A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES
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1. Introduction and definitions. It is well-known that the Central Limit
Theorem can be extended to cases in which the random variables under considera-
tion are not entirely independent. In particular, various theorems have been pro-
duced with the purpose of dealing with variables which are dependent only when
they are in some sense near to each other. The case of m-dependent variables
(see, for instance, [13] and [16]) belongs to this category. Another case of this
kind arises when the variables have several indices and are regarded as near to
each other when they have at least one index value in common (for a somewhat
special instance of this case see [9]). The importance of the latter case is due to
the fact that it covers a large class of statistics for which W. Hoeffding [5] sug-
gested the name of U-statistics; however, these statistics are only a special in-
stance of it, as can be seen from the reduced number of degrees of freedom.

The purpose of the present paper is to prove a general form of the Central
Limit Theorem for partly dependent variables. Its statement is believed to in-
clude, as special cases, all the hitherto published propositions on these lines, to
cover most, if not all, the situations which have been treated ad hoc, and to go,
in some directions, beyond the previously obtained results. As remarked by
Feller [2], limiting distributions of normalized sums of random variables should
not depend on the existence of moments; accordingly, no moments are postu-
lated, and indeed the most general form of the Central Limit Theorem for in-
dependent random variables [2] is contained in the theorem which follows. The
statement of the latter may appear slightly cumbersome but it implies, as corol-
laries, a variety of simpler propositions which are given in Section 3; on the other
hand, its proof, which is a generalization of the argument in [16], and does not
reduce the general case to that of independent variables, remains conceptually
as simple as it would be if the argument were confined to some of the special
cases of partly dependent variables. In order to simplify the language, the whole
argument is stated for one-dimensional variables, but there is no difficulty in
extending it to multi-dimensional variables; a general expression for the mixed
moments given, for instance, in [7] is useful in applying the multivariate form of
the Second Limit Theorem (discussed, for instance, in [10], Section 7).

In order to avoid misunderstandings, it should be remembered that pairwise
disjoint sets of random variables are called (mutually) ¢ndependent if the joint
probability distribution function of their union is the product of the joint prob-
ability distribution functions of the various sets. A set of random variables will
be called srreducible if it cannot be decomposed into two (mutually) independent
proper subsets. But the factorization of a joint probability distribution function
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applies also to all the corresponding marginal distributions. Hence, if the pair-
wise disjoint sets Sy, -+ -, S, of random variables are independent and if Si,
.+, S are subsets of Sy, ---, S, respectively, these subsets are also inde-
pendent. It follows: that the partition of any denumerable set of ranom vari-
ables into irreducible sets is unique.

The analysis of relations of dependence between random variables is compli-
cated by the well-known fact (see, for instance, [1], Section 14.4) that pairwise
independence does not imply independence in general.

In order to overcome this difficulty, it is proposed to describe as linkedness

any symmetrical and reflexive relation between random variables of a

given set which satisfies the condition that any two subsets are (mutually)

independent whenever no variable of one subset is linked with any vari-
able of the other.

If two variables are not independent then they must be regarded as linked
and, at the other extreme, we can construct the relation trivially by making
any two variables linked. It is usually most convenient to restrict the linkedness
as far as possible; in some of the applications listed below (Section 3) it is, in
fact, necessary to regard variables as linked only when they are correlated, but
in the case of the method of paired comparisons a wider grouping has to be
linked. In the case of m-dependent variables two variables can be regarded as
linked when their indices differ by not more than m. One can also think of a
family of random variables with several indices and with a relation of linkedness
equivalent to the presence of a given number of common index values.

2. The Main Theorem.

TuroREM. Let {x}, with k belonging to K, be a denumerable family of random
variables with a well-defined relation of linkedness, and K. , with ¢ belonging to T, a
family of finite subsets of K, S being the set of all the variables xi for which k be-
longs to K, . The precise nature of K and T does not need to be prescribed; we can
take T to be a topological space with the point « adjoined so that t — « 18 mean-
ingful.! Assume the existence of a number d, a function v(m) defined for all integral
values of m greater than 2, and a function 6(t) defined for all t in T, with the prop-
erty that, for all m and t in T, y(m)6(t)™ ™ is an upper bound for the number of
sequerices of elements of S; having m terms, beginning with any two arbitrarily given
linked terms and forming irreducible sets. Moreover, assume that, for a suitable
family of positive numbers a. corresponding to any t in T and for any positive 7,
the following four conditions are satisfied:

(i) > Pl > a)—0 as t— o

kinK;

1 In each of the examples given in Section 3, K can be regarded as a vector space, but
imposing on K and T any restrictions beyond the conditions of the theorem would have
no bearing whatsoever on its proof, and indeed could only help to obscure the gist of the
argument.
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(ii) at Y, f |z| dFy(z) >0 as t— o,
kinKg J90(0) ~1ai<|z|<as
where Fi(x) is the probability distribution function of x ;
(£)
(iii) lim a7 Y,

[ e — b2y — b¥) dFrala, y) = 1,
t> (k1) Yz|, |y|Z90() " lay

where F,,(x, y) is the joint probability distribution function of x;, and x;, D wh)
denotes a sum extended to all pairs of values of k and [ belonging to K; and cor-
responding to linked variables x;, and x;, and

by = z dFy(z);

]l.zlgw(t)“'lag

(v) oy a TPy [ e — bi2lly — biD| dFealz, y)
lz[ [y|Sn0(e) ~lay

s bounded. Then, as t — «, the distribution of the random variable
X = at_l Zkinx, ,(xk - bg‘(m)
tends to be normal with zero mean and unit variance.

Proor. It is easy to see that, if the conditions of the theorem are satisfied,
there exists a family of positive numbers e, corresponding to every ¢ in T' in such
a way that ¢ — 0 as ¢t — «, and that the conditions (ii’), (iii’) and (iv’),
obtained from (ii), (iii) and (iv) by substituting e, for 4, are satisfied. Put

Utk = T, 2ok =Y =0 if |zi| > a¢;
Ztx = Tk, Utk = Yo = 0 if €0(t) ' < 1| < ar;
Yer = Ti, Uk = 2s = 0 if |ze] < e8(t) ar;

Y, = aTl Z (y,,k - b&(m).

kinK;

Thus
(1) Xe=Yi+a' X 2+ ait D w.

kinK; kinK;
But (i) entails
P[kz Ue %0l >0 as t— o,

inK;
and a fortior:
(2) plima;’ Y wu, = 0.

1
>0 kinK,
On the other hand, in the new notation, (ii’) becomes
ai' 2. E(lzex]) >0 as t— .
kinK;



680 H. J. GODWIN AND S. K. ZAREMBA

A fortiori,
(3) GE(| 2 zal) >0 as t—> .
inK;
Hence, by an application of the Bienaymé-Chebyshev inequality,
(4) plim a;' > 2z = 0.
t>0 kinK;

The boundedness of each of the variables y; ensures the existence of all its
moments. In particular, according to the definitions of b{¥, s, 2.z and Y,

B(Y)) = —a;'B(

zt,k) ’
inK;

so that (3) implies

(5) E(Y;) >0 as t— o,
Remembering that, according to the definition of ¥, , E(y:x) = bis?, put
(6) e = 0 [Yer — B(yer)] = 6o — bl

There is no difficulty in verifying that the mutual independence of subsets of
S: entails that of the corresponding subsets of {£:.}; hence, in particular, it is
admissible to regard, for any k and ! in K, , & and £, as linked if, and only if,
z and x; are linked. On the other hand, now

Ye—E(Ye) = 2. ki,

kinK; .
and, consequently, for any positive integer m,
E(Y.,—B(Y)"= 2 - 2 Elhww - tim).

k(1) inK; k(m)inK;

However, the last summand can be decomposed into a product of expecta-
tions according to the unique decomposition of & xqay -+« & x(m into irreducible
sets, and terms corresponding to the same factorization can be grouped to-
gether. If, in the corresponding partial sum, we neglect to omit the products of
moments in which the sets of variables under the various expectation signs are
not mutually independent, the summation variables under each expectation
sign run independently of those under the other expectations and, in consequence,
the partial sum can be factorized into a product of sums of moments.

In any of these products, sums of first moments are equal to 0, while owing to
(iii’) sums of second moments tend to 1. A sum of moments of any order ¢ ex-
ceeding 2 will be shown to tend to 0 as t — «. Indeed, this will. be seen to re-
main true even if all the moments are replaced by the corresponding absolute
moments. In the first place it should be noted that under each expectation the
first variable is necessarily linked with at least one of the others. Accordingly
the terms of the sum can be grouped into ¢ — 1 overlapping classes, and since
the moments are absolute, it suffices to show that the sum of all the terms in
any of these classes tends to 0. Without loss of generality, it can be assumed that
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the first two variables are linked. The absolute values of the moments can only
increase if the last ¢ — 2 variables are each replaced by 2¢0(t) ™", which is an
obvious upper bound for their values. According to the assumptions of the
theorem, the number of terms corresponding to any combination of values of
the first two summation indices does not exceed v(q)8(t)*™ and, therefore, the
sum is bounded by

(7) (2e) () 8(2)*™ (k}__;) E(|¢éal),

which tends to 0 according to (iv’) and to the definition of & .

There remains to show that the sum of all the terms we failed to omit tends to
0 as t — . It is easy to see that this sum is a linear combination, with coeffi-
cients independent of ¢, of expressions obtained from products of sums of the
type considered above by a process which could be described as one of amal-
gamating factors. Two, or more, factors are thus amalgamated if they are re-
placed by one sum of products of former summands, the new sum being re-
stricted to sets of index values giving rise to irreducible sets of random variables
(in addition to the original restriction requiring the variables under each expec-
tation to form an irreducible set). But such amalgamated factors involve at
least four summation indices, and, clearly, their absolute values are bounded in
the same way as the previously considered sums of absolute moments. Conse-
quently, the amalgamated factors, and, therefore, also the corresponding prod-
ucts, as well as their linear combinations mentioned above, tend to 0 as — «.

Hence, apart from terms the sum of which tends to 0, E(Y, — E(Y;))™
is a sum of products of sums of second moments. Since no such products can
arise when m is odd,

(8) lim, ., E(Y, — E(Y,))™ = 0 when m is odd.

If m is even, we are left with m!/[(m) 12!™] products of sums of second moments,
arising out of the same number of possible partitions of m variables into im
irreducible pairs. Since each of these products tends to 1,

(9) limew E(Y: — E(Y:))™ = m!/[(3m)! 2] when m is even.

The limits, given by (8) and (9), of the central moments of Y; are those of a
normal distribution with zero mean and unit variance. Consequently, according
to the Second Limit Theorem (see, for instance, [3]), this is the limiting dis-
tribution of Y; — E(Y.). Finally,~owing to a proposition given by Cramér
([1], Section 20.6) and as a consequence of (1), (5), (4) and (2), this is also
the limiting distribution of X, . Hence the proof is complete.

ReMARK I. If the moments of a;’ Zk in x; (2t + usi) of some even order
m tend to 0 as ¢ — « (which can easily be expressed in terms of the joint prob-
ability distribution functions of m variables {x.}), then, owing to the Hélder
inequality and to the results obtained while proving the main theorem, the
moments of X; up to the order m tend to the corresponding moments of the
limiting distribution.
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ReMark II. The argument above also yields a form of the weak law of large
numbers for partly dependent variables. More precisely, if, in the statement of
the theorem, the second condition is relaxed by requiring only that (ii) should
hold for some positive 5 and if the last two conditions are replaced by the con-
ditions that, for the same 7,

()

(v)  lima? )

[ [z — B01ly — bi¥] dFea(z, ) = 0
t>0 k,2) Y1zl lyl<n0(t)"ta,

then the conclusion is that
plime . X, = 0.

Indeed, if in the definition of y.. and 2., € is replaced by %, the arguments
proving (2), (4) and (5) still apply, while (v) is equivalent to

Lim. e Yg - E(Yt) = 0;

the proposition follows immediately from the last relation in conjunction with
(1), (2), (4) and (5).

3. Special cases and applications. An important particular case of the main
theorem arises when d = 2 and 6(t) is an upper bound for the number of elements
of S: which are linked with any random variable belonging to this set; then we
can take y(m) = (m — 1)! and the last condition of the theorem is simplified
by the omission of the factor 6(t)*™°.

In one of the main applications, K is the set of all the sets of, say, r positive
integers, and K, is the subset of K determined by the requirement that all these
integers should be less than or equal to ¢, two variables being linked when the
two index sets have at least one element in common. More particularly, if the
joint probability distribution of any (finite) number of variables depends only
on which indices have the same value and not on that particular value or on the
values of the other indices, if the variables have finite second moments, and if
linked variables are correlated, then the conditions of the theorem are satisfied,
provided that we put

2
ag = var Z Ty «
kinK;

Indeed, then, a; = O(t*) and

Pll 2 |>ad < af'“’fl o dF(z) = o(¢*™™).

zp|>ay
Hence

kil:.;:‘ P[lxk‘ > a] = O(tl_")’

which proves (i). Furthermore, 6(f) =" — (t — 1)" so that 6(f) 'a; =
O(#). Thus
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jf | |z | dFue) s [ |2 | dFy(a)
n0(t)"la;<|z|<ay [2|>90(¢) " 1a,

< n0(ar" [ 2 dFy(@) = 0™,
1z1>08(¢)~1a,

(10)

and consequently
(11) at Y f |z |dF(z) -0 as t— o,
kinkg viz|>n0(t) " la;

which shows that (ii) is also satisfied. As a consequence of (ii),
E(x;) — bf,”;,’—»O as t—

and this, combined with (10), implies (iii). Finally, it is easy to see that the
sum in (iv) is O(#"™), ensuring that this condition is also satisfied.

Consequently, given a family of independent and identically distributed ran-
dom variables {X7#} (¢ = 1,2, ---) as well as a symmetrical function f of r
arguments, such that f(X;, - -+, X,) should have a second moment and f(X;,
Xs, -+, Xr)and f(Xy, Xr41, -+, Xor1) should be correlated, the conditions
of the theorem will be satisfied by making f(Xq), -, Xin) = 2, with k
denoting the set {z(1), - -+, 2(r)}. Apart from the special form given to the co-
variances in [5] and from the fact that the theorem is stated, there, in its multi-
dimensional version, this is Hoeffding’s limit theorem for independently dis-
tributed variables. It should be noted that the case when f(X;, X,, ---, X,)
and f(X;, X4, * -+, Xor) are uncorrelated is a trivial case of Hoeffding’s
theorem since, owing to his choice of the normalizing factor, the variances tend
to 0. On the other hand, in the statement above, the random variables { X} can
have any number of dimensions, and if several functions are simultaneously
considered the statement applies to any linear combination of these functions,
implying an asymptotically normal joint distribution of the functions themselves
(see, for instance, Section 7 in [10]).

As pointed out by Hoeffding, the statements above can be applied to a whole
range of statistics, such as Gini’s mean difference, Gini’s coefficient of concen-
tration, functions of rank and of the signs of differences of random variables,
difference-sign and rank correlations in samples, tests of independence, etc.

In general, when the random variables in question have a common upper
bound, i.e., when Pl[lzx| > A] = 0 for some 4 and all k£ in K, the first two
conditions of the main theorem are automatically satisfied, provided that
6(t)'a, — » as t — . This applies in particular to the test function in Wil-
coxon’s test (see, for instance, [15]). Given two samplesz;, -+ ,zmand ¥, - - -,
y» of two random variables, the test function is

n

(12) U= iZz%

t=1 k=1

where



684 ‘ H. J. GODWIN AND §. K. ZAREMBA

ik = 1 if x.->y,,

The scope of the test will not be discussed here (see, however, [4], [11], [14],
[18]). The theorem proved by Hoeffding in [5] cannot be applied here because
the parts played by the two different sets of variables are not symmetrical.
However, under the assumption that the two samples arise from two identically
distributed populations, the asymptotic normality of U was proved in [11]
(where the distribution for small samples was obtained as well), and could be
deduced from a theorem in [6]; without this assumption, but with the restriction
that m/n be constant, it was proved in [8]. On the other hand, apart from the
trivial case when the distributions do not overlap and so U is constant, the asymp-
totic normality of U follows from the main theorem of the present paper under
any hypothesis about the distribution of the two random variables in question
and without any requirement on m/n; ¢ becomes a two-dimensional vector (¢ , &)
tending to infinity when both ¢ — « and ¢, — «, and K; becomes the set of
all the pairs (%, k) of positive integers such that ¢ < &,k < ¢,.

In some applications, the patterns of dependence of the random variables are
fairly complicated, and it was in order to cover such cases that, in the statement
of the main theorem, the constant d was allowed to take values other than 2.
One such case arises in the treatment of the test function in the method of
“paired comparisons” [12] for the investigation of the transitivity of preferences.
The subject of the experiment is asked to choose between each pair formed with
the entities v, - -+, v,. Write P; ;% = 1 if the preferences confined to v;,
v; and v;, are not transitive, and Py;,;, = 0 if they are. Under the null hypothe-
sis that all the choices between pairs are independent and equally probable,
Moran [12] proved the asymptotic normality of P,k by an argument
ad hoc.

The same result can be obtained by a direct application of the main theorem
of the present paper. It is easily seen that Py; ;i and Py ;- ++; have to be re-
garded as linked whenever the two sets of index values have at least two ele-
ments in common, so that 8(¢) = 3t — 8. Nevertheless, two sets of variables
are independent if there is only one link between them. Hence we can take
d = 3. Then y(m) is the number of possible patterns of links ensuring the irre-
ducibility of a set of m of the variables P(;, ;) (allowing for repetitions). Further-
more, putting

.
at = var ), Pujuy = 2, var P,
C gkt ikst

we obtain a; = O(¢!), and consequently, a,0(t)™ — « as t — «, which, in
view of the boundedness of the distribution of the variables, causes the condi-
tions (i), (ii) and (iii) to be satisfied automatically. The last condition of the
theorem is easily seen to be also satisfied.

In the same way, the theorem could be applied to the distribution of the test
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function under alternative hypotheses respecting the pattern of dependence of
the variables set by the null hypothesis.

If 6(1) can be taken independent of ¢, as, for instance, in the case of m-de-
pendent variables, this simplifies the whole situation in a way which is quite
different from the simplification due to the boundedness of the distributions in
question. Conditions (i) and (ii) can, then, be combined into one condition:
My D in &, Pllzs| > naj = 0 for every positive 7, 6(¢) can be omitted
in the statement of condition (iii), while, owing to the Schwarz inequality,
condition (:v) can be replaced by the simpler condition that

D> f; o= B dR)

kin Ky

should be bounded. Thus, as a special case of the theorem proved in the pre-
ceding section, we tind the most general statement of the Central Limit Theorem
for m-dependent variables published so far (see [13] and [16]), and, therefore,
as a still more special case, also the Central Limit Theorem for independent ran-
dom variables under conditions which are not only sufficient, but necessary
as well, at least when the normalized random variables are infinitesimal (see
[2] and [17]).
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