SOME NONPARAMETRIC MEDIAN PROCEDURES
By V. P. BHAPKAR

University of North Carolina and University of Poona

1. Introduction and summary. Under the nonparametric approach, various
methods have been suggested to avoid the assumption of normality and ho-
moscedasticity implicit in the analysis of variance. For the one-way classifica-
tion, i.e., to decide whether ¢ samples come from the same population, Kruskal
and Wallis [9] have proposed the H-test based on ranks; Mood and Brown [10]
have proposed the M-test, utilizing the numbers of observations above the
median of the combined sample; while the present author [2] has offered the
V-test based on the number of c-plets that can be formed by choosing one ob-
servation from each sample such that the observation from the kth sample is
the least, k = 1,2, -+, ¢c.

For the two-way classification, Friedman [8] has made use of ranks. His
statistic, to test the hypothesis that the rankings by m ‘“‘observers’ of n “‘objects”’
are independent, essentially offers a test for the two-way classification with one

observation per cell. Durbin [7] has given a generalization for the balanced in- -

complete block design. Benard and Van Elteren [1] have generalized it still
further. Mood and Brown [6, 10] also have considered the two-way classification
with-one observation per cell or the same number of observations per cell. In
the first part of the present paper, their test has been extended to cover incom-
plete block situations.

Mood and Brown [6, 10] have also considered some simple regression problems.
In the present paper their methods are extended to discuss some additional
regression problems. Next some bivariate analysis of variance problems are
considered. The “step-down procedure’ [11, 12] is used to reduce the problem
to the univariate case with the other variate as a concomitant variate. The
regression methods developed earlier are used here in these bivariate problems.
The method seems to be perfectly general and could be extended to three or more
variates, that is, to the multivariate situation. Most of the tests are offered
on heuristic considerations. They are expected to be good for large samples.

2. Extension of Mood’s test for the two-way classification to incomplete
designs. Mood and Brown [10] have considered a test for equality of “row”
effects in the usual setup with r rows, ¢ columns and one observation per cell,
say x;; in the 7jth cell. The distribution of the z;; is assumed to have median
vi; = a; + B; + u, where the median of the o’s is zero as is the median of the
B’s. By the median we shall always mean the middle or the average of the two
middle quantities. The distributions are assumed to be continuous and identical,
except for location.

Under the null hypothesis that the row effects, o’s, are equal (i.e., zero), all
the observations in a given column have the same distribution. Let &; be the

Received September 17, 1959; revised September 1, 1960.
846

&5
52! K
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éfr 2

S

The Annals of Mathematical Statistics. KGN ®

WWWw.jstor.org



SOME NONPARAMETRIC MEDIAN PROCEDURES 847

median of the observations in the jth column, and form a two-way table by
replacing the observation x;; by a plus sign if it exceeds Z;, or by a minus sign
if it does not. Let m; be the number of plus signs in the 7th row. The test cri-
terion used in [10] is

(1) X' = r(r — 1) Z( )2

ca(r — a) =

where a = 1rif r is even or 1(r — 1) if 7 is odd. Unless ¢ is small, the x* approxi-
mation with » — 1 d.f. is used. It is suggested [10] that for practical purposes
the large sample distribution is satisfactory if ¢ = 10 or even if ¢ = 5 provided
r¢ = 20. For smaller ¢, exact probabilities could be computed. We shall consider
the generalization to incomplete blocks.

Let us write n;; = 1 if the (4) combination is allowed and zero otherwise.
Let the number of observations in the ¢th row be ¢; (£ = 1,2, -+, r) and in
the jth column ber,; (j = 1,2, -+, ¢). Let a; = §r;if r; is even or 3(r; — 1) if
'r; is odd. Then there are a; plus signs in the jth column. Let the m; be defined
as before. Then we expect (under Ho) m; to be approximately equal to jc; .

Following Mood, let us derive the generating function to find the distribution
of the m’s. Suppose ¢; is associated with a plus sign in the <th row
(1=1,2,--+,7). Let ¢a; (ta, - -+ , t;) consist of the sum of all terms that can
be formed by multiplying the #’s together, a; at a time. Each term of ¢ describes
a possible arrangement of signs in a given column. Furthermore, each arrange-
ment of signs is equally likely; hence the probability of a particular arrange-

ment is 1/(“).
a;

Suppose the jth column contains observations in the ji, 2, - -, j-;th rows.
Then consider the function

ﬁ ¢'“7'(ti1; e ’tir,-) .

j=1 75
a;

There is a one-to-one correspondence between the ways of getting terms
& 65 - -« £ in the numerator of ® and the arrangements of signsin ther X ¢

table which gives rise to m; plus signs in the sth row (¢ = 1,2, --- , 7). Hence
&= 23 2glmy, ey mR 7 A
my; may

where g is the frequency function for the m’s.
Note that ¢,; (1,1, -+, 1) = (;’) & is thus the factorial-moment generating
5

function for the m’s. Then &(m:) = 0®/t; with all the ’s = 1.
We note that

0P, ; .
3t,-7 (tjl gy ot ’tj’j) = 0, if Ny = 0,

= uim1(tiy, 0 b)) if ny =1,
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where one of the ¢’s from the previous bracket is missing. Hence,

ot;

=1

2y 2 [ﬁ (rj)]_l [Z {H Gosr (s s by, )} N5 Gaga(l, -

a; i=1 "5

Then,

o s [AOT [ )] £

Similarly,
2
oi = var(m;) = [?-5’] + 8(m;) — [8(ma)]™
at,; t=1
From (2) we have

2 [3 -1 c
zt;p = [H (r,)] [Z ij bagmr (by, = 5 85,,) D0 2 ¢,
7 j=1

a;r
=1 \%; i ot

° (tf'l )" : “H tj'ri') II., ¢ak(tk1 y T tkrk)]’
ks£j£]

)[BT (R G 2D 2 20 ()]

= Z Z i Ngjr :’—]‘(h

j=1 j'5#j 2 Tyt
c 2 c <
a; 2 @
- [Swl]-Zm g,
7=1 ri j=1 5
so that
a; a;’
(4) = an (" __2‘>'
Jj=1 J rj
Similarly,

’ ’®
0iir = COV (mz,m%) = EYRETH i — &(m;)&(m,)

From (2) we have
02¢ _ 2 Tj)]—l
at; oty [;I=Il (af

J=1 ki7"

Hence,

[Z nl] {H ¢a7/ Ny ) ¢a1-——2 + ¢a,—1 Z nw’ ’ ¢a; -1 II ¢ak

f
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2 c
[_f’ijlt=l _ Zni,- Rirs (h(a] ) + E Z n@/]/ @it

at; dt;: =1 ,( r; — 1 j=1 j iTi I
so that
a; T a;
(5) Uii'=_];nz1nzjr;rj_1 .

Asymptotic normality. We have
o) = [ ()] et 5
= ; ;g(ml, cee,my) B
Replacing ¢; in ® by exp (sici?), we have

¥(s) = 20 Dglm, oo, me) exp 3 musicy
my My

= moment generating function of m.c; Ths,

Let us consider log @' for large c. We assume that ¢;/c — ¢; > 0 as ¢ — . We
have

(6) log & = ; log [¢'ai /(2’])] )

Now
@
/ 3
ba; = Z exp. [i; Sikg cfk;] )
i=

where the summation is over (Tj ) combinations of type ki , k2, - - -, ks; out of

@
(1,2, .-+, r; ). Hence,

_1 w
(7’1‘) ¢¢,ti = <7’,~> {1 =+ 2 Sik; C;,,, l [27: Sik; c]h:l + 0(0_%)}
aj aj 2 =1
_ [T 75 r; —1 _3
- (,;,.) [()+ 2 (2w

E ni; (“’ — 1) shei' + 5 ZZ nij N ("’. _ 2)
J

z—-l - \&j

Csise Gl e + 0(6"*)]

7=1 1

_1+ana‘—}+ Z a]sz
j’b

1 y .‘a,.(aj — 1) sise -4
+ 2 ;; nu nl] 7’,'(7‘3 . 1) (Ci Ci/)% + O(C )7
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so that

-1
T; a; p a 81
log<a’j) ¢;1 Znu ek ’+22 G

=1 i=1 7'7 C;

+1 22 i s ala; — 1) sise 1 [Z ny 2 8;] + 0(c™H).
2 17544 2 r; C;

ri(r; — 1) (cico)t 5

Then, from (6) we have

log® = > &(m;) sicit + % D ou Sicy!
=1 =1

+ ! ZZ oir ssv(ecs) ™ 4+ O(cH).

Thus for large ¢, we have the distribution of m.c;"’s approximated by the multi-
variate normal distribution. Since D i_;m; = D> i1 aj, it follows that the m’s
are linearly dependent. Hence the above distribution is singular. Considering
only my, msg, -+, m,y, which have an asymptotically nonsingular normal
distribution, we shall have a chi-square criterion with » — 1 d.f., given by

r—1 r—1

i3’
() = 2 20 Imi = 8(ma)lme — &(m)loGn
1=1 ¢'=1
where [0(;ry] = E0r) , Eem being the cofactor of o, in [assr].
Special case. Suppose ¢; = ¢; = -+ = ¢, = ¢o, say, and 1, = 1, = -+ =
Te = 1o, say. Then @y = a; = -+ = a, = ag, say, where ao = 1o if 7, is even

and 3(ro — 1) otherwise. Also rc, = cro. Then from (3), (4) and (5) &(m;) =
aoCo/To , T = coao(ro — ao)/T02 ,

o = — ao(rg — ao))\ii'/Tg(To — 1), N
where )\,'if = ZJ' Nij Ngrj .

(i) Balanced incomplete block designs. Let \;» = X for all (i7'), (7 = '). Then
we have co(ro — 1) = Nr — 1), 0ii = coao(ro — a0)/re = a, say, and o =
—ao(ro — ao)\/ra(ro — 1) = B, say. Let I, denote the unit matrix of order T
and J, denote the matrix [1],x, . Thus, £y = (« — 8) Iy + 8 J,—1 . Then

-1 1 _ B
BRIy R ) ey e

= 'Y[Ir—l + Jr-—l],
where v = r5(ro — 1)/ao(ro — ao)Ar. Let

Zixon = [{m: — (aco/ro)}, i = 1,2, -+, 7 — 1].
Then from (7), x* = zZ/E5z = v[z'z + Z'J._1 z]. Now

)42 = (rif z.-)2 = l:r}—:,l {m; — (aq Co/"o)}T

i=1 =l
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= {m, — (¢ ao/To)}z-

Hence

s(ro — 1) _ Goa
8 2 _ ro(7o , — Q%)
8) X ao(re — ag)\r = 7o

If we put A = c and hence 7o = 7, ¢y = c and ay = a, we get back to (1).
In the usual terminology of the BIBD, if the “rows” denote the “treatments”
and the “‘columns’ denote the ‘“blocks”, then

r = number of ‘“treatments” = v,

¢ = number of “blocks” = b,

co = the number of replications of any “treatment” = r,

ro = the number of “treatments” in any ‘“block” = k,

A = the number of times any two ‘“‘treatments” occur together in the same

“block” = . (8) then reduces to

(©) = DS (=12,

alk — a)\ =

where @ = 3k if k is even and $(k — 1) otherwise.
(ii) Partially balanced incomplete block designs. Let us consider rows as treat-
ments, so that A\, = A, if 7 and ¢’ are pth associates. Then

Z =odl + Zlﬁpo ’
p=

where m is the number of associate classes, « is defined as before, B’s are the
association matrices [4] and

ao(ro - ao) M-
To("o - 1)

Using the results derived in [3] and simplifying, we have

2 ro(ro — 1) - + ( Co ao)( Co ao>
- - Coo tm; — — my; — ——
X ao(ro _ ao) ; ) 17 1 7'0 ' 7'0 b

where C = (c;i) is such that the solution of the “normal equations’” for t in
the analysis of variance for the PBIBD is given by t = CQ, Q being defined in

the usual notation [5].
In the usual terminology of the PBIBD, as indicated in the terminology for

the BIBD, we have

(10) =Mk =15 5 (m —,;)( - ’k—‘i‘)

a(k — a) i=1 ¢'=1

Bp=

For the PBIBD with two associate classes, the constants ¢; and ¢; (i.e., ¢;’s)
are already given in [5].
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3. Some regression problems. We shall first state a lemma [10] which will be
useful for later applications.

LeMMA. Let
(11) glmy,my, o, my) =°

where n = Y 5y g and m = D iy m; denote the frequency function for the
m’s. Then as n — « in such a way that n;/n — p; > 0,

o = n(n — 1) Xk:l(’m@—wy
n

m(n — m) = n;

has the asymptotic x* distribution with k — 1 d.f.

Mood [10] says, “The expression (11) has a distribution very closely approxi-
mated by the chi-square distribution with ¥ — 1 d.f. even if n is only of the
order of twenty provided all the n; are at least five”.

3.1 One sample. Let (21, y1), -, (n , Yn) denote a sample of n observations.
We shall assume that

(a) the distribution of y for any z is continuous and identical apart from a
shift or translation, and

(b) the regression is linear, that is, the location parameter (usually the
median), given z, is a + Bz, where « and 8 are unknown parameters.

To estimate « and 8, Mood and Brown [10] suggest that the estimates & and
B should be determined by

(12) Median of (y; — & — fz;) =0 for z; £ %
and
(13) Median of (y; — & — Bz;) = 0 for z; > %,

where % is the median of the «’s. If it happens that several x values fall at %, then
the sign =< in (12) and > sign in (13) may be replaced by < and = if such a
replacement would more nearly divide the points into groups of equal size. They
also give an iteration procedure to determine & and S.

We shall find it convenient to speak of z; < % as the group I and of z; > &
as the group II. Then (12) and (13) may be equivalently written as

(14) & = Median (y; — Bz:)
and
(15) Median;(y; — Bz;) = Medianm(ys — Bz).

Test for 8 = Bo. If B = Bo, « is estimated by & = Median (y; — Boz:). Mood
and Brown consider the number of points, say m, and ms, above the line y =
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& + Box in each group. Let us, for convenience, assume that n is even. Then the
frequency function of m; and m, is given by

bl
n
(&)
so that, by the lemma, they obtain

2
(17) K = lﬁ(ml - g) ,  df =1,

as the test-statistic. It may be seen that the supposition that n be even may be
relaxed. '

We may arrive at (17) by some heuristic considerations. Assuming n is even,
as before, we have n/2 points in each group and we note that m; + m. = n/2.
If the hypothesis is true, we expect m; and m. to be approximately n/4. Now
m, is the number of positive y; — & — Box.’s from the first group and, similarly,
for my . Now the y; — a — Boxs’s have identical distributions and, also, & — «
) 0asn — o, so that, on heuristic considerations,

)

for large n and, by the lemma, we again have the asymptotic x° statistic given
by (17).

If we are willing to assume, in addition to (a) and (b), that

(¢) the mean and variance of y exist for any z, then taking the mean as a
location parameter given by a 4+ Bz, « and 8 can be immediately estimated by
the usual least squares estimators. In the above case, & = § — Bof, where 7 is
the mean of the y’s and similarly for &. Then also & — «® 0. In this case, if b
denotes the number of points above the regression line, we have by a similar

heuristic argument
(o))
m1/) \My
n
b

for large n and where m; and m, are defined as before. Hence by the lemma we
have an alternate test-statistic

(18) X' = {4n/lb(n — D)1} (my — 3D)’, df. = 1.

Consistency of & and B determined by (14) and (15). Let z; = y; — « — Bz;.
Then the 2’s have identical distributions with median zero. Now (15) may be

(16) p(my, my) =

p(my, my) ~

p(my, my) ~
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written as
(19) Medianiz; + (8 — )z = Medianmfz; + (8 — B)z.

Now as n — o, |Median; (2;) — Medianm (2)| 2 0, so that intuitively it
seems that 8 ~ g will satisfy (19), that is, |6 — 8| ‘2% 0. It has not been possible
yet to give a general proof. We shall, however, give a proof for the case where
there is a unit of measurement for x. This should cover most of the practical
cases.

Proof for the special case. Let %, , 61, , 62, and B, denote the median of z’s,
Median;(z;), Medianii(z;) and B respectively when the sample size is n. Let us
suppose that (i) z; £ &, form the group I and z; > %, form the group II, and
(i) x > zoimplies x = xo + 8, where 6 is a fixed positive number, however small.
[For example, § may be i m the nature of a unit of measurement.]

Since 6y, {2 0 and 65, 25 0, given 7, ¢ > 0, there is an n; such that

(20) |62n] < € and [6i] < € for n > ny,

with probability greater than 1 — 7. Cons1der n greater thann, . Let 8 — 8, = 0,
CasEk (1). Suppose 6, = 0. Then

Mediani[z; + (8 — B2)xi] S 01n + a0,
and
Medianmnfz; + (8 — Ba)%) = 02 + 0.(%, + 8).

Then (19) implies that 65, + 60.(F, + 8) < 61n + 0.%n, S0 that 6,6 < 61, —
62, < 2¢, from (20). Hence 8, = |6,] < 2¢/86 = €, say.
CasE (2). Suppose 6, < 0. Then

Medianl[zi + (B - Bn)xz] g 01n - Ionl f}n )
and
Medianglz; + (8 — Bu)zd < 020 — |0a] (Z0 + 8).

Again, (19) implies that 61, — |04 Tn < 020 — [64] (Z. + 8), so that |6,]6 =
02, — 01, < 2¢, from (20). Hence, again, |6.] < 2¢/86 = €. Thus, given  and
¢ > 0, there is n; such that |6,| < ¢ with probability > 1 — g forn = n;.

Thus 6, 25 0, that is, 8, 2% 8, and the proof is complete for the special case
mentioned above.

Consistency of 4. Let us assume that 8 @), 8. Now & = Median (y; — Bz;) =
a + Median [z; + (8 — B)z.]. We shall assume that the z’s are bounded. Sup-
pose |z < M for all 4. Also 8 2 8 implies that given ¢, 7 > 0, there is an n*
such that |8 — 8] < ¢/M for all n = n*, with probability > 1 — 5. Then

Median (2;) — ¢ < Median [z; + (8 — 8)z,) < Median (zl) + ¢ forn = n*
with probablhty > 1 — n. Also Median (2;) &% 0, so that Median
[z + (8 — B)xd 25 0. Thus, & 2 a.

Remarks. We may decide to take x < xo as the group I and & > = as the
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group II (even though w, is not the median of the 2’s) in the equation (15) to
estimate B8, where x, is chosen suitably (preferably so as to divide the points
into groups of approximately equal size). Then the above proof, with slight
modifications, will go through if we assume, instead of (i) and (ii), that all the
2’s in the group II are greater than or equal to z, 4 8, where § is a fixed positive
number, however small. This would cover almost all the practical problems, &
being in the nature of a unit of measurement.

Then the test-statistic (17) can be modified suitably. Let ¢ and n — a be
the number of points in the groups I and II respectively. If we define m; and m.
as before, then m; + ms = n/2 (assuming n to be even). Then, on similar heuristic

()

so that by the lemma we have the asymptotic x° statistic
(21) X' = {4n/la(n — a)l}(m — }a)’, df. = 1.

The supposition that n be even may now be relaxed.

3.2 ¢ samples. Let us suppose that we have n, independent observations
(%5, Ysj), 5 = 1,2, -+, n;, from the sth population, 7 = 1,2, - -+, c. We shall
assume (a) as before and (b) that the regression is linear, that is, the location
parameter (usually the median) of y,; given x;;, is a; + Baxi; .

(i) Totest Bi = Buw,t=1,2,---,c.

We shall have ¢ independent x* statistics with 1 d.f. each, giving the x* statistic
with ¢ d.f. No new problem is presented here.

(ii) Totest B = B = .-+ = B.. On this hypothesis, y;’s have medians
a; + Bz;; . We may estimate the o’s and 8 by

p(my, my) ~

é&; = Median (y:; — Bzi;)

J=1,2,+ny

and
Mediani(y:; — & — Bri;) = Medianm(ys; — & — Bzi;).

For convenience, we shall take group I as # < Z# (the median of all the z’s) and
group II as 2 > &, though the test-statistic can be modified to suit other cases.

Let ) in; = N. For simplicity, let us take n; to be even. Let m; be the number
of points from the 7th sample belonging to the second group and I; be the number
of points out of these m; that lie above y = d&; + fz. Then D ;m; = N and
D i li ~ 1N. If the hypothesis is true, we expect I; to be i, . Let I} be the num-
ber of observations from the m; in the second group of the 7th sample, such that
i = Yij — ;g — ﬁx,-jis > 0. Since &; — a; ﬂ)0 and ﬁ — ,3—(1)%0, l; — liﬁﬂo
as n’s — . Therefore, heuristically, the I’s have the same distribution for
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large n’s as the I”’s subject to ) il; ~ LN. Since the z;;’s have identical distri-

butions,
¢ (m,)
II 4
4 y e )y = L AE/ ,
p( 1 ) ) %‘N
iN
so that

e {v)

Yy
iN
Hence, by the lemma we have
X =42 mit (I — im,)’ df.=¢ — 1.

If some m; = 0, the corresponding term will be absent and d.f. will be reduced
by one. Of course, as the referee has pointed out, if some m; are small the ap-
proximation would be questionable. We could have considered the group I
instead of the group II. It may be seen now that the condition n; even may be
relaxed.

If we are willing to assume, in addition, (¢) as before, then we may take the
least squares estimates

p(ll,lz,

o Z ; (Y5 — Fo)xis

a; = §; — BE:, B = —
Z Z (g — xi)z
i

so that é&; 2% a; and 8 2% B. If I; denotes the number of points from the sth
sample above the corresponding regression line and D_;l; = I, then by a similar

heuristic argument,
i \k

()

p(l].’ -c.’lc)N

for large n’s so that by the lemma,

N Z° 1 n; )2
2 — PR— _‘ 1 —_— .
X_Z(N-—l)lni(l' N/’ df. =¢—1
(iii) To test 1 = ag = -+ = a,, when B = B2 = -+ = B.. On this hy-

pothesis, y;,’s have medians a + Bz;; . « and 8 may be estimated by

& = Median (y;; — Bxij)
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and
Median[y;; — Bzij] = Medianuly.; — Bz:j),

where, for convenience, we take groups I and II as 2 < # (the median of all
the 2’s) and 2 > & respectively. Let N be even and I; be the number of points
in the sth sample above the regression line y = & + Bz. If the hypothesis is
true, we expect I; ~ in,. We note that Y ;l; = iN. Let I; denote the number
of positive terms in y;; — a@ — Bxy; (= 1,2, - -+, n;). Since & 5 a and § 2 B,
I — i ®5 0as N — «. Hence by similar heuristic arguments, the distribution
of the I’s for large N is approximately the same as that of the I”’s subject to

D51 = iN. Hence,
¢ n;
IaI (l,~>

( 2 >
1
2
for large N so that by the lemma,
D SR AL\ o
(23) x—4;EQ, Q, df. = ¢ — L.

If we are willing to assume, in addition, (¢), that is, the existence of the mean
and variance, then we can have the least-square estimates & and B, such that
& 2 o and B 25 B. If we denote i I; by d, then by the same heuristic argu-

ment
c g
l ) ~ H (li )

(1)

N2 c 1 ns 2
2 - Y —{L - = = ¢ —
x_ﬂN—ﬁ;mQ N@, df. = ¢~ L
We shall indicate here briefly a formal proof for (22), which was first derived
on heuristic considerations.
Let Ui = Yi5 — E’xi,' . Then

(22) p(ll,l2) "',ZC)N

p(l1,lz, e

for large N so that

I; = number of positive y;; — & — Bxi;(j = 1,2, - -+, ny)
= number of uij’s (J =1, 2, ey, n,) >a = Mediani,j (u,-,-).

Also D il; = 3N. Let z, be the ath (¢ = 3N )wu.; in magnitude. Then the joint
frequency function of ; , - -+ , I, and 2z, , under the hypothesis, is
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; 2 Fuy(2a) -+ Fu, _, (2a)[1 — Fu, o, ()] - [1 = Fu, (2)]

Fii(za) = Fuiy oy 1(22)[1 = Fuiy g 0(2a)] oo [1 = Figy (24)]
dFii,,‘._z..(za) e Fccl(za) tee Flccnc_lc(za)[l - Fccnc_xc_,.l(za)]
[l = Fe, (24)]

where F;;(2,) = Pr [u;; £ z,), the ith term indicates that 2, is from the ith
sample and ) denotes the sum over all possible combinations.

Since 8 2, 8, given ¢, 7 > 0, there is an N, such that, for N = N, [8 — 8] < ¢
with probability > 1 — 5. Then for N = N,, with probability > 1 — 5, we
have Pr [yi; — B2:; < 2, — exij] S Fij(2.) < Prlyi; — Bri; S 2, + exy5), that is,

F(zs — exi;) = Fij(2s) S F(za + exij),

where F denotes the distribution function of all y;; — Bxz:; . In view of the con-
tinuity of F,

(24)

Fij(zs) = F(2a) + 8ij,
where the §’s are arbitrarily small and tend to zero asn — . Then (24) becomes

.ch 2FTTN () (L = F(2)]" -+ FY7H 7 ()1 — F(2a)]" dF (2,)

o F*(2)[1 = F(2)] 4 0(8) = ; 2P - F(za)™

_ 9 my . [Nia n;! Nip1
dF(z) +0(8) = 2, <l1> (lH) ISTCy P (lm)

: (?) FY (2)[1 = F(2)™ dF (2) + 0(9).

On integrating out z, we have the joint frequency function of 4, ---,

- ;1 (Zl) RATCY ﬁz' -0 @) fol M- 0T a4 0)
= [II (?)] BGN,IN + 1) ; (ni — L) + 0(8)

1

= I;I((};; + 0(8);

which is the same as (22).
(iv) To test 8 = 0, when B, = B2 = - -+ = B. = B, say. On this hypothesis,
y:;’s have medians a;’s. We may take

& = Medlan (Yi;).

j=1,2,«

For simplicity let n; be even. Then in; pomts from the ¢th sample are above the
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corresponding line. Also 3N points are to the right of #, the median of all the
2’s. Let I; be the number of points from the 7th sample to the right of # and
above the corresponding line and let I = Zl . We expect, then, I to be iN.
Let m; and m be defined similarly for # < %. Then, by the same heuristic argu-
ment, for which a formal proof could be given as in (iii), we have

N
v

for large N and, hence, by the lemma we have
= (16/N)(I — iN)?%, df. = 1.

The condition that n; be even, then, may be relaxed.

3.3 Testing linearity of regression. As in the normal analysis, it is necessary
that we have a number of observations for each z;. Let the observations be
(i, ¥i5), =1,2,--+,mn,7=1,2, .-+, k. We shall assume that the distribu-
tion of y, given z, is continuous and the same apart from location, say h(z),
which may depend on x. We want to test the hypothesis that the “regression”
is linear, that is, h(z) = a + Bx. Let D _in; = N and these N observations be
divided into two groups, say £ < i, forming the first group and z > 2, forming
the second group, as evenly as possible. Let us suppose that observations cor-
responding to z;(¢ = 1, 2, - -+, k1) belong to the first group and the rest to the
second. Let the groups contain ¢ and N — a observations respectively. We
may then estimate « and g by Median (y;; — & — Bz;) = 0, and

Median;(y;; — Bz;) = Mediany(y:; — Bx:).
Consider the n; observations corresponding to z;. If the regression is linear,
we expect these n; to be split evenly by the regression line y = & + fz. Let I,
out of these n;, be above the line. We expect I; ~ 2n;. Then D L, l; = ia
and D f,41li = (N — @), assuming for convenience that @ and N — a are
even.

Let 2z;; = y:; — o — Bz; . Then on the null hypothesis, the z;;’s have identical

distributions. Let I; be the number of positive terms in z;;(j = 1, 2, -+, n;).
Since & &5 a and 8 2 8, I; — I; 2 0. Hence on heuristic considerations as

before, the distribution of the l’s is the same (asymptotically) as that of the
I’s subject to Y v li = 2a and X sp,41li = (N — a). Thus,

o HEIE)

p(l,m) ~

p(l17l27 Tt

so that by the lemma,

k1
=43 L = df. = Iy — 1,

1 Ng
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and
ko
Xi=4 2, — (L — in)’, df. =k — &k — 1,
k1+1 704
whence
k1
X =4 Z; (L — 3ny)’, df. =k — 2.
1 ]

4. Some bivariate problems.

4.1 One-way classification. Let there be n; independent observations (xs; , ys;),
j=1,2,---,n;, from the sth population, ¢ = 1,2, --- , k, and let D_sn; = N.

Suppose F;(z, y) denotes the distribution function of (X, Y) for the sth
population. We shall assume that

(i) the F’s are absolutely continuous,

(ii) the distributions are identical except for location, and

(iii) the median of the conditional distribution of Y, given X, is a linear
function of X. We note that the conditional probability, given X, is also a prob-
ability measure almost everywhere. Let fi(x, ¥) and f.(x) denote the densities
of (X, Y) and X respectively for the ¢th population. Also, in view of (ii)

(25) Fi(z,y) = F(x — &,y — n).
We want to test whether the populations are identical. Thus
Hy:bh=fH= =4§
m=m = = M.

(25) implies fi(z, y) = f(x — &,y — m:) so that fi(z) = g(z — &), say. (iii)
implies that f(z, y) = g(z)h(y — a — Bz), so that ’

flea =&,y —m) =g(x — &hly — 0 — a — B(z — &)]
=g(z — £&)h(y — a; — B2),
say. Thus we see that
Hiebt == =%§
Al = g = *** = 0O .

It may be noted that we have relaxed just the normality of the distribution, but
retained other features from the classical set up.

We shall use a step-down procedure to test H,. A step-down procedure for
H, with a level v will be a test for

Hyp:ti=6H=-=§&
with a level v, , and if Hy, is not rejected, a further test for

HWIx;a1=a2= cee = oy
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with a level v; , where v; and v, are chosen suitably so that
I—=v)=00—-7)1- v2)-

The test for Ho,j. will be derived from the conditional distribution of Y, given
z, so that the 2’s then can be regarded as fixed.

For H,,, we consider only the z’s. Let us consider the test given by Mood
[10]. (We could have used either Kruskal’s test or the test proposed in [2].)
Let m; denote the number of observations in the sth sample greater than the
median of all the 2’s. Mood shows that the frequency function, if Hy, is true, is

k
ng
III <m2>
N b
a
where a = 1N if N is even or (N — 1) if N is odd. The test-statistic proposed
by him for large N is

NN -1 na\’ _
x a(N_a)Z ( ——N—), df. =k—1.

For small n’s, the probability is computed from the exact distribution (26).
The test for Hy, . is seen to be precisely the same as that considered in 3.2.
Hence we may take (23) (in its modified form) as a test-statistic, if the con-
dition mentioned in the remark holds good. As already stated, it may be possible
to prove that & &5 a ‘without using the condition, in which case (23) may be
used for large samples in general.

4.2 Two-way classification. For simplicity, we shall consider only the case of
one observation per cell, when the design is complete Let “3”’ denote “treat-
ments” and ‘5 denote ‘‘blocks”. Suppose z = 1, 2, , i =1,2,---,b
and N = bt. Le’c F;i(z, y) denote the dlstrlbutlon functlon of (X, Y) for the
(47)-th cell. We shall assume that

(i) Fij(z, y) is absolutely continuous,

(ii) the distributions are identical except for location, that is

(26) p(ml,m2y e 7mk) =

Fij(z,y) = F(x — aij, y — Bij),
(iii) the model is additive, that is,
a; = &+ n; and By = vi + §;,

(iv) the “regression’” of ¥ on X is linear.

As before, we notice that we have relaxed just the normality of the distribution
while retaining other features of the classical set up.

Let fi;(z, y) and f;,(x) denote the densities of (X, ¥) and (X) respectively
for the (4j)th cell. Then f;(z, y) = f(z — aij , ¥ — Bs;) and fi;(2) = fi(z — a;),
say. Also
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f(z, y) = fulz)fe(y — « — Bx), so that
fii(z, y) = file — ai)fely — Bis — & — Bz — aij)]
= filx — & — 9)fly — a — v + BE: — & + Bn; — Bal.
We will be interested in the usual hypothesis
Hy:ti=h= "=4&
Y=Y = 0 = e

We shall consider a step-down procedure to test H,. Considering the z’s sepa-
rately we can test, at a level oy ,

Hyp:6o=b= =&
by the criterion given by Mood [10],
2 _ t(t—1) = ¢ —
X = Wi =) 1=1< ) , df.=t—1,
where @ = 4t if ¢t is even or (¢ — 1) otherwise, and m; = the num-

ber of z;’s(j = 1, 2, ---, b) greater than #;, the median of the jth column.
Then, considering the conditional distributions of y;;’s given z;;s we have to
test

(27) Hy,; : yij’s have medians \; + 8z,

at a level oy, so that (1 — ) = (1 — a1)(1 — a»). We may estimate \; and
B by
N\ = Medlan (yi; — Bxaj),

1=1,2,
and
Median;(y.; — A; — Bz:;) = Mediany(y:; — A — Bx:s)

where the groups are with respect to the z’s as usual. We note that a, defined as
above, out of ¢ y;; — \; — Bx.;’s for each j are positive and hence in all ab out
of bt yi;; — \; — Buij’s are positive. Let I; denote the number of positive terms
out of bys; — N\j — wa , for given 4. Then we expect I; ~ b if (27) is true
Also Xty 1; = ab. Let I; denote the number of positive terms out of b y:; —

— PBzi;, for given 4. On heuristic considerations, for large samples \; ~ )\,
and B ~ B, so that the distribution of the I’s is asymptotically the same as
that of the I”’s subject to > i l; = ab. Hence,

12 b)

p(ll,l2, “ee ,lt) ~;<l1
N

ab
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for large bt, so that by the lemma,
2 N‘Z t 1 b 2
X = 2b(N = ab) 2 E(l’ N“b>

_ t2 t baZ
_WZT)Z(L'_T)’ df.=t—1.

1

(28)

The same remark as that at the end of 4.1 will hold good here. Also, it may seem
that we require ¢ large (since we require \; ~ A; in the above argument), but
if we give a formal proof, similar to that given in 3.2 (iii), we note that 8 ~ 8
is sufficient to reduce the proof to the one given by Mood. This does not require
large ¢ but only large bt. Hence (28) gives a test-criterion for large b.
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