EXACT OPERATING CHARACTERISTIC FOR TRUNCATED SEQUEN-
TIAL LIFE TESTS IN THE EXPONENTIAL CASE

By RosaLie C. WoopALL AND Babpric M. KURKJIAN
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1. Introduction. Non-truncated sequential life tests involving the exponential
distribution, f(¢) = exp(—t/6)/6,¢t = 0, 6 = 0, have been treated extensively
by Epstein and Sobel. In [3], the details are given for

(i) computing the approximate OC curve associated with the familiar se-
quential probability ratio (4, B) rule, where A = (1 — B8)/a, B = B/(1 — a),
and where « and g are the nominal errors of first and second kind, respectively;

(ii) computing the exact strength (!, B') of the (A4, B) rule where o’ < a,
B =<8 =pB/(1—a)and

(iii) determining an (A*, B) rule with strength exactly (a, 8) (based on the
solution by Dvoretzky, Kiefer, and Wolfowitz, [1], for the exact OC curve for
the non-truncated case).

The above results constitute essentially a complete solution for the OC curve
in the non-truncated case. Many times, however, it is desirable to truncate the
sequential test after some pre-selected V, time units or 7, failures have been
observed. Then if a decision has not been reached earlier, accept Ho: 8 = 6, if V,
is observed before 7, failures, otherwise accept H;: § = 6;. Upper bounds on
the strength of truncated tests have been given by Epstein in [2]. ;

The main purpose of this paper is to determine the exact OC curve for the
truncated test. This result is conveniently obtained as the sum of a finite series
whose terms are defined recursively (in Sections 3 and 4) by modifying the
Dvoretzky, Kiefer, and Wolfowitz solution [1] for the non-truncated test.

Only the case of sequential testing with replacement is considered. For con-
venience it is assumed that the sample units are tested one at a time. Extension
to the case of testing 7 units simultaneously (with replacement of failures as they
occur) is straightforward (Epstein [2]).

2. Preliminaries and notation. Application of Wald’s sequential probability
ratio test [3, 5] to the exponential distribution yields the following (A4, B) rule:

Accept Ho: 0 = 6, if V(t) = ai,
Accept Hi: 0 =6, if V(1) =r;,
Continue test otherwise,

where
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0 < 6o
a; = hy + s fore=20,1,2 ---,

) ri = —hy + s for those positive integers for which (—h; + 4s) > 0,
ri=0 otherwise,
ho = —InB/(67" — 63%), by = mA/ (67" — 65%), s = In(60/6:) /(67 — 00'1)’
A4 =(1-8)/a,B=8/(1—a).

V(t) denotes the accumulated life time of all items tested up to time ¢ and ¢ de-
notes the observed number of failures up to time ¢ Clearly [3] the decision to
reject can be reached only at the instant a failure occurs while the decision to
accept may be made at any time between failures.

In accordance with the notation used in [1], let the integer n(0) denote the
largest index ¢ for which r; = 0. Then n(0) is fixed by the (4, B) rule and is the
integer satisfying the relation (h;/s) — 1 < n(0) < hy/s. Further let m be the
integer defined by the relation r,, < ho < 7m+1 . Then since ho > 0, it follows that
m + 1 > n(0) or n(0) = m. (See Fig. 1.)

Let stage 7 be defined as the time interval from (and including) the ¢th failure
up to (and not including) the (¢ 4+ 1)th failure, and let ES” and ES” denote the
events V(¢) = a:,and r; < V(t) < a;foreachj = 1,2, ---, 4, respectively.
Let p[ES?, E{”] be the probability of the joint occurrence of ES? and E® ie., the
probability of accepting H, at the 7th stage.

Then the OC curve, which is the probability of accepting material with true
mean-time-between-failures (MTBF) 6, can be expressed in the infinite series
form

(2) P,(8) = Prlaccept | 6] = > p(E’, ES).
=0

3. OC curve for the non-truncated case. In the non-truncated case, P4(6) is
given by Dvoretzky, Kiefer, and Wolfowitz [1] in the form

n (0) m
(3) P,(8) = exp(—ho/6) {g} b;2'/ ; ci z"} ,
where
(4) b= (=1)(h — i8)/6"/3Y,  ei = (—1)T(ho + by — is)/6]'/3},

z = exp(—s/6).

The aim now is to rearrange (3) into the form of (2). Then, as shown in the
next section, it will be a simple matter to obtain the OC curve for the particular
truncation rule considered herein.
The quotient of the polynomials in (3) forms an infinite series,
n (0) m

(5) Zo b,-z'/zo c,-zi = Z S,'zi.

=0
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To express the coefficients, S;, in terms of the known quantities, b; and ¢;,
clear fractions in (5), getting
n (0) . 0 . © . ) X
(6) Dbz =co (Z S; z') + ¢ (Z S; z'“) + i e (Z S z'+"‘> .
=0 =0 =0 =0
Equating coefficients of like powers of z (keeping in mind that n(0) < m), there
results, for fixed integers n(0) and m,

(1 for =0

b — Z CjS.'_j for 7= 1, 2, v ,n(O)

=1

(7) Si

<

— D ¢S ; for t=n(0)4+1,.---,m

j=1

—‘Z CjS.'_j for i=m+1,m+2,~--.

\ =1

The relations (7) can be expressed in terms of the acceptance and rejection
numbers using the identity

(8) h+Mhm—js=aj—mr forany k=n(0)+1, and j=1,2, - -,k

which follows directly from the definitions of a; and r; in (1).
Then using (1), (4), and (8), the relations in (7) can be written, after some
algebraic manipulations, as

(92) S:i=1 for =0

() = X (-0 Villae /08y for i=1,2 -, n(0)
90 = X U=D"las — r)/0Se, for i=n(0) +1,-,m
(9d) = i‘l (—=1)"/i(ai; — 7:)/0VSiz; for i=m+1,m+2, ---.

Using (1) and (5), (3) can be written as
(10) P.(8) = F;‘o S, exp(—ai/6),

where S; is calculated from the recurrence relations (9a) through (9d).

Now it can be further shown that (2) and (10) are equivalent term-by-term,
that is
(11) plES, EP] = Siexp(—ai/6).

The proof of (11) is delayed until Section 5 in order to retain continuity at this
point.
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4. Exact OC curve for (A, B) rule with truncation. The exact OC curve for any
truncation rule (V,, 4y) can now be obtained from (9a) through (9d) and (10)
by merely replacing a; by V, for those values of 7 such that a; > V, and by
terminating the summation at the (% — 1)th term. Then (10) reduces to

J 19—1
> Siexp(—ai/6) + 2. S¥exp(—Vy/8) for Vo= h
T= t=J41

(12) Pu(0) =4, , *
> S¥exp(—Vo/0) for Vo < ho
=0

where J is the largest integer less than (Vo — ho)/s, and where S; is the same
as S; (as defined in (9a) through (9d)) except that a; is replaced by V, whenever
a; > V.

As pointed out by Epstein [2], a reasonable truncation procedure is to select
Vo (or %) and determine 7, (or V) from the relation Vo = 4ps.

6. Proof of formula (11). The proof of (11) requires treatment of the distinct
cases indicated in equations (9a) through (9d). Consider first the probability of
accepting Hy at any stage 7, where n(0) and m are arbitrary integers previously
defined and displayed in Fig. 1. Let ¢; represent the failure time of the jth item
and u; denote the sum of the failure times for the first 7 units. For case (9a), the
probability of accepting H, at stage ¢ = 0 is the probability that the first item
survives gy time units. That is,

7(13) plE®, E®) =1 — ‘[0 [1/6] exp (—t/0) dt: = So exp (—ao/0),

which proves (11) for the case (9a).

For the case (9b), it is clear from the continue test region of Fig. 1 that for
acceptance at any stage 7 (¢ = 1,2, ---, n(0)) the event [ES?, ES?] implies the
joint occurrence of the following set of events: the first failure time, #, = w; , must
occur in the interval (0, ao); the sum of the first two failure times, us = & + &,
must lie in (u;, @1); --- ; the sum of the first ¢ failure times, u;, must lie in
(wi—1, @;;) while the (¢ + 1)th unit must survive the next (a; — u;) time units.
The probability of this compound event is

ag a1—ul
plES’, B = d f dts
(14) A
g dt; (1/6)° exp ([~ — (a; — u))/6).

i=0

Under the transformationu; = t;,us =6+t , -+ ,u; = Zkf.l t , (14) becomes

R agp ay
plES, ES] = (1/6)° exp (—ai/8) fo du f dus
(15) s
f du; , i=12 ---,n(0).

i-1

It is easy to show by induction that the multiple integral on the RHS of (15) can
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be expressed as
=t NS i1 T\ i1
(16) f du1 [ duz e f du,- = (ao/’L!) Z (—1)’ () QAi—j .«
0 ug j=1 J

Furthermore, using the linear relation between the acceptance numbers (1) it
can be shown (by expanding each a}I} in a binomial series and collecting coef-

ficients of (s/a0)", k = 0, 1 2, ,%2 — 1), that

an) > (— ( ) aich = ot

Putting (16), (17) in (1]53

(18) PlES”, E®) = [(ani™)/8%!] exp(—a./6).
Finally using (17), it ig easy to show by induction that

(19) S = 2 [(=1"/jllacs/VSics = loaai )0

Putting (19) in (18) we get the desired result (11) for the case (9b).

To prove (11) for the case (9¢), it is convenient to deal with the special case
n(0) = 0 and arbitrary m. (Extension to the general case of arbitrary n(0) and
m merely involves replacing with zero each r; for all indices 7 < n(0), wherever
it appears in treating the special case.) For the case n(0) < ¢ < m, it is more
difficult to determine the event E{” because now one must exclude values of u;
lying in the reject region as well as those in the accept region forallj = 1,2, - - -,
i. To determine E.?, it is convenient to divide the continue test region into the
intervals or zones on the u; as shown in Fig. 2. The dots in Fig. 2 are used to
represent these intervals for each u;, 7 = 1, 2, , 1, as follows. Denote the
dot in the k;th row from the bottom and jth column from the left by I ,ﬁ;; ki =7,
j+1,---,47=12 ---,4 Since u; = u;; foreachj = 1, 2, ---,z,the
dots represent the intervals on u;, given in (20) below, depending on whether
the value of u; lay in the same or a lower zone. Using this array of dots one
can construct each admissible “path” (hence each distinct element of E(”)
leading to acceptance of H) at stage < by connecting ¢ dots, one from each column
starting with the first column and terminating with the one dot in the 7th col-
umn. Since u; = w;— for all 7, obviously each path must be monotonically non-
decreasing. Hence each path can be represented as a vector of 7 intervals on the

u;(j=1,2 ---,1), say

IY = [I{) I8 5 -+ I?], where, for ¢=1,2,---,m,
(Thy Thyta) for j=1 and k=1,2,---,7—1
(r:, @) for 7=1 and k=1
(re; y ruj1a)  if ko <k; for [j=2,8,---,7—1 and
(Ujma s Toj41) I by = k; {kj =5Jj+1-,i—1
(rs, aj1) if kja<i for [j=2,8,---,7 and

8

=1

(20) Ii) = 4

(| (Wjm1,a5) i k=74



1410 ROSALIE C. WOODALL AND BADRIG M. KURKJIAN

Note that we can pass from the s-stage array to the (¢ — 1) stage array by
deleting the dot labeled I{? in Fig. 2 and adding the intervals in the jth column
of the ¢th row to the intervals in the jth column of the (¢ — 1)st row, (j =

1,2, ---,¢ — 1), all other intervals remaining unchanged. That is
IS =19 + 18, i=12-,i—1
(21) Ilg;]_l) = Ilgz’ .7 =1, 27 ] T — 27 and

ki=j7j+1,"'7i_2~

To avoid counting all the paths leading to acceptance at stage 7, we define,
consistently with (16), R(u; € If?) to be the definite integral over any path
terminating at I{?, that is

(22) R(u; e I) —f fdul dus -+ dus .

It)

Also define Y, R(u; € I?) to be the sum of all such integrals over distinct paths
I each terminating at the position I{. For example, for ; = 2 there would be
two paths I? = [I; I = [(rn, m); (2, @)] and If? = [IY; IY] =
[(r2, @0); (w1, a1)], and then

T2 ay ag ay
> R(uz € I3) = f f duy dus + f f du dus .
u1=7r1 uUQ=r9 uU1=ry u=uy

Then, by the same considerations leading to (15), we can write for the probability
of acceptance at stage 7
(23) plES?, EP] = (1/6') exp(—a,/0) 2 R(u;e I1}).

It is easy to show that the RHS of (23) reduces to (11) forj = 1andj =2.
Assume now that (23) reduces to (11) for all j up toj = ¢ — 1, or equivalently,
that

(24) > R(u;eI{?) = 6°S; forallj=1,2,---,¢— 1.

We show now that (24), hence (11), is true at stage ¢ for the case % = m. Since
the position I (9 can be reached from only the positions I, ic1,i—1 and I8 i—1 We can
write (using (20)),

2 R(uie I

(% Rlua e 1] [ d
(25) "
+ [0 R(ui € I§)1)] fu du; .

Substituting [%7% du; = [%-'du; — [¥i~" du. in (25) and rearranging, we get

S R(uieIf?) = [ Rluis & IiP1i0) + 20 Rluwia £ I50)] fai—l du
(26)

~ [T Rua e 18201 [
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But, as a consequence of the definition of R and ) R, we can write
2 R(uia eI ;1) + X R(uia e I))

= 2 R(uia e I i + I§)).
Using (21) and (24) in (27) and putting that result into (26), we get

(28) Z R(u‘l & If:)) = (az—l - 1‘,)0‘—18,.1 - [Z R(ul—l & Iz t—l)] f

(27)

Similarly, the Y R-expression in RHS of (28) can be broken up into,

. i3
T Rlus e 1) = (X Rluis e I0)] [ dui

. ai—2 3 a3 -2
+ 20 R(uis £ I ,:5)] f duis + D R(uiz e I§)] f du;_y
i wiog

(29) g
= [E R(uizel f'i)z,i._z ¥ ie2)] f du;_1

+ [Z R(ui_z & If?—z)] f“-’—i du;is.

Ug—2

Substituting [%7% duiy = [%~*du.y — [%~*du, in (29) and making re-
peated application of (21), (28) reduces to

2 R(ui e I?) = (aizs — )07 Sicx — [(@ica — 7:)%/2110° %8,
Us-1
+ [Z R(u; 2 ¢ If?—z)] [ du;_1 f du; .

Continuing this process of breaking up the ) R-integral forms (a total of 5
times), and using, at each step, the well-known result ([4], p. 218)

a,-_,- u] u,'._l
(31) [ [ [ awdus - dus = (aucy — r)ifs!
ul=rg Yug=rg U =Ty

forj=1,2,---,1 (30) reduces to

(30)

(32) > R(u;eIP) = Z‘{ (=1 (ai_; — r:)?/i00778; = 6°S; .

Multiplying through by (1/6°) exp(—a./0) we get the desired result, (11), for
the case of (9c).

The proof for the case of (9d), i.e., for ¢ > m, follows an identical argument
but terminates at the term involving the factor (a;_, — rm)™/m! because it
follows directly from the definition of m that (@i—(m4x — 7:) is negative for all
k =1,2, ---, and hence can’t represent an admissible interval (r;, a;_m_x) on
any uj .

6. Remarks. Before this work was started, the solution of a particular truncated
sequential life test with parameters 6o = 328 min., 6, = 95 min., « = 0.05,
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8 = 0.10, Vo = 1140 min., 7, = 7 failures, n(0) = 2, and m = 4, was obtained
by a Monte Carlo technique by Holt and Pettit of Collins Radio Company. In
that experiment, 2,000 random observations were generated by machine methods
from each of the exponential distributions with MTBF of 6§ = 95, 162, 250, and
328 min. The (A4, B) rule with truncation at 1140 min., or 7 failures, whichever
occurred first, was applied to the observations for each 6 with the following
results:

P4(0)
6(min.) Monte Carlo Exact
95 .105 .107
162 .532 .524
250 .853 .848
328 .950 .942

The exact values listed above were computed from (12) with »(0) = 2, and
m = 4.
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