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1. Introduction. The primary purpose of this series of papers is to attempt to
lay the groundwork for a relatively well-rounded theory of the spherical normal
distribution. Many distributional problems in mathematical statistics may be
regarded as particular instances of one general problem, the determination of
the probability content of geometrically well-defined regions in Euclidean N-
space when the underlying distribution is centered spherical normal and has
unit variance in any direction. Specifically then, we require for a definite region R

(1.1) P(R) = (2x)¥ e T gy,

XeR

in which X’ = (a;, ---, xx). The class of problems represented by (1.1) is a
very broad one and the literature on it is correspondingly quite enormous and
well-diffused. In fact, all the distributional problems which occur in the theory
of sampling from multivariate normal populations may in principle be brought
under our general heading. Thus, let y;, 7 = 1, 2, - - -, n, denote n mutually
independent k-dimensional vectors each of which is governed by the elementary
probability density

(1.2) p(y) = (2r) ¥ V[V

The joint probability density function for the n vectorsis ] [¥»(y:) and integrals
of the form

(2m) v [

Ze

. exp (— % ;Y;V—IW) I;[in

(1.3)
= (21r)‘*”|Wl“*[ exp (— iz’ W' z) dz,
zeT

where z is a partitioned vector, W is a partitioned matrix,

- Vio:i-: o]
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(1'4) 7z = ""' , W= ....:.:.::..:.:. ,
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SPHERICAL NORMAL DISTRIBUTIONS 599

N = nk and T a specified region in Euclidean N-space, may be thrown in the
form (1.1) by a linear orthogonal transformation chosen so as to orient the new
axes along the axes of the ellipsoids of constant density of the distribution of z,
followed by a simple scaling transformation to convert the ellipsoids into spheres.

We recall a second and frequently more convenient method of reducing z’W ™'z
to a sum of squares. By means of triangular resolution, W may be factored (1]
in the form

(1.5) W = MM/,
where the N X N matrix M is defined by
'L - Q.- 0 |
(16) M=|0:L 0
L0 . 0. L |
and V = LL’, L denoting a k X k lower triangular matrix. On setting
(1.7) z = Mx,

(18) (m ™ Wit [ exp(—3W'2) dz = (207 [ exp(—3x'n) dx,

where R = M7(T).

In view of the preceding discussion no loss of generality results in assuming,
whenever necessary, that the distribution is given by (1.1).

We shall list, briefly review and discuss a number of important distributional
problems, together with some applications, which are formally reduceable to
integrals of the form (1.1). In the first few illustrations, the regions R constitute
relatively simple geometrical entities, such as half-spaces, hyperspheres, hyper-
cones and hypercylinders, for which the statistical applications are both classic
and familiar, but in later illustrations more complex bodies, such as ellipsoids,
simplices and polyhederal cones, are considered. In particular, the last named
case of polyhederal cones, corresponding to the difficult and important problem
of the multivariate normal integral, and more especially the bivariate normal
integral (when the dimensionality of the polyhedral cone is 2), will be investi-
gated in some detail.

Integrals of the form (1.1) are rarely capable of being expressed in closed form
using well-known functions. Nevertheless, it is hoped that the current presenta-
tion will provide a unifying thread and thereby help to stimulate further re-
search. In the sequel a quite powerful method, referred to as the “method of
sections,” will frequently be used to deal with the integrals. This consists in
dividing up the region R by means of a series of parallel and adjoining (N — 1)-
flats and in the exploitation of the following fundamental property of the spheri-
cal normal distribution of dimensionality N: The conditional probability dis-
tribution in any linear subspace of dimensionalityN — k (k = 1,2, --- ,N — 1)
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is itself spherical normal with dimensionality N — k and with variance in any
direction equal to the variance of the original N-dimensional distribution. Let
O be the center of distribution, P any point in R and M the foot of the perpendicu-
lar from O to the flat through P. Further, let OP = r, OM = ¢ PM = 5, with
¥ = £ + 7. Then the p.d.f. at P is

@2r) e = (2r)Fe ¥ X (20) TV

and the distribution in the flat through P is spherical normal with dimensionality
N — 1. It follows that the probability content of the infinitesimal region inter-
cepted by R between two parallel flats distant £ and £ + df from O is of the form

(1.9) (2r) e deQ(&; R),

where Q(&, R) is itself obtained by evaluating an integral of the form (1.1),
with N replaced by N — 1. Consequently,

131 1r2
(1.10) P(R) = f; (2m) (g B) e,

where & and & are the distances of the bounding flats to R from O. If, further,
the section of each cutting flat is a region of the same geometrical type as
R (e.g. R an ellipsoid and the section an ellipsoid), with the center M of the
(N — 1)-dimensional spherical distribution in the flat bearing the same geo-
metrical relationship with respect to the (N — 1)-dimensional figure as does O
with respect to B (e.g. both O and M are centers of ellipsoids), then (1.10)
becomes an integral recurrence relationship (see Sections 7 and 8).

2. Probability content of a half-space. The probability content of the infinite
parallel slab R defined by py < D1 a:z; < p» is given directly by the method
of sections as

pa/(zah?
(2.1) (2 [ g,

p1/(zaD)}

Here the flats dividing R are taken parallel to the bounding flats and Q(£; R) = 1,
f = p/(Q a)t 5 = /(D a?)!. In particular, for the lower half-space
pr = — and (2.1) becomes

pa/(zapt .
(22) (2r) [ e g,

These results are, of course, a reflection of the fact that Y a; is distributed
normally with zero mean and variance >al.

3. Probability contents of centrally and non-centrally located hyperspheres.
Historically, the central x2? distribution was one of the first directly entailing
probability contents of regions in N-space when the density is spherical normal.?

2 A geometrical derivation of the x? distribution for 3 degrees of freedom is implicit in
Maxwell’s great work [2] concerning the energy distribution of gas molecules. Each of three
orthogonal components of velocity have identical and independent normal distributions
with zero mean, and the energy, suitably standardized, is a x? with 3 degrees of freedom.
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For the central x? distribution the region in question is a sphere whose center
coincides with the center of the distribution, while for the non-central distribu-
tion the region is a sphere whose center is non-coincident with the center of the
distribution.

Let x¥ and va;.‘ refer generically to a variate distributed as x> with N degrees
of freedom and a non-central x* variate with N degrees of freedom and non-
centrality parameter «, respectively (xx.0 = xu). The latter variate is defined by
xwix = 2.1 (x; — &;)°, where the z; are independent normal variables with zero
means and unit variances, and ¥ = Zlf «; . Further, denote the distribution
functions of these two variates by Fy(a®) and Gy..(a’). Correspondingly, lower
case letters shall denote the p.d.f.’s. Then

N
FN(a2) = P(Xlg é 02) = f PR f(zw)_ﬁvexp<_12_2xf>dxl PP de
. 1
E: 22} 5e?

(3.1) = f e f (2m) ™ exp(—3")r"" dr do

= Sx(1) fo (2r)™H exp(—32)r" ! dr

where dw is the solid angle subtended at the center of the distribution by an
infinitesimal volume element and Sy(c) is the surface-content of a hypersphere
of N dimensions with radius c,

(3.2) Sn(c) = 2" /T (N/2).

This gives the usual Incomplete Gamma Function for the distribution function.
On differentiating with respect to a?

(3.3) fa(d®) = 2T (N/2)]™ exp(—3d®) (a")? .

Pedagogically, perhaps a more useful geometrical derivation is to ‘“slice’” up
the sphere into infinitesimal thin slices by a set of parallel planes. This corre-
sponds to a proof by induction (cf. [3], pp. 247-8). Let x denote the distance of
a typical slice from the center of the sphere. Then

N
Fy(ad®) = f f (2m) exp(— % zl: xf) dzy --- drw
(34) R:Zzl<a?
= [ @07 exp(—3a) - Faaa® — o) d,

on noting that the density at a point on the “z-slice”’, which intersects the given
sphere in a sphere of dimensionality N — 1 and radius (a® — x2)’, distant y



602 HAROLD RUBEN

from the center of the latter sphere, is (27) ™" exp[—1(2* + )]. On differentiat-
ing with respect to a’,

fn(a®) = f_i (2r) 7" exp(—32")fwa(a® — 2°) dz
= j: (2r)7H exp(—12")

$(N—1) N -1 - 2 2 2 2\ $(N—3)
-12 r —— exp[—3(a” — 2°)](a’ —2°) dx

exp(—%a2)[(21r)*2“"“”1‘ (N 2_ 1)]_1 (a* — &) gy

= (2*" T <J—2\f>>—l exp(—1id>) (a®)¥ .

For the non-central x” distribution, we require the distribution of D1 (z: — ;)7
where the x; are mutually independent standardized normal random variables.
Let O be the center of the distribution which is taken as before to be the origin
of coordinates and K the point (x;1, k2, * -+, k). Let P be any point with co-
ordinates (z;, @2, -+, 2n), let OK = k0 = (k] + 62+ -+ + va)*, KP = ¢, and
let the angle between KP and the line OK, produced in the sense O to K, be 6.
Then

N
dai = 0P = & + £ + 2t cos 6,

1

and

Gria(a®) = P{i (x: — k)" < az}
f f (2r) ™ exp (—- ) i xf) dxy -+ day

R:%‘(z;—x;)"’ <a?

= j;a [r (2r) ™ expl—1(x* + £ + 2kt cos 0)1E" " df dw
0

= (2r)™™ exp(—14) foa fow exp(—18 — k& cos 0)" " dt dw.
Now

[ exp(—xt cos 0) do = 267 (het) P Lina(),
where I,(z) = i "J.(42) is the Bessel function of the first kind with purely

imaginary argument. This follows directly by dividing up the surface of the
hypersphere into annuli d6, the content of such an annulus being Sy_;(sin ) d#.



SPHERICAL NORMAL DISTRIBUTIONS 603

Thus,

[o exp(—«t cos ) dw = f exp(—«& cos 8)Sy_i(sin 8) do
0 .

= [21.-“”_1) / T (N ; 1)] fo exp(—«& cos 0) sin™ > 0do,

and this integral is related to the Bessel function

1() = WaT (n + DIPG2)" [ esp(a) (1 = )" do (Bn + 1) > 0),

by setting » = cos 6. Alternatively, exp( —«# cos 8) may be expanded as a power
series in cos 6 after which integration is effected term by term. Hence, finally,

Grix(a®) = (2r)™" exp(—3<)

(3.5) o
fo exp(— 3" 20t (3ek) T P L (xf)
and
gnin(a®) = 3 exp(—36")a? exp( —30®) [y_1(xa)
(3.6) = 27 Wexp(— ) (") Texp(—3a") L [I/T(N + 1))

“[(Gxa)¥/r1].

The above geometrical derivation seems to have been used first, in essence, by
Patnaik [4].

An alternative and simpler geometrical method consists once again in dividing
the sphere R by a set of parallel hyperplanes. Take these to be perpendicular to
the line OK and let = be the distance of a typical plane from K. Then

Gru(d®) = f . f (2r)™¥ exp <—- %i xf) dry + -+ dxw

N
R:;«‘(ze—n)’éa’

(37) = [ @0 expld(x + 2)Was(a — &) d.
Hence,
gnx(a’) = exp(—3«") f_: exp(—xz) - (2r) "} exp(—32")fwoa(a® — 2°) dx

exp(—1¢’) exp(—1a®) / [(2#)*2“”"”1‘ <N—_2———}>]

f exp(—«z) (a® — 22)¥® dz

—(GN—1
1. GN—1)

=1 exp(— %:<2)¢1W_1 exp(—1a*) I1v_1(xa),
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after substitution for fy_j(a® — 2’) from (3.3) and using the above integral
formula for I.(z).

Some exact values for the probability integral of thenon-central x* are available
in [5] and [6]. A more extensive set of values is provided in Fix’s tables [7] de-
signed to yield the power function of x”. For studies in connexion with suitable
approximations to the non-central x° distribution, reference is made to [4], [8]
and [9]. Finally, various tables of the non-central x* distribution for the special
case of two degrees of freedom have become available in recent years for applica-
tion in ballistic problems ([10], [11], [12], [13]).

4. Probability content of a symmetrically and asymmetrically located hyper-
spherical cone. Consider a hyperspherical half-cone R with vertex at the center
of the spherical normal distribution. Let the angle between the axis of the cone
and a generator be 6. The probability content P(R) of the cone is given by its
relative solid angle, i.e., the ratio of the surface-content of the region, a cap, on
a unit sphere with center at the vertex of the cone which is demarcated by th
cone to the surface-content of the entire sphere. Hence, by division of the - .
into a set of annuli with radii sin ¢,

0
P(R) = [o Sw_t (sin &) d6'/S(1)

(4.1) =T (g) / [\/;r (N_z_—lﬂ fo ’ sin"? ¢’ do’

= 9 sin2 (N—z_——l- s %),

where 9 denotes the Incomplete Beta Function Ratzo.
Define

(4.2) tver = &/ (iva/ (N — 1))},

where £ is a normal variate with zero mean and unit variance distributed inde-
pendently of x¥_1, a x* variate with N — 1 degrees of freedom. The variate
tv—1 may be expressed in the form

(43) tyo1 = xl/ (i zi/(N — 1)>*,

where the z; (¢ = 1, 2, ---, N) are independent normal variates, each with
zero mean and unit variance. The region ty—; = ¢(c = 0) defines a half-cone with
vertex at the center of the distribution of the z; and with axis oriented along the
z;-axis. The angle between the axis and a generatoris § = arc cot [c/(N — 1%
The distribution function of fy_, is given by (4.1), where here

(4.4) sin 8 = 1/[1 + ¢/(N — 1)].
The density function —aP/dc is

@) gate) = [ v = m (Y52, D] (+ 1)
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The simplest application of the ¢-distribution relates to the ‘“Studentized”
mean of a normal sample. The geometrical derivation of the latter quantity is
well-known (see e.g. [3], pp. 23940). The relevant hyperspherical cone in this
instance has its axis along the line 2, = 2, = --- = xy equally inclined to the
coordinate planes. The above argument implies, however, that the probability
content of a hyperspherical cone of given angle and with vertex at the center of
a spherical normal distribution is independent of its orientation.

Consider next a hyperspherical cone whose vertex does not coincide with the
center of a given spherical normal distribution but whose axis passes through
the latter point. As before, let the angle between the axis and a generator be 6.
The probability content P(R) of the cone may be obtained by considering
sections perpendicular to the generator. Each such section is a hypersphere and
the su;'faces of equal density in the flat forming the section are hyperspheres.
Hence’,

(46)  P(R) = /x " (@2 F exp (= 3 Feal(z — N)? tan’ 6] de,

where A is the distance of the vertex from the center of the distribution, and
Fy_1(+) is defined in (3.1).

Define
(4.7) troin = [& = N/[Ixv/ (N — DI,
where ¢ is a normal variate with zero mean and unit variance distributed inde-
pendently of x¥_1, a x* variate with N — 1 degrees of freedom (ty_y = ty_;0).
The variate ty_1;» may be expressed in the form

(48) N 4 ["E_ 2/ -]

where the z;(¢ = 1, 2, -- -, N) are independent normal variates each with zero
mean and unit variance. The region ty_1;» = ¢(¢c = 0) defines a half-cone with
vertex distant A from the center of the distribution of the z;. The axis of the
cone is oriented along the x;-axis and the angle between the latter and a generator
isare cot [¢/(N — 1)}. The distribution function of ty_y; is given by (4.6) with
9§ = arc cot [¢/(N — 1)Y. Settingy = = — \ and differentiating with respect to
y, the density —dP/dc of ty_1; at ¢ is obtained immediately as

. f Pl exp [— 2 — A2z cos 6] dz,
0

where y” sec’ /2 has been replaced by z. This density function may be expressed
in terms of the Hh function [14], defined by

4
’

(49)

Hha(y) = [ &"/mllexp (=3 + 9] ds,

3 This argument incidentally provides an alternative basis for the determination of the
distribution and density functions of {5_; ,i.e., when A = 0.
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as follows:

gr-1a(e) = gn-i(c) P(N)[2;N—1F<_];_/‘)]-l

-exp (— 3N sec® ) Hhy_y (X cos 6),

(4.10)

6 being given by (4.4). Alternatively, term by term integration yields
. 1y2 0 . r
(o) = — OB 5 (2 0V2)
r( ) (W =1mp™ 7

2
. N + » c2 §r< cz )-—Q(N+r)
T (T)(zv——l) Itv—1

The “tail-end area,” obtained after term by term integration in (4.11), yields

(4.11)

Pltyoin = ¢) = @-2%‘;—” 3Tl + D)

Gus (N; 1,“; 1) (- xr}/i) 20

(4.12)

(cf. [15]). Tables of the non-central ¢-distribution have been provided by Neyman
and Tokarska [16], Johnson and Welch [17] and, more recently, by Resnikoff
and Lieberman [18] together with applications. The simplest application relates
to the power of the test based on the Studentized mean-statistic from a normal
sample. The axis of the relevant cone is then along the line2; = 2 = -+ = ax.
The above argument implies, however, that the probability content of a hyper-
spherical cone of given angle and with axis passing through the center of a
spherical normal distribution is independent of its orientation provided that the
distance between the vertex and the center of the distribution remains fixed.

6. Probability content of a region bounded by a variety of revolution of dimen-
sionality N — 1 and of species p. Denote a hyperspherical surface (manifold) of
dimensionality m by S, . Then a variety of revolution Sy_; of dimensionality
N — 1 and of species p is defined by the rotation of a Sy_, 1, imbedded in a
(N — p)-flat Ax_, (linear space of dimensionality N — p),rounda (N — p — 1)-
flat Ay_,; in Ay_, as axis (see e.g. Sommerville [19], pp. 137-8). The axial plane
of revolution Ay_,_; may be regarded as defined by N — p fixed points in a
(N — 1)-flat Ay_; imbedded in N-space (Ay_p—1 is a linear subspace of Ax_1)
which has therefore p degrees of freedom and can rotate about Ay, in such a
way that each point of Sy_,; generates the surface of a hypersphere with di-
mensionality p + 1, the latter surface itself being of dimensionality p. The
center of the hypersphere is determined by the foot of the perpendicular to
Ay—p—1 from the given point.

If the equation of the generating surface Sy—,—; , referred to N — p rectangular
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axesin Ay_, of which N — p — 1, designated the z;-axis, - - - , Zy—p1-axis, arein
Ayn_p1, 18 given by

(5.1) xIZV—P =¢(T1, T2, ", xN—p—l))
then the equation of the generated surface Sy_; is
(5-2) x:’—p + xi’—p-{-l + -+ xIZV =¢(Z1, 22, **°, xN—-p—l)’

since the expression on the left of equ. (5.2) represents the squared perpendicular
distance of a point in Sy_,—1 , when the latter is in a rotated position, from the
axis Ay—p—g .

We shall now determine the probability content of the region R in N-space
obtained by replacing the quality sign in equ. (5.2) by the sign =, under the
assumption that the distribution of the z;(¢ = 1,2, --- , N) is governed by (1.1).

Let O be the center of the distribution, P the point (2, 2, -+, Zy) on
Sy-p-1 and P’ the point (z;, *+*, Ty—p1, 0, - -+, 0), P’ being the foot of the
perpendicular to Ay_p—; from P. The locus of P on rotation of Sy, is a hyper-
sphere with radius ¢(x;, 23, - -+ , Tv_p_1). Consider the infinitesimal element of
R which projects into the element dAy_,_; located in Ay_,4 around P’. Since the
density at any point is

N

. N—p—1
(2r) ™ exp (— i1y xf) = (2r) "V exp (— 1y xf)
1 1 4
N
.(27.,)—!(3&1) exp (_ _;_ Z xf),
N=p

the distribution in the p-flat containing the locus of P is spherical normal with
center P’. Hence, by (3.1), the probability content of the element is

N—p—1

(211')_“”—?—1) exp <— 3 ; xf) Fp—{-l(¢(xl X2 ) CL‘N-—p——l)) dAn_p,

on recalling that PP = ¢(x;, %2, **+ , Tyv_pa), Where Fp.(-) denotes the
distribution function of a chi-square with p + 1 degrees of freedom (equ. (3.1)).
The required probability content is then

N B Ree e (-3 %)

Fopi(¢(my, 22y -+, Tn—p1)) dAy—p1.
Consider in particular the case
(54) ¢(@1, =, Tvpa) = [(p+ /(N — p = D@1 + -+ + 2h_p1)
when the region R becomes
(8.5) [(ai+ -+ +avp1)/(N—p— D)/ (zhp+ -+ +28)/(p+ 1] 2 k.

Equation (5.1) now represents a hyperspherical conical surface in Ay_,, while
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equ. (5.2) represents the surface obtained by rotation round Ay_,_; . The gener-
ated surface is characterized by the property that the radius vector OP isinclined
at a constant angle arc cot (k(N — p — 1)/(p + 1))! to the linear space
Ay—p1 . Furthermore, in (5.3) dAy_,—1 may conveniently be chosen as the an-
nulus between two concentric hyperspherical surfaces in the Ay_, ;-subspace of
radii £and ¢ + dg(£ = D 7"z} = OP’?), and the probability content of R is
then

" () D o a2y 2O g (p + DE
(56) fo (2r) exp (— ) I‘(N_ p— 1) Fou [k(N -p- 1)] %
T2

on using equ. (3.2) to substitute for dAy_p ;.

The expression (5.6) represents 1 — Py_p 3,p41(k), where Py_p1,,41(-) de-
notes the distribution function of an F-variate, Fy—p1,p41, With N — p — 1 and
p + 1 degrees of freedom. The density function of the F-variate at the point
kis

2—}(N—2) (p + 1 )}(P‘f’l)

— OPy—p-1,p41/0k =
I,(N—p-~1>r<p-2l—l> (N = p— 1)l

2
1 ® N1 1 p+1
(5.7) Wf., ¢ e"p{ §[1 + m]g} d¢
1 o
= (N_ —_ 1 (N—p—1) + 1 }(p+1)
2 ’2

k‘}(N—P—l)—l

W =—p—Dk+ @+ )"’

after some reduction.
The case discussed in Section 4 corresponds to p = N — 2.

6. Probability contents of symmetrically and asymmetrically located hyper-
spherical cylinders. A hyperspherical cylinder in N-space is one such that the
intersection with the cylinder of a (N — 1)-flat perpendicular to the axis of the
cylinder is a hypersphere.

There are two distinct cases to consider:

(a) The axis of the cylinder passes through the center of the distribution.

(b) The axis of the cylinder does not pass through the center of the distribution.

The probability content may in both cases be readily evaluated by taking
sections perpendicular to the axis. Let a be the radii of the cylinders in both (a)
and (b), and let \ be the distance between the axis of the cylinder and the center
of the distribution in (b). The probability contents of elements formed by
adjoining parallel (N — 1)-flats distant z ‘and = 4 dz from the center of the
distribution perpendicular to the axis of the cylinder is seen directly to be



SPHERICAL NORMAL DISTRIBUTIONS 609

(27) "~ exp (—12%) daFy_1(a®) and (2r) " exp (—32?) dzGy_s;n(d?), respectively.
Hence, by integration of z over (— «,« ), the probability content of the cylinder
in case (a) is Fy_i(a’) and that of the cylinder in case (b) is Gy_1a(d?). A par-
ticularly simple application of (a) relates to the distribution of the sample
variance in normal samples when the cylinder in question has its axis along the
line ¢, = @, = --- = zy ([3], p. 238).

7. Probability content of a centrally situated ellipsoid. The problem treated
in this section is equivalent to that of finding the distribution of the weighted
sum of squares of mutually independent standardized normal variates. Formally,
we require

N
(7'1) FN;al,---,a;N(t) = P (Z aix% é t) ) a; g 0, Zai = 1)
1

where the z; are the variates referred to. The center of the ellipsoid coincides
with the center of the distribution and the lengths of the semi-axes are
(t/a;)*(i = 1,2, ---, N). The axes are oriented along the coordinate axes.

The distribution of ) a;z} has been discussed by Bhattacharya [20], Robbins
[21], Robbins and Pitman [22], Hotelling [23], Gurland [24], [25], Pachares [26]
and by Grad and Solomon [27]. The latter authors have tabulated Fy,q,,... oy (%)
for N = 2, 3, and for various selected sets of (a; , az) and (a1, @z, as). We shall
here obtain an integral recurrence relationship, based on the method of sections
used previously in this paper, which should enable a systematic extension to be
made of the available tables to values of N > 3, at least for moderate N*, as well
as of the tables for N = 2, 3. The following additional remarks are pertinent:

(i) There is no loss of generality in assuming Y a; = 1, since this can always
be achieved by suitable standardization. However, the weights a; are all non-
negative.

(ii) The 1mportant statistical problem of the distribution of the weighted sum
of independent x* variates may be considered as a special ca,se of our problem.
Specifically, if y = Zl ¢; u; where the u; are independent x” variates with n; de-
grees of freedom, Zl n; = N, then since N independent standardized normal

variates, 21, T2, - * + , Ty , may be introduced so that
(72) U; = jz_lxi1+ﬂ2+"'+n.'_1+j ("' =12---, k):

y may be expressed in terms of the z; in the form

Yy = Z Z ctxﬂ1+nz+ cng 147

1—11—
(7.3) =Zla..xi, o =¢; for a=m+n+---+n+7
(.7’: 1,2,"',7&,‘).

4 Extension of the Grad and Solomon tables for N = 2 and N = 3 has now been effected
by Professor H. Solomon and the present author with the aid of (7.10). It is hoped to publish
the extended tables shortly.
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(iii) The problem of determining the distribution of a definite positive quadratic
function of N variables when the latter are distributed as in a non-degenerate
multivariate normal distribution reduces easily to our problem. Geometrically,
the probability content of a given ellipsoid is required when the surfaces of con-
stant density of the normal distribution are those of homothetic ellipsoids. A
rotation of the coordinate axes and subsequent scaling converts the latter ellip-
soids into spheres, while the given ellipsoid will in general remain an ellipsoid
under these two transformations. Finally, a rotation of the new coordinate axes
to bring them into coincidence with the axes of the given ellipsoid is effected.

Formally, one desires to evaluate the quantity

(74) P(xXAx £ ¢’) = (21r)_*"lV[_*fexp(—%x'V'lx) dx,

x'Ax<c?

in which A and V are each of rank N. Set x = LRy, where V is decomposed by
triangular resolution (as in the introductory section) in the form V = LL’, L
being a lower N X N triangular matrix, while R is the orthogonal matrix of the
characteristic vectors of the matrix L’AL. Then, after substitution,

(7.5) P(xXAx = &) = (2m)™¥ f exp(—3y'y) dy,

¥y Ay=Sc?

where the diagonal matrix A is given by A = R'LALR.
If the diagonal elements of A are denoted by A1, Az, - -+, Ay, the characteristic
numbers of L'AL(A\; > 0,7 = 1,2, --- , N), equation (7.5) is equivalent to

N
PxXAx £¢) =P (E \yr S c2> ,
1

in which the y; are mutually independent normal variates with zero means and
unit variances. This establishes the equivalence of the problem dealt with in this
subsection with that of equation (7.1).

(iv) A similar argument is applicable to the situations in which A is semi-
definite positive. Here one wishes to evaluate the probability content of an
elliptic cylinder under spherical normal distributions. The latter is clearly equal
to the probability content of the ellipsoid, relating to an appropriately chosen
subspace, obtained by projection into the latter subspace. The dimensionality
of the subspace is equal to the rank of A. A case in point is the mean square
successive difference 871) , defined by

N-—-1

(7.6) 2(N — 1)6t) = X'Ax = Zl (g1 — z:)°

([28], [29]), for which A is the continuant
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! 7
-1 2 -1
-1 2 -1

-1 2 -1
L -1 1.

empty spaces denoting zeros. The mean square successive difference has been
proposed as a suitable estimator of variability when a secular trend in the mean
is suspected. The inequality x’Ax < ¢’ defines the interior and boundary of an

elliptic cylinder with axis z; = 2 = --- = zy equally inclined to the coordinate
axes. The secular equation A — AI = 0 has one zero and N — 1 positive roots
(7.7) \; = 4sin® (jx/2N) G=12---,N—-1),
whence

N—1
PR(N — 1)ty = &) = P(; Al = )

in which the y; are mutually independent standardized normal variates. Note
that the sth cumulant of 2(N — 1)8%is (2.1 " A§)2 (s — 1)}, by the additive
property of cumulants. The sums of powers of the characteristic numbers of A
required for the specification of the cumulants of 571y , may be expressed in terms
of the minors of A, using well-known results relating to symmetric functions of
the roots of a polynomial equation or, alternatively, by direct summation of the
finite trigonometric series )1 sin® (jx/2N), after expressing the powers of the
trigonometric ratios in terms of trigonometric ratios of multiples of the angles
by standard formulae.

Similar results apply to higher order successive differences, useful in eliminating
the inflationary effect of suspected given polynomial trends on estimates of
variability [30], [31]. The mean square kth order advancing difference 8% is de-
fined as '

N—k
(N — k) (215) Sy = 2, (A')”

ta=1

E[5 ()]

The matrix of the quadratic form involved in the definition of 8%, is a continuant
of order k in the sense that all the elements other than those in the leading

(7.8) L (k=1,2,---,N —1).
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diagonal and in the secondary upper and lower k£ diagonals are zero. The matrix is
of rank N — k and

2k 2 2 = 2 2
P ((N — k) (k)a(k, < c> =P (]Zl \Y; < c>,
where the \; are the N — k non-zero characteristic numbers of the matrix and
the y; are mutually independent standardized normal variates. The distribution
of 8¢2 has been considered in some detail by Kamat [32].

(v) One additional application is worth noting. Consider a dynamic program-
ming or multifactorial design set-up in which the optimal course of action is
represented by the N-dimensional vector x*. Suppose that x* is not known
exactly due either to a penumbra of vagueness surrounding the model from which
x* is deduced (i.e. faulty or imperfect theory), or to the fact that x* is predicated
on past experience (i.e. limited sampling), or for some other reason. Denote the
estimate of x* by £* and let the expectation vector and variance-covariance
matrix of £* be x* and V(&*) (V(x*) of full rank). A course of action x will be
adopted aiming to approach x as closely as possible to the assumed ideal course of
action X* (not to x* which is unknown). Due to imperfect control of the action
variables exact coincidence is not possible. Assume that the expectation vector
and variance-covariance matrix of x are £* and V(x), respectively (V(x) of full
rank). Then d = x — x* = (x — £*) 4+ (&* — x*) has zero expectation vector
and variance-covariance martix V(x*) 4+ V(x), provided the two kinds of errors
are uncorrelated. Let the loss function due to imperfect matching of x with x*
be the quadratic d’Ad, | A | > 0, and assume further that x, * and therefore d
have multivariate normal distributions. In view of the discussion in (iii), it is
clear that the probability of the loss not exceeding a given upper bound Jis
equal to P(D_1 A\;jy} < ¢), in which the y; have the usual significance. (In par-
ticular, the expected loss is D_1 A, .) The reader is referred to Grad and Solomon
[27] who discuss an analogous ballistics problem for which N = 3.

(vi) There is one interesting case for which the distribution of the weighted
sum of squares may be expressed in exact form. If the number of components
N is even, N = 2m, and the weights ¢; coincides in pairs, say ¢; = cy—;, then

N m
2= Zcﬂ? = ch?/i
J=1 J=1

where the y; are independent x*, each with 2 degrees of freedom. The character-
istic function of Y ¢,y is II(1 — 2¢;it) . By partial fraction decomposition the
latter may be expressed in the form > A4,/(1 — 2¢;it), which is obviously di-
rectly invertible to Y, (A4;/2c;) exp (—2z/c;), the density function of z. It
follows that the complement of the distribution function of z, P(z > #), is like-
wise expressible as a linear combination of exponentials.

The above remarks may easily be extended to the situation where the weights
are repeated in groups of four (instead of groups of two), groups of six, etc., i.e.,
to the situation where z = D, ¢;z; may be identified as a weighted sum of inde-
pendent x* variates, each with the same even number of degrees of freedom.
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More generally still, the degrees of freedom of the components, though still even,
need not be the same. A partial fraction representation of the characteristic
function enables the density function to be expressed as a linear combination of
Gamma density functions with degrees of freedom 2, 4, - - - | p, where p is the
highest degree of freedom of the several cemponents. It follows that the dis-
tribution function of the sum is a linear combination of Gamma distribution
functions with degrees of freedom 2, 4, - - - , p.

We now obtain the recurrence relationship referred to at the beginning of this
section. Note first that the intersection of the flat 2y = = with the N-dimensional
ellipsoid D_1 ax: < tis itself an elliposid but of dimensionality N — 1 and with
semi-axes of lengths ((¢ — aﬂzz)/a.-)*, t=1,2 ---, N — 1. The amount of
probability within the ellipsoid intercepted by two parallel and adjoining flats
zy = x and zy = z + dz is therefore

t — ayx?
(27) 7 exp(—12’) dz - Fr_ipy....hys Nz_la- ,
1

.}

where b; = a;/ 2.1 'a;,0 < ay < 1 = 1,2, ---, N — 1). Consequently,
the probability content of the ellipsiod is

Fray,an(t)
(79) (t/am)} — 2
=9 f (2‘)!')—*6—;:'217”_1;1,1 '''' - [t_m__] dx (N =23, - ),
0 1 — an
or, on setting y = x(aN/t)*,
Fray,eoan(t)

o @) et (5)

2
Py 1y, by l:t_(l_L):I dy (N=23,--- ).4a

1 — an

We may note that for the particular case of N — 1 equal components,

(711)  Frpaoap(8) = 2 (%)* fo " 20) exp <‘2f3?2) Faos [5(;%;;2)} dy,

in which Fy_;(-) denotes the distribution function of a x* with N — 1 degrees
of freedom, and (N — 1)a + 8 = 1.

Finally, it will be convenient to record here an interesting relationship between
the distribution of the weighted sum of squares of two independent standard-
ized normal variables and that of the non-central x> with two degrees of free-
dom. The relationship® in question is

48 (7.10) is, of course, just a convolution formula. It-has been obtained here by a geo-
metrical argument for consistency.

5 I am indebted to one of the referees for having brought this useful result, for which an
unpublished geometrical proof has been obtained by Dr. David C. Kleinecke, to my at-
tention.



614 HAROLD RUBEN

(7.12) Fz;al.u.g(t) = G2;K(u2) - G2:u("2)7
where

k=3 (W) — (t/a)t],  w = (/&) + /@)Y,

and G, (-) is the distribution of x3.., the non-central x* with two degrees of
freedom and non-centrality parameter «, as defined in Section 3.

8. Probability content of a regular simplex. Denote the probability content of
a regular N-dimensional simplex with sides of length a and ecentroid at the center
of the spherical normal distribution with the same dimensionality by Ky(a). To
derive a formula for Kx(a) it will be convenient to divide the simplex into N + 1
(non-regular) simplices, obtained by joining the centroid to the N 4 1 vertices
by straight lines. ‘

Consider then one of these N + 1 derived simplices S. The probability content
of this simplex may be obtained by first evaluating the amount of probability in
a slab formed by two adjacent (N — 1)-flats parallel to the face opposite to
that vertex of S which coincides with the centroid of the original simplex. Let
and z 4+ dz denote the distances of these flats from the latter vertex. The inter-
section of the first flat with S is a regular simplex of dimensionality N — 1 and
with its edges of length y, where y/a = xz/d, d denoting the distance of the
centroid of the original simplex from one of its faces. Furthermore, the density
at a point on the same flat distant £ from the centroid of this regular simplex is

(2m) W exp (—3r") = (2m) 7 exp (—32").(2m) 7V exp (—38),

where r* = 2* + £ is the square of the distance of the centroid of the original
simplex from the point in question. It follows that the probability content of the
slab is (21)“’ exp (—3iz*) dzKy_i(az/d), and the probability content of the
original simplex is

B)  Kuw) = W+ D) [ (@0 exp(=1a)Kns (%) i

It is easily shown that
(8.2) d = a/(2N(N + 1)L

Substituting for d in (8.1), the desired integral recurrence relationship is ob-

tained:
Kt = 40 [ a0 o102
a) = ™ ex] — 5T
(83) v 0 PR

Kyalz(2N(N + 1))1de (N = 1,2, ---),
or, equivalently [34]°,

¢ Godwin actually uses functions G, (-) which are related to the K-functions by G (2/4/2)
= (27r)""2(m + 1) ’Kn(z). The K-function, from a theoretical point of view, seems to be
more convenient and natural than the G-function, since it is (unlike the latter) a distribu-
tion function, in the usual statistical sense.
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% a
Kata) = 3 (V1)
™ 0
(84) R
exp (_ %
4N(N + 1)

)KN_I(w du (N =12 )

with Ky(a) = 1.

We shall give now one application involving a knowledge of Ky(a). This
relates to the problem of determining the distribution of the sum (or mean) of
N independent observations from a half-normal distribution, or equivalently the
sum (or mean) of the absolute values of observations from a normal population.
The first four moments of this distribution have been obtained by Kamat [33]
for N = 3, but the actual distribution for general N does not appear to have
been obtained previously.

The density function for each observation is (2/ m)texp (—2%/2)(0 Sz < »),
and the joint density function of N independent observations is

2 N N
The determination of the density function of u = Y 7 #; thus reduces to the
determination of the probability intercepted by the (N — 1)-flats SVai=u
and Z'lv z; = u -+ du in the positive orthant. To obtain this, note that
Yz, =u2:200¢=1,2,---,N) defines a regular (N — 1)-dimensional
simplex with edges of length u+/2. The distance of the flat > ¥ &; = u from the
origin (i.e., the distance of the latter point from the centroid of the simplex) is
u/A/N. Further, the density at any point within the simplex distant » from the
centroid may be expressed in the form

(O oo (18 - (O on ([ 4]

-1 exp(—37") 2_N u’
(27")%(1\7_1) 2" \/2—1‘_ exp \ — QTV .

Consequently, the probability content of the element v < > xS u+duis

_ 2 (= ) A
(8.6) hv(u) du = \/2_7rexp< 2N> i Ky (un\/2),

after integration with respect to n over the simplex, where hy(u) denotes the
p.d.f. of u. Observe that equation (8.6) reveals at the same time, the intimate
tie-up between the Ky_;-function and the N-fold convolution of the half-normal
distribution. This tie-up was first demonstrated by Godwin [35], using an entirely
different argument, in showing the equivalence of two expressions for the p.d.f.
of the mean absolute deviation in normal samples, obtained respectively in [36]
and [37].
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We conclude with two further important applications of the K-function. The
first relates (as already indicated) to the distribution of the mean absolute devi-
ation in samples of size n from a normal population with zero mean and unit
variance. The p.d.f., p.(t), of the latter variable is given by

ENEATEN!

(Godwin [36]). Tables of [ p.(t) dt for n < 10 are available in [38], while per-
centage points of the distribution are given in [38] and [39] (Table 21, p. 165).

The second application relates to the distribution of the deviation of the
largest observation from the mean in a sample of n independent observations
from a normal population with zero mean and unit variance. The distribution
function, @.(t), of the latter variable is given by

(838) Qu(t) = Kua(nt/2)

(Nair [40]). Tables of Q.(t) are given in [40], while percentage points of the
distribution are available in [40] and [39] (Table 25, p. 172).

It should be noted that the K-functions also find applications in connection
with the distributions of a class of linear functions of normal order statistics

[401".

(8.7)
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