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1. Introduction and summary. In comparison with the vast number of distri-
bution functions available for describing non-normal populations (see Haight
[11]) a very few sampling distributions of the mean, when sampling from these,
are known in exact form. The more important results have been derived by
Baker [1], [2], Baten [3], [4], Bose [6], Church [7], Hall [12], Irwin [13], [14], Rao
[16] and Shrivastava [18]. Except in the case of the well-known result which
follows when sampling from a Pearson’s Type III population, many of these are
of exceptional form and hardly any of them have been tabulated.

Furthermore, since most of these results are only of practical use in the case of
very small sample sizes, the need for approximations to the sampling distribu-
tion of the mean have been felt.

In the case of the normal approximation, which has been widely used in many
cases in virtue of the Central Limit Theorem, Berry [5] has shown that it is not
sufficient for moderate sample sizes. For the latter case, Esseen [9] has obtained
approximations in terms of the normal distribution and its derivatives. These
results have been extended by Gnedenko and Kolmogorov [10]. Other forms of
approximations have been obtained by Daniels [8] and Welker [21].

Another approach to find approximations to fill the gap between the exact
sampling distribution and its ultimate normal approximation is presented in
this paper. A method developed by Steyn [19] in deriving a differential equation
of the moment generating function of the sample mean and variance respectively
for samples from a normal population, is used in deriving approximations to
sampling distributions of the mean for samples from a number of Pearson’s
Type populations. Only first order approximations are considered and it will be
shown that in the case of sampling from certain skew populations, the results
lead to the Pearson’s Type III-distribution before approaching normality,
whereas, in the symmetrical cases the sampling distribution approaches nor-
mality directly.

2. The method of differential equations. Consider a random sample of size n
from a population with a Pearson’s Type I(Beta)-distribution. Let z;, 7 = 1,
-, m, be n values of the stochastic variable X with distribution

(2.1) [1/B(p, )" (1 — z)* 7, p,g>0;0=z=1

Received July 2, 1962; revised January 2, 1963.
1 Research supported in part by a grant from the South African Council for Scientific and

Industrial Research.
1308

33

; J&;

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Mathematical Statistics. IIEGIE ®

WWWw.jstor.org



SAMPLES FROM NON-NORMAL POPULATIONS 1309
The m.g.f. of the mean X = (1/n) >, X;, is given by
1 1 n
(22) ua) = [ [T 6w} dos - daw,

where ¢(2:) = 2?7 (1 — ;)" exp (awi/n), C = [1/B(p, ¢)]" and « may be
complex. Since this integral exists and is continuous in « and z ([22], p. 67),
differentiation w.r.t. « gives

23) Luw =£’f0 | I:Iw(xi)} (X 20) da - das.,

n

which may be written as

d 1 1 n
Lu@ =S [T sy
o n ; Jo 0 45
(24) .
: {fo o(x;)z; dxj} day -+ (dxj) -+« daa,
wheredz; - -+ (dx;) -+« den =day - - - dajadajp -+ - do, .

Integration by parts of the simple integral

1 1
/0 o(x;)x; da; = /(; (1 — 2;)"'aPe™!™ da;
gives
1 1
@5) [ ¢@ade; = (1/9) [ 6(2) (0 — po; + azy/n — aal/n) da;.

By using (2.2) and (2.3) after substituting (2.5) in (2.4), the latter may be
written as

d _P _pd 1,9
@M(a)—-qM(a) qdaM(a)-l—nqadaM(a)

(2.6) L )
— (Ca/n’q) fo /o H {¢(x¢)}(z x}) dzy - -+ da,.
K J
Repeating the process (i.e., rewriting the latter integral in the form (2.4) and
integrating the single integral, so formed, by parts) and retaining only terms of
the order (n™"), (2.6) becomes

d D y_pd N
1 p+1, (p+ 1V d
(2.7) +n—q{1— q +< q > - "‘}ad—aM(a)

+0 (ofn"? % M(a)),
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where the series in brackets sums up to 1/(p + ¢ + 1), provided that
|(p + ¢)/q| < 1, which leads to the conditions p + 1 < gandp + ¢+ 1 > 0,
the latter of which is already contained in the conditions under which (2.1)
is true.

The Equation (2.7) may, after a re-arrangement of terms, be written as

1 d p+qd
GroTDndal @ - T M@
2.8)
+2M(a) +0 (a2n_2 iM«x)) -0,

q do
a differential equation of the m.g.f. of the mean X.

Now, consider the function T = 2(X — u1)/(uiv1) of X, in which v, is chosen
in a way such that y; = 2(o/uin'), where ui and o are the mean p/(p + q)
and variance pg(p + ¢)*(p + ¢ + 1) of the parent population (2.1) respec-
tively. Substituting for u; and o in the expression for v; , it may be written as
vi = 2¢'/{p(p + q + 1)n}}. The expression for T, after substituting for u] , may
be written in the form

T =120+ q)/mnX — 2/v1 = aX + b, say,

where ¢ = 2(p + q)/priand b = —2/v; .
Denoting its m.g.f. by Mr(a) it follows by some well-known property that

(2.9) Mr(a) = *M(aa),
where M (ac) denotes the m.g.f. of the variable aX. Differentiation w.r.t. « gives
(2.10) % Mo(a) = bMa(a) + ¢ L M(aa).

da da

Replacing o in (2.8) by aa = 2(p + ¢q)a/pv: and substituting for M (aa) and
(d/da) M (ae) from (2.9) and (2.10) respectively into (2.8), the latter may,
after a re-arrangement of terms be written as

{a/(p + q + 1)n — pv1/2¢}(d/da) M r(a)
+ (2a/vi(p + ¢ + Dn}Mz(a) + O(ri'n™*) = 0.

Substituting for 1/(p + ¢ + 1)n from the expression for v; and since v; is
of the order (n™?), this equation reduces to the form

(2.11) (1 — y1e/2)(d/da) Mr(a) — aMr(a) — O(n™") = 0.

Hence, an approximation, including all terms of the order (n™*) is given by
(2.11), with the term O(n™") omitted. The latter equation has as solution

Mr(a) = (1 — v1a/2)™ " exp (—2a/m1),

since M(0) = 1. This expression is the m.g.f. of the standardized Pearson’s
Type I1I-distribution with variable ¢,

(2.12) 7@&) = k(1 + 7at/2)exp (=2t/m1), —2/mStS o,
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with v; , as defined above, as its only parameter, and where

k= [(4/4D)"" exp (—4/v)/T(4/7).

This expression as well as its c.d.f. has been tabulated by Salvosa [17] for
t = —4.99(0.01)9.99 and v; = 0.0(0.1)1.1. Furthermore, he has shown that the
distribution (2.12) tends to normality when v; tends to zero.

It may be noted that if in (2.7) only terms of O(1) are retained, the differential
equation becomes

(d/da)M(a) = [p/(p + ¢)IM(a) or M(a) = exp {pa/(p + @)},

which is Khintchine’s theorem for this distribution. Furthermore, the next
“step”” in limiting distributions is the Central Limit Theorem in virtue of which

TABLE 1
Parent Population Conditions
Parameter v1 of Approximation under which
as represented by (2.12) approx. is
Frequency function* Mean valid
Type 1
o 0 27 (1 — z)o p/(p + 9 2¢¢{np(p + ¢+ DI* | p,¢>0;
p,¢>0,0=z=1 g>p+1
Type IV
k(1 4+ z2/a?)~mexp (—v tanz/a), |—av/2(m — 1)| 2v[{4(m — 1) + »?} 2m > 3t
m>0; —0 S =5 @2m — 3)n]?
Type V
¥t
———— 17?7 exp (—v/x), v/(p — 2) 2{n(p — 3)}°¢ p>3
r'(p — 1)
0=2z= o
Type VI
1
) 2771/ (1 + z)7He, p/lg—1) |2{(p+ag—1)/npl@—2)}}| p > 0;
p,¢>00=z= = qg>2
Type IX
(m + 1A + z/a)™/a, —a/(m + 2) 2{(m + 1)/n(m + 3)}} m > 1
—a=2z=20,
which transforms to
(m 4+ 1A — z/a)"/a, a/(m + 2)
0=z=aq,
if x is replaced by —z. This is then
a special form of Type I.

* See Kendall ([15], Chapter 6).
t See closing sentences of Section 2.
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the sampling distribution of the mean approaches normality. But, the distribu-
tion given by (2.12) also tends to normality when v; tends to zero, i.e. when n
tends to infinity, and at the same time is an approximation to the sampling dis-
tribution of the mean. Hence, this distribution may be considered as a transitional
approximation between the exact sampling distribution as given by Irwin [14]
and its normal approximation.

The use of (2.12) as an approximation to the sampling distribution of the
mean when sampling from a Type I population has been investigated em-
pirically and the results seem promising. Since this investigation is still under-
way, the results will be published in the near future.

It may be shown that in the case of sampling from Pearson’s Type 1V, V, VI
and IX populations, the sampling distribution of the variable T = 2(X — pu1)/
(u171), & function of the sample mean X, is of the same form as (2.12). In all
these cases, the latter distribution’s only parameter y; , is given by v1 = 20/ (uin?),
where u1 and ¢ denote the mean and standard deviation of the sampled popula-
tion respectively.

The results are summarised in Table 1.

In the case of sampling from a Type IV population, it may be noted that the
approximation as given by (2.12) is only valid when a» < 0, @ and » being
parameters of the parent distribution. Whenever a» > 0, the approximation is
given by the expression (2.12), with ¢ replaced by —t, defined over the interval
—o =t =2/7.

3. Sampling from a symmetrical non-normal population. Consider a random
sample of size n from a population with a Pearson’s Type VII-distribution
(3.1) [aB(1/2,m — 1/2)]7(1 + 2*/a")™, —o Sz = o,
Proceeding on the same lines as in Section 2, it may be shown that, to terms
of the order (n™"), the differential equation of the m.g.f. of the mean X is given by

d a 2 —2 d 3
(3.2) aM(a) m&M(a) 0 <an (7(1‘ i’
the latter being the condition under which the derivation of this equation is true.
The differential equation of the m.g.f. Mr(a) of the variable T = Xn}/s, where
o = a/(2m — 3)¥is the standard deviation of the distribution (3.1), follows from

(3.2) after the necessary substitutions as
(3.3) (d/de)Mr(a) — aMr(a) — O(n™') = 0.
Taking the initial condition, M7(0) = 1, in consideration, the differential
Equation (3.3), when n — o, has as solution
(3.4) Mr(a) = exp (a’/2),

which is the m.g.f. of the normal distribution with zero mean and unit variance.
Hence, when 2m > 3, the normal distribution may be considered as a first order

M(a)) =0, m>
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approximation to the sampling distribution of the mean for samples of size n from
a Pearson’s Type VII population.

A similar result has been found for the approximation to the sampling distri-
bution of the mean for samples from a Type II-population.

4. Higher order approximations. When, in the preceding sections, all terms of
the order (n ™) are retained in the evaluation of the expression for (d/da)M (a),
a first order differential equation for the m.g.f. M(a), containing terms of the
order (n™"), is obtained after some tedious algebra.

In the case of sampling from a Pearson’s Type VII population the differential
equation of the m.g.f. of the mean X becomes

{1 L3 } 23 (a)

- o
2m — 3)(2m — 4)n? d
) @m — 3)@m — 5 f da 2
a
_maM(a)—O, m > 2,
which has as its solution
2 —n(m—2)
j— — a 2
(4.2) M(a) = {1 ©Om = 3 @m = Dt a} , m > 2,

since M (0) = 1.

From this expression the moments of the distribution for which it is the
m.g.f., may be obtained in the usual way.

It is interegting to note that the coefficient of excess in this case is v2 =
3/(m — 2)n. Since the same coefficient for (3.1) is given by 6/(2m — 5), the
coefficient of excess for the exact sampling distribution of the mean for samples
of size n is given by 6/(2m — 5)n. The coefficient of excess of the normal ap-
proximation, as obtained in Section 3, is naturally zero. Hence, as far as peaked-
ness is concerned, it is clear that the approximation of which (4.2) is the m.g.f.,
lies between the exact sampling distribution, as given by Irwin [14], and the
normal approximation, since 6/(2m — 5)n > 3/(m — 2)n > 0, for 2m > 5.

Furthermore, by the use of a result published by Steyn [20] in 1960, the differ-
ential equation of the m.g.f., such as given by (4.1), may be transformed to a
differential equation of the frequency function of the sample mean, from which
the latter may be obtained as a solution. It is hoped to obtain higher order ap-
proximations on these lines.
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