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1. Introduction. We consider the following problem. Calls arrive at a telephone
exchange at the instants ¢, ¢, ---, t,, where the inter-arrival intervals
(tn — tna), m = 1, &y = 0, are independently and identically distributed non-
negative random variables with common distribution function A (x) and finite
expectation a = [¢ x dA(x). Introduce the Laplace-Stieltjes transform a(s) de-
fined by

(1) als) = f: e dA ().

There are m channels available and a connection is realised if the incoming call
finds an idle channel. If all the channels are busy, then the incoming call is lost.
Denote by 8. the holding time of the call at ¢, if that call is not lost. We suppose
that the B, are non-negative independent random variables, independent also
of the input process {¢,}, with common distribution function B(z) given by

(2) B(z) =1 — ™, x = 0.

Denote by 5(t) the number of busy channels at time ¢ and put 9, = n(¢, — 0).
We say that the system is in the state Ex, k = 0, 1, -- -, m if k channels are
busy. Write Pyn = P(9. = k), k = 0,1, ---,m,n = 1,2, .-+ and write
Py = limg,« Px.» . The limiting distribution { Py} has been obtained by a number
of authors, J. W. Cohen [1], C. Palm [2], F. Pollaczek [3]. and L. Takécs [4].

Introduce the generating function Px(w), k = 0, 1, - - - | m, defined by
(3) Pi(w) = X Prow™™, L=0,1,---,m, |w <1.
n=1

In this paper we obtain the generating function P,(w). When m = « we obtain
the probabilities Py . explicitly. Our method is a slight generalisation of that of
Takécs [4]. We remark that in [3] Pollaczek obtained the transient solution in the
case Py; = 1 as an application of a very general analytic result.

2. The distribution {Py .}. We prove the following theorem.
THEOREM 1. Under the assumptions of Section 1 we have

@ Prtw) = 35 (= (7) B, ol <1,
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where

B,(w) = C.(w) [(1 —w) 4+ ;:D;C;l(w)(l — ajw)—l:l

(5) n .

D (m) Ci'w) /X (’") Ci'(w),

. i=r \J =0 \J
6) Cr(w) =[] ajwl — ajw)™, r>1,0(w) =1,
=1

and where D; is the jth binomial moment of the initial distribution { Py 1}, that s,
(7 D; = (jH™ [d"/dz”Z Py, zk] ,

k=0 z=1
and
(8) a, = a(ry) = / e ™ dA(z).

0
Proor. The sequence of random variables 5, ,n = 1,2, --- | forms a Markov

chain with transition probabilities pjx = P(fesa = k| 7. = ), where pnx =
Pm—,x and

9) pix = (J + l)fo (1= e™) M dA(e), 0S5 <mi<k=m,
Thus we have
(10) Pk,n+1= Z pj,kPj,n, O§k§m,mg 1
j=k—1
where p;,—1 = 0, and
(11) Z Pk,n = ]-; n g 1.
k=0
From equations (3) and (10) we obtain
(12) sp(w) — Pra=w .Zklpj,kpf(w)
S

Write P(w, 2) = D _ro Pi(w)z*; then from equation (12) we obtain
P(w, z) — P(0, 2)

(13) =w fw (1 —e™ 4 26 ")P(w,1 — ™ + 26 ") dA(x)
+ w1l — 2)P(w) [0 Tl — 6 )™ dA(2).

Introduce the binomial moments B,(w), D, defined by
(14) B(w) = (r1)7[d"/dz"P(w, 2))]em1 ,
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and
(15) D, = B,(0).
From (13) we obtain Bo(w) = D 10 D mea Piaw™ = (1 — w7, jw <1,

and

gy B0 = De= [B.0) + Ba) = (, 7)) Pati) ],

r=1,2---,m.
where a, is defined by (8).
Note that Pn(w) = Bn(w) and introduce the quantities C,(w) defined by
(6); then from (16) we obtain

B.(w) = Cr(w) [gl (1 — a;w)"'D,C5 (w)

an) b= - B 5 (M) )],

Putting » = m in (17) we obtain
Batw) = [£ 0~ s picitw) + 0 - w07 | /55 (T) ')
j= i=
and thus we obtain equation (5). Finally we have

(1s) 5w = 3 (9) Pw)
I=r
Multiplying equation (18) by (— )'_k(;;) and summing forr =k, k41, .-+, m,

we obtain (4) and the theorem is proved. We remark that the limiting distribu-
tion {P;} follows easily from Theorem 1. Write C, = C.(1) and define B,,
r=1,2, ---,m, by the equation

B, = lim,.; (1 — w)B,(w) = C, i (m> ;' i (m) T

j=r \7 =0 \J
r=12,-:-,m.

The limiting distribution Py = lim,.,e P, exists since the process {7} is a
finite irreducible aperiodic Markov chain. It follows from Abel’s theorem on
power series that lim,.; (1 — w)Pi(w) = P . Thus from (4)

P, = §k<—>'-k(;)3,.

This is the known solution for the limiting distribution (e.g., Takacs [4]).
ExampLE. Suppose that m = 2 and that Poy = 1 so that D, = 0,7 = 1, 2.
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We find that
By(w) = aw(l 4+ aw)/(1 — w){l — (a1 — az)w},
By(w) = aiaew’ / (1 — w){1 — (a1 — az)w},
Equating coefficients of powers of w in (4) we obtain
Pon=1—-afl — (a1 — &)" (1 — a1 + )7, nz
Pia = [mx{l — (a1 — @)™} — el — (a1 — a5)"}]
(1 —a+a)7,
Pop = aa{l — (&1 — @)" (1 — a1 + @)™, n
3. The case m = ». When m = « we have the following theorem.
THEOREM 2. If m = o then

(19) P =5 () () Bw,  kzol <1,

where By(w) = (1 — w)™" and

%
o

3
v
w»

v
[

@) Bw) =[( -0+ 20— g D ), 21,
where C,.(w), r = 1, is given by (6) and D;,j = 1, by (7). If By,», Be,. are
the first and second binomial moments of the distribution { P} then
(21) Bia=Dual” +a(l —al™H(1 - a)7, n
By = Dya3 ™ + Dias(ay — a2) (af ™t — a3 ") + aide(ar — az)
Jai(1 — @)1 — alf™) — (1 — @)1 — a37?)], n = 2.
Proovr. The proof is similar to that of Theorem 1. Instead of (16) we have
B.(w) = (1 — aw)'[D, + a,wB,_1(w)], r=1

with Bo(w) = (1 — w)~". Hence we obtain (20). Equation (19) follows from
(14) and

v

1,

(22)

(/02 P, 2) = ()7 3 (Z) (2 = 1)™ B.(w),
(8/02) P(1w, 2)]smo = (61)™ Pa(w).

Equations (21), (22) follow by equating coefficients of powers of w in the series
expansions of Bi(w), By(w). The variance V, of the distribution {P4,.} is ob-
tained easily from the equation

Vn = 2B2_n + Bl,n —_ (Bl,n)2.
If Py, = 1, that is, if the first call arrives to find all the channels idle we have
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D; = 0,7 = 1 and equation (20) becomes

(23) B.(w) = (1 — w)—lI:Ilajw(l — a;w)”, r=1.

1%

In this case we can obtain the probabilities {P; .} explicitly, namely we have
THEOREM 3. If m = « and Py, = 1 then

(24) 1+Z_l;( )ZKMa,. nz2
(25) Zk2<)(—)"k2Kj,,a?, nzk+1,k=1,
m=K r= =
where
(26) Kj,r = H ai(aj bl a,-)_l.
1=1,17]

Proor. From equation (23) we have
B(w) = w'(1 —w)™ 2 ajK; (1 — aw)”,
j=1
where the K ; , are given by (26). From (19) we obtain

Piw) = (1= w)? 14 3 (=)0 X Ko ai(1 = o)™
Puw) = (1 =) [ 5 (2 () o £ Ko (1 = 0|

Equations (24), (25) follow by equating coefficients of powers of w in each side
of the power series expansions of these equations.
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