ASYMPTOTIC EXTREMES FOR m-DEPENDENT RANDOM VARIABLES

By G. F. NEwELL!
University of Adelaide
1. Introduction. Let {X;} be a stationary sequence of random variables, i.e.
(1) PX; <, XsSaw, )} =P Xjn S2j, Xos1 2y oo}y

which are m-dependent, i.e. if A; are sets of integers, E} is any event in the field
of events generated by the X;, 7 £ Ax, and every element of A; differs by more
than m from any element of A;, ! # k, then the events E) are mutually inde-
pendent (events that occur more than a “time’ m apart are independent). The
extreme

(2) Yn = maX1§j§n Xj
of the finite sequence X;, 1 < j < n has a distribution function
(3) Fo(y) =PYosy} =PX1 =2y, X2 =Sy, -, Xa S 9}

This paper deals with the limit behavior of F,(y) for large n and the extent to
which it differs from the special case of independent X ; for which F,(y) is the
nth power of some distribution function, specifically the distribution function of
X ;. The following theorem is proved.

TueoREM. If B;(y) denotes the event

@) Bi(y) = (X5 > 9} ) (X S o
and Yy, 18 any sequence of real numbers such that

(5) nP{X; >y} < M

for all n, then

(6) Fu(yn) exp [nP{B;(y)}] — 1
forn — .

This extends a theorem by G. S. Watson [4] who proved a result essentially
equivalent to the above for the special case in which y, is chosen so that
nP{X; > y,} has a finite limit £ and the process {X;} has the property that

(7 nP{B;(yn)} ~ nP{X; > ya} — &

for n — «, i.e. in the limit of rare events, P{X; > y.} — 0, there is probability
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zero that if one of the events X; > y, is known to occur, a second such event will
also occur at a neighboring time point. Actually Watson gives a much weaker
definition of m-dependence (only pairwise independence of X; and X, for
|7 — k| > m) than that used here but he seems to assume the above definition
in the proof.

Several more recent papers have also been written on various aspects of limit
behavior of extremes for dependent random variables or processes [1]-[3].

2. Proof. We first write F,(y) = 1 — P{X, > y forsome j, 1 < j < n}. The
event that X; > y for some j, 1 < j < n, is equivalent to the event that either
some B; = B;(y),1 £ j £ n, occur (some X; > y and the m succeeding X,
are <y) or some X; > y occur and each occurrence of an X; > y is followed by
another event X; > y with 1 < k — j £ m (no B; occurs). The latter of these
two possibilities, however, can happen only if X; > y for some j withn — m +
1 = j = n, the last such event with j < n. The probability for this is certainly
less than the sum of probabilities for these values of j, namely mP{X; > y}.

If follows from (5) that mP{X; > y.} < Mm/n — 0 for n — «, and so we
conclude that

®) Puw) =1 - P{UBG | +00/m)  for o
1

which with the principle of inclusion and exclusion gives

Fu(ya) = 1 = 3 PIBi(yn)} + 2 P(B;(ya)Bu(ya))

(9)

= 2 PIBi(wa)Bu(y) Bi(a)} + -+ + O(1/n).

The various types of terms, singlet events, pairs, etc. will be considered sepa-

rately. For the singlet terms, the stationarity implies ) i P{B;} = nP{Bj =

nP{Bi}. The pair terms can be separated into those with (a) k — j < m,

(b)ym+1=k—j=2m,and (¢) 2m + 1 < k — 7. In case (a) B;B; is the
null event and P{B;B;} = 0. In case (b),

P{B;Bi} < P{X; > yn, Xs > ya} = P{X; > ya} < M*/n’

since the X; and X are independent. There are less than nm such terms, how-
ever, and their total contribution to F,(y.) is also of order 1/n. In case (c), the
events B; and B; are independent so that P{B;B,} = P’{B,}. The number of
these terms is 3n’[L + O(1/n)], therefore ), P{B,Bi} = n’P*B,} + O(1/n).

A similar decomposition applies to all higher order sums in (9). There are
approximately n°/s! terms involving the intersections of s of the B, . Of these all
but a fraction of order 1/n involve only independent B;. These contribute to
F.(y.) a quantity (—1)°(n’/s!)P*{B;} + O(1/n). The terms involving de-
pendent B; are either null if any pair of indices differ by m or less or all pairs of
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indices differ by more than mand P{B;ByB: - -} £ P{X;> Yn , X& > Yn, -+ *} =
P{X; > ya} < M*/n’. The number of such terms is of order n° " and their total
contribution is of order 1/n.

Since this last inequality is also valid for arbitrary j, &, [, - - - , the expansion
(9) for F,(y.) is dominated by the series

n n 8 £ 8
Fu(ya) < ;<s> o < Z‘J:?

uniformly in n. To within a remainder o(1), the series for F,(y) can therefore
be approximated by the contribution from at most o(n) many values of s, in-
cluding, in particular, the O(1/n) terms. Thus for n — o, Fo(y.) = 1 —
nP{B;) + (n*/2)P*{Bj} + --- + o(1) = exp [—nP{B,;}] + o(1).

We have not specified that nP{B;(y.)} must have a limit for n — o but in any
case nP{B;(y.)} < nP{X; > y.} < M, and therefore F,(y») exp [nP{B;(y.)] —1
for n — o, which proves the theorem.

3. Examples. For many processes that arise in practical applications the Con-
dition (7) assumed by Watson is true. As an example of when it is not true,
suppose that Z; is a sequence of independent identically distributed random
variables with a distribution function F.(z), and the X-process is X; =
max (Zj ) Zj._l).

The distribution for ¥, is very simple since Y, = maxigj<. X; =
maxo<j<n Z;, and so for large n
(10) Fo(yn) = [Fz(yn)]n+l ~exp{—n[l — F.(y)]}-

The process X ; is 1-dependent and
P{X;: > y, X; < y} = P{max (%1, Zo) > y, max (Z,, Z1) = y}
= P{Z >y, Zo £y, Z1 S y} = Fo()[1 — F.(y)].

Therefore

nP{By} = nP{X1 > yn, X2 = ya} ~n[l — F.(ya)]
and the theorem (6) is consistent with (10). However

P{X; > ya} = P{max (Z1,Z) > ya} = 1 — Fi(ya)
and

nP{X; > ya} ~ 2n[1 — F.(ya)] *~ nP{Bi}.

The m-dependent processes often arise as functions of independent random
variables X; = G(Z;,Zj1, -+ , Zi—m) and one can easily construct any number
of processes for which (7) is false, particularly if the function G is symmetric to
interchange of its arguments.
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