!) in dealing with balanced experi-
ments in which the quantities to be estimated are differences of certain averages,
the estimates of which all have the same variances.

If A = 0 but B = 0, then the correction for bias in f({i) is multiplicative.
Finally, if both A and B differ from zero, we have a combination of a multiplica-
tive and an additive correction.

The importance of bias in the traditional estimate of 6 may be evaluated by
solving for E[f({i)] equations (50) and (51). We have

(56) E[f(£)] = [6 + (4/B)}e "¢ — (4/B), for B # 0
and
(57) E[f(f)] = 6 — A(1 — N)e"/2, for B = 0.

10. Some particular cases. In this section we use the general results of Section
9 to deduce particular formulas. We obtain the minimum variance unbiased
estimate of # and the expectation of f(&) referring to four particular normalizing
transformations: (i) the square root transformation, (ii) the logarithmic trans-
formation, (iii) the angular transformation and (iv) the hyperbolic sine trans-

formation.
(i) In the case of the square root transformation, the transformed variable

(58) f= (X —a)
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where a is a known constant. We ignore the ambiguity connected with the fact
that, for £ to be a normal variable it must be capable of assuming negative values.
The function f is

(59) X=5&=¢+a
Obviously this is a recursive function with A = 2, B = 0. Consequently, formula
(52) yields directly
(60)  8(h, 8" =J(a) + (1 =N)S/v = +a+ (1 = N)§/».

The bias of the traditional estimate f(4) = 4° + a is obtained from (57),
namely,
(61) E[f(#)] = 0 — (1 — \*)d".

Hence, unless \* = 1, so that the variance of 4 is at least equal to that of £(u),

the use of f(u) as an estimate systematically underestimates 4. Furthermore,

the better the estimate £, that is, the smaller the value of \’, the greater the bias.
(ii) In the case of logarithmic transformation, we have

(62) £ = logiw X
and hence
(63) X = f(§) = 10* = e™, say.

Here again the function f is of recursive type with A = 0 and B = m®. Formula
(55) gives

B(a, 8*) = @m’(1 — N") &, »If (&)

= ®[m’(1 — A")8% »]10%
Substituting A = 0 and B = m® into (56) we obtain
(65) B[f(8)] = E10* = e~ 70,

(64)

Thus, with the logarithmic transformation, the bias of the traditional esti-
mate is multiplicative. If the variance of £ is less than ¢° then the use of 10 will
systematically underestimate 6 and vice versa. The bias grows with increasing
[1— 2]

(iii) With angular transformation we have

(66) £ = arcsin /X
and
(67) X = f(¢§) = sin’ & = (1 — cos 2£).
Here again the function f is of recursive type with A = 2 and B = —4. Hence,

Formula (55) gives
(68) b(a, 8%) = BAN — 1)8, 5] (sin®4 — §) + .
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Substituting A = 2and B = —4in (56) we have
(69) Elf(3)] = E[sin’ 4] = (6 — $) + &

It is seen that, if the variance of £ is less than o°, the traditional estimate
sin® 4 is systematically “too far’’ from 1. If the true value of § < %, then sin® fi
will tend to underestimate 6. Otherwise, 1f 6 > 1, there will be a tendency to over-
estimate 8. With A > 1 these two tendencies will be reversed.

(iv) The last transformation to be considered here is based on the function

(70) X = f(¢) = sinh®¢ = % [cosh 2& — 1].

It is of recursive type with A = 2 and B = 4. Hence, from Formula (55)

(71) 0, 8') = 2[4(1 — N) S, 4] (sibh® 2 + 3) — &
Formula (57) with the indicated values of 4 and B gives

(72) E[f(£)] = B [sinh” 4] = (0 + 7" — 4.

In this case f(fi) underestimates or overestimates  according to whether X\
is less or greater than unity.

11. Concluding remarks. (i) Formula (54) defining & may seem complicated.
In fact, the series on the right converges fairly rapidly so that sufficient accuracy
is obtained with only a few terms.

It is easy to check that Formula (54) may be rewritten as follows

. o (a8%/2)" o (as’/2)"
(73)  @(aS,») = nz=on!kI=I(v+ 2k — 2) nz;on'kII(l + (Zk 2
where
(74) &= S/v

is the unbiased estimate of ¢°. It will be seen that, for n > 1, the absolute value
of each term on the right is less than the corresponding term in the expansion of
exp {aé’/2}. In other words, the series (73) converges faster than the series for
the exponential function.

(ii) In some circumstances, the practical statistician may decide to work on
the assumption that the vairance o’ is known. In order to adJust the formulas
deduced in this paper to this case, it is sufficient to replace ¢ by ¢ and pass to
the limit as » — o. In particular, this procedure reduces the right hand side of
(73) to exp {as’/2}, which is (53).

(iii) Formulas have been published for correcting the bias introduced by the
transformation of variables in some particular cases in [1], [6] and [7], for ex-
ample. However, these formulas do not agree with ours.

(iv) It is a pleasure to express our indebtedness to the referee who picked up
several mistakes in the original text of the paper and, in addition, called our
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attention to the important publications [3], [4] and [9], which we overlooked.
Among the problems treated in these papers, there is one which is strongly re-
lated to ours. In the present notation, this problem consists in finding the func-
tion h(4, S°, ») that is an unbiased estimate of a given function ¢ (g, ¢”). This
problem is treated under the restriction that N = 1/(» + 1). Apart from this
restriction, in order to reduce our problem to the problem just described, it is
sufficient to evaluate the expectation E{f[£(u)]} and to denote the result by
g(n, ¢*). The difference between our results and those in [3], [4] and [9] consists
first in a difference in the method and in the conditions of the various theorems:
in the earlier papers the conditions are expressed in terms of the function g
whereas, in the present paper, they refer to the function f. Also, explicit formulas
for the unbiased estimates of 6, as given here, are not contained in the papers
quoted.
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