EXPECTATIONS OF FUNCTIONALS ON A STOCHASTIC PROCESS

By Epwarp NELSON AND DALE VARBERG

University of North Dakota and Hamline University

1. Introduction. Let {z(f), 0 < ¢ < o} be a separable stochastic process with
stationary, independent increments, for which z(0) = 0 and whose characteristic
function is

E{e‘ifz(t)} = eat(oost—l) a> 0
, .
One may verify that,if 0 < & < & < --- < #y <  and m; is an integer,
Plz(k) = me, 2(ta1) = My, -+, 3(h) = my}
= e—a("‘—tk—l)—"'—a(‘z—“)-ahImk—mk_l[a(tk - tk—l] et Img-ml[a'(t2 - tl]Img[(atl)]’

where I,(z) = ¢ "-Ja(iz), Ja(z) being the Bessel function of the first kind.
By separability the sample functions, z(t), of this process are simple functions
which assume integral values on intervals. They may be interpreted as the
monetary gain in coin tossing at random times. To be more precise, z(¢) is the
sum of a random number, N (¢), of independent, identically distributed Bernoulli
variables with distribution P{zx = —1} = P{z = 1} = %, where N(t) is the
sample function of a Poisson process ([1], page 398). This process is important
in the theory of collective risk and has been studied by Ticklind [2]. Certain
similarities between it and the Wiener process led us to attempt to find the ex-
pected value of some functionals on this process using a method developed by
Kac ([3], Section 3). The principal result of this paper is the following theorem.
THEOREM. Let

(1.1) v, = [o e_”E{exp [—u j: V(z(r)) d-r:I ,x(t) = n} dt

where V is non negative. Then ¥, satisfies the difference system
(12) Vors — (2/a)(s + a + uVo) ¥ + ¥y = —(2/a)80 0,

' v,—0 as n— 4o,
where V., is the value of the function V when z = n. (Note: For any function
K, E{K(z), z(t) = n} means E{K(z)x(z)} where x(z) = 1 if z(t) = n
and x(z) = 0 otherwise.)

In Section 2 we outline the proof of the theorem and in Section 3 we give some
illustrative examples.

2. Proof of Theorem. In order that we may easily interchange the order of
certain limits, we assume first that V is bounded. This restriction will be removed
later in the proof. Following the method and notation of Kac we define in-
ductively
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L

@) Qnd = [ 3 Vel el — DQualm, 7) dr

M=—00

where Qo(n, t) = ¢ *'I,(at). This gives

@y = [ [" 5 3 vom) - Vi)

my=—c0 mp=—c0
cexp [—a(t — n) — a(ne — 1ea) — -+ — alre — 1) — ary]

T myla(t — 7)) Lnp—my_y[a(7i — 7421)] - -+ Lngemy[a(72 — 71) ), (@71) A7y - - - d

- [ ' [P [ BBl - Vi), o) = o) dr -+ d

N E{j«;t[k o [ngx(rl)]V[x(rz)] co Viz(r)l dry - - dr, z(t) = ”}

Thus

(2.2) Quin,t) = E{El—' (£ Viz(7)] dr) ,z(t) = n} < %t"M"P{x(t) = n},
where M is an upper bound for V. We define

(23) Qn, b, 0) = 3 (~1Qu(n, 1),

Using (2.2), we obtain

(24) Q(n, t,u) = E{exp [—u _[ V(z(7)) dr] ,z(t) = n}

We see immediately that
(2.5) Q(n, t,u) < Plx(t) = n} = e *I.(at).
From (2.1) and (2.3), we find

Q(n,t,u) — Qo(n,t)
26) = —u 3 [ Ve alalt = DIQ0m, 7, ) d.
Now let, [see (1.1)], ¥, = [5e7*'Q(n, t, u) dt, and take the Laplace Transform
of both sides in (2.6). This gives (see [4] page 131, Formula 6)

|n| 0
— A _ 'l_t Alﬂ_ml'pm Vm,

[ C m=—o

(2.7) ¥n

where ¢ = (§° + 2as)’ and A = a/(s + a + ¢). From (2.7) it can be shown
that, for n == 0,

Vi + ¥ua = (4 + A7) + (w/c)Va(4A™ — A) ¥,
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with a similar formula for n = 0. The difference system (1.2) now follows easily,
the boundary conditions coming from the estimate in (2.5).

Now suppose that V(z) is unbounded and define Vu(z) as V(z) if V(z) £ M
and 0 otherwise. We have then from (1.2) the difference equation

2
(208) ‘I,Jl,n-}'l - % (8 + a + uVM,n)‘I’Jl,n + ‘I'Jl,n—l = _Zl 870.0)

where

o = | ) e—"E{exp [—u | Vala(r) dr],x(t) - n} d.

By bounded convergence limu. ¥ur,» = ¥, . Thus, taking limits on both sides
of (2.8), we obtain the desired result.

3. Examples.
(a) Let V(z) = 0if —p < = < ¢ and 1 otherwise where p and ¢ are positive
integers. We define ¥ = lim,.,, ¥, and note that

o = f ¢*'P{—p < z(r) < qfor 0 < r < t,2(t) = n} dt.
0

We observe that, for —p < n < g, V¥ satisfies the difference equation in (1.2)
corresponding to this V'; hence,

0 n=q

3.0) ot = DiA" + DA™ 0=n=gq
E\A" + E,A™" —p=n=s0
0 ns-—p

where D, , D, , E; , and E; are suitable constants, and
A =a/[s +a+ (s + 2as)].
Let

+0 )
=, \If’,'.'=f e P{—p < z(r) < qgfor 0 £ v S t} dt.
0

Using (3.1), we obtain
(3.2) ¥ = 1/s-(1 — A")(1 — A9/(1 — A™*9).
In the special case where p = «, (3.2) is easily inverted giving
t
P {sup o() <q} = 1= g [ 6" (I,(ar)/r) dr,
0sr<t 0

a result obtained by Baxter and Donsker in ([5], Section 4).
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(b) Let V(z) = «’. The difference equation in (1.2) then becomes
2
Wpg1 — p (s+a+ un’)¥, + ¥, ; = —% +0p0.

We define W(£) = D e € "W, = > u__. ¥, cos 2nt. Then ¥(£) satisfies the
differential system

33) V'(§) — [(4/u)(s + a) — (4a/u) cos 26¥(§) = —4/u,
' ¥'(0) = ¥ (x/2) = 0.
To solve (3.3) we consider the differential equation

(3.4) ¥'(£) + [ — (4/u)(s + a) + (4a/u) cos 281¥(£) = 0

with the same boundary conditions as in (3. 3) The Green’s function G(¢, )
for (3.4) is given by

(35) Gl m) = 3 u(O)n(n) /s

where ue and ¢.(¢) are the eigenvalues and normalized eigenfunctions of (3.4)
respectively. By Mercer’s Theorem ([6], p. 138) the convergence is uniform in
¢ and 7, the w’s all being positive (at least for large s). The solution for ¥(§)
in (3.3) is thus given by

x/2 © x/2
(6  ¥®) = @ [ 6 m dn= ) 525D [T o) an
0 k=0 [k 0

On the other hand, if welet X = u — (4/4) (s + a), (3.4) is seen to be Mathieu’s
equation. Using the notation of ([4], p. 46), we find that

du(£) = brcen(£) = be Z(:] Asp 20 COS 20

where b, = (2/x)}if k = 0 and b, = 2/(x)}if k& = 0.
Upon substituting in (3.6), we obtain

Y(£) = 2r/u ,;, bi Ase.of i Z;’ Agi 20 COS 20

(4/u) E Aok o/ 1t Z Asg 5q COS 20

n=—00

It

where Ag 2 = A2, for n < 0. After interchanging the order of summation,
we have

0

‘I’(f) = (4/u) i Z {A2k,0A2k,2n/[)\k + (4/u)(8 + a)]} cos 2nék.

n=—0 k=0
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By the uniqueness of the Fourier coefficients, it follows that
¥, = (4/0) 3 Assodnn/Ds + (4/0)(s + a)].
Inverting with respect to s, we obtain
E{exp [—u [ [z(r)] dr] ,z(t) = n} = g AsioAgpane @THEDE
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