USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY
BETTER ESTIMATORS

By K. R. Suan

Indian Statistical Institute, Calcutta

1. Introduction and summary. Yates (1939, 1940) suggested use of informa-
tion about treatment differences contained in differences of block totals. The
procedure given by Yates for three dimensional lattice designs (1939) and for
balanced incomplete block (BIB) designs was adopted by Nair (1944) for par-
tially balanced incomplete block (PBIB) designs and was later generalized by
Rao (1947) for use with any incomplete block design.

The procedure is called recovery of inter-block information and consists of the
following stages. The method of least-squares is applied to both intra- and inter-
block contrasts, assuming that the value of p, the ratio of the inter-block variance
to the intra-block variance is known. This gives the so called “normal” equations
for combined estimation. The equations involve p which is estimated from the
observations by equating the error sum of squares (intra-block) and the ad-
justed block sum of squares in the standard analysis of variance to their re-
spective expected values. This estimate is substituted for p in the normal equa-
tions and the combined estimates are obtained by solving these equations. A
priori, the inter-block variance is expected to be larger than the intra-block
variance and hence it is customary to use the above estimator of p, truncated at
unity.

The error sum of squares in the inter-block analysis has at times been used in
place of the adjusted block sum of squares (Yates (1939) for three dimensional
lattice designs, Graybill and Deal (1959) for BIB designs).

If p were known, the combined estimators would have all the good properties
of least-squares estimates. Since only an estimate of p is used, the properties of
the combined estimators have to be critically examined. One would expect these
to depend on the type of estimator of p used. To use the combined estimator of
a treatment contrast with confidence one would like to know if it is unbiased and
if its variance is smaller than that of the corresponding intra-block estimator,
uniformly in p.

The question of unbiasedness has been examined by some authors. Graybill
and Weeks (1959) showed that for a BIB design, the combined estimator of a
treatment contrast based on the Yates’ estimator of p in its untruncated form is
unbiased. Graybill and Seshadri (1960) proved the same with Yates’ estimator
of p in its usual truncated form, again for BIB designs. Roy and Shah (1962)
showed that for any incomplete block design, if the estimator of p is the ratio
of quadratic forms of a special type, the corresponding combined estimators of
treatment contrasts are unbiased. The customary estimator of p (as given by
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Yates (1939) and Rao (1947)) is of the above type and hence gives rise to un-
biased combined estimators.

The variance of the combined estimators has also been examined by some
authors. Yates (1939) used the method of numerical integration to show that
for a three dimensional lattice design with 27 treatments and with 6 replications
or more, the combined estimator of a treatment contrast has variance smaller
than that of the intra-block estimator, uniformly in p. For a BIB design for
which the number of blocks exceeds the number of treatments by at least 10 (or
by 9 if in addition, the number of degrees of freedom for intra-block error is not
less than 18), Graybill and Deal (1959) used the exact expression for the variance
to establish this property of the combined estimators. In both the cases, the
estimator of p is based on the inter-block error and thus differs from the usual one
based on the adjusted block sum of squares. For BIB designs, Seshadri (1963)
gave yet another estimator of p which gives rise to more precise combined esti-
mators provided that the number of treatments exceeds 8.

Roy and Shah (1962) gave an expression for the variance of the combined
estimator based on any estimator of p belonging to the class described above.
Shah (1964) used this expression to show that the combined estimator of any
treatment contrast in any incomplete block design has variance smaller than
that of the corresponding intra-block estimator if p does not exceed 2.

The question that now arises is whether a combined estimator for a treatment
contrast can be constructed which is “uniformly better’” than the intra-block
estimator, in the sense of having a smaller variance for all values of p. It is shown
in Section 4 that for a linked block (LB) design with 4 or 5 blocks, recovery of
inter-block information by the Yates-Rao procedure may even result in loss of
efficiency for large values of p.

A method of constructing a certain estimator of p, applicable to any incomplete
block design for which the association matrix has a nonzero latent root of mul-
tiplicity p > 2, is presented in Section 3. For any treatment contrast belonging
to a sub-space associated with the multiple latent root, the combined estimator
based on this estimator of p is shown to be uniformly better than the intra-block
estimator if and only if (p — 4) X (ep — 2) = 8, where ¢, is the number of
degrees of freedom for error (inter-block). For almost all well-known designs,
the association matrix has multiple latent roots and this method can therefore
be applied to many of the standard designs, at least for some of the treatment
contrasts.

It may be noted that, in general, this estimator of p is different from the cus-
tomary one given by Yates (1939) and Rao (1947). For LB designs however,
this estimator of p coincides with the customary one. It is shown here that, for
a LB design, the usual procedure of recovery of inter-block information gives
uniformly better combined estimators for all treatment constrasts if the number
of blocks exceeds 5. As was pointed out before, if the number of blocks is 4 or 5
and if p is large, recovery of inter-block information by the usual procedure
results in loss of efficiency.
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Using the above method, we obtain an estimator of p which produces a com-
bined estimator uniformly better than the intra-block estimator for any treat-
ment contrast for the following designs: (i) a BIB design with more than five
treatments (ii) a simple lattice design with sixteen treatments or more and (iii)
a triple lattice design with nine treatments or more. Applications to some other
two-associate partially balanced incomplete block designs and to inter- and
intra-group balanced designs have also been worked out in Sections 4 and 5. A
computational procedure for obtaining the estimate of p has been given for each
case.

2. Preliminaries. Consider an incomplete block design with b blocks of &
plots each involving v treatments each replicated r times, having the v X b
matrix N = ((n;;)) as the incidence matrix. Any linear function of observations
which is orthogonal to each of the block totals will be called an intra-block con-
trast. Obviously, we can construct b(k — 1) mutually orthogonal intra-block
contrasts. Also, if a contrast in observations is a function of block totals only, we
shall call it an inter-block contrast. We can construct (b — 1) mutually orthog-
onal inter-block contrasts. Without loss of generality we may assume that these
contrasts are normalised, i.e. the sum of squares of co-efficients is unity.

We assume that the joint distribution of these b(k — 1) contrasts is multi-
variate normal where, the expected value of any contrast is obtained by replacing
in the contrast every observation by the corresponding treatment parameter,
the variance of any intra (inter)-block contrast is ot(s1) and the covariances
are all zero. Thus we may call o5(oi) intra (inter)-block variance per plot or
simply intra (inter)-block variance. Evidently, if these assumptions hold for one
set of mutually orthogonal normalised inter- and intra-block contrasts they will
hold for any other. We also assume that p = o1/0f = 1.

Let B = {Bl,Bz, ,Bb},T = {Tl,Tz, e ,T,,} and 6 = {01,02, e ,0,,}
be the column-vectors of block totals, treatment totals and treatment parameters
respectively. By @, we shall denote the total of all observations. Let further,

Q=T-Fk'NB Q, = k'NB — (#G/bk)E,
C = rI— k'NN’ C, = k'NN' — (+*/bk)E,,,

where E,, , denotes a (m X 7») matrix with all elements unity.

It is known (see, for example, Rao (1947)) that minimum variance unbiased

linear estimates of treatment effects 8 based on intra-block contrasts only, are
obtained from the equations
(2.2) Co = Q.
These shall be called the intra-block normal equations for estimation or simply
the intra-block equations. If the ratio p = o1/t is known, both intra-block and
inter-block contrasts can be used together, and minimum variance linear un-
biased estimates in this case are obtained from the equations

(2.3) (C+57'CO = (Q + p'Qu).

(2.1)
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These shall be called the combined normal equations for estimation or simply
the combined equations. The solution of these equations will be denoted by
8(p). When p is not known, an estimate p* for p is substituted in (2.3) and 8(o*)
is taken as an estimate for 0.

Since we shall consider connected designs only, the matrix C has exactly one
latent root zero. Hence the matrix NN’ has a latent root 7k with multiplicity one
and all other latent roots will be smaller than rk.

Letp,,s= 1,2, - - -, ¢ bea set of orthonormal latent vectors of NN’ correspond-
ing to the ¢ positive latent roots ¢;, ¢z, -+, ¢, , all smaller than rk. Let p,,
s=¢q+1,---,v — 1, be aset of v — 1 — g normalised orthogonal vectors
each orthogonal to p;, p2, - -+ , pg and also to E, ; . Now we define
(2.4) 20, = k(b — $)7'Q'p. s=1,2-,¢

' = _%Q’ps s=q+1,---,v—1.

It can be seen that zy,, s = 1, 2, ---, v — 1 are mutually orthogonal nor-

malised intra-block contrasts. Hence we can find ¢ = b(k — 1) — v + 1
mutually orthogonal normalised intra-block contrasts each orthogonal to xq ,
Zez, *** , To,0—1 . These we may denote by 2y, , s = 1,2, -+, eo. We also define

(2.5) z1s = (kos) *B'N'ps s=1,2-,q

These can be seen to be mutually orthogonal normalised inter-block contrasts
and hence we can find ¢, = b — 1 — ¢ mutually orthogonal normalised inter-
block contrasts each orthogonal to 2, - - - , 21, . We denote these by z1,,s = 1,
2, s 6.

It follows from our assumptions that

E(xp:) = aosTs fors =1,2,.---,v — 1.
E(z1) = trers fors =1,2,---,¢
(2.6) 1 1 ’
E(zs) =0 fors =1,2,-:-,¢
E(z,) =0 fors =1,2,---,¢
where
aos = (r — ¢o/k)? fors=1,2,---,q
3
=7 fors=q+1,---,v—1
(2.7) . ’
a1, = (¢s/k) fors=1,2 ---,¢q
T, = 0'p, s=1,2,---,0— 1.
It also follows from our assumptions that xz,,, s =1, 2,---, v — 1 and
Z0s, S =1, 2, -, e are all uncorrelated each having variance ¢," and i, ,
s=1,2,---,gandz,,s = 1,2, -- - , ¢ are all uncorrelated each with variance
2

O1.
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We note that r,, 72, -+, 7,_; are linearly independent parametric contrasts.
It is easily seen that Equations (2.2) are equivalent to 7, = ¢,
where

(2.8) te = Zos/ s s=1,2 ---,v— 1.
Equations (2.3) are equivalent to 7, = %,(p) where

(2.9) L.(p) = (paosmos + a151s)/ (pass + ais) s=1,2,-,q
= Tos/ Oos s=q+1,---,v—1.

It is easily verified that
V(t) = oo/as, §=1,2-,0—1
(2.10) V{t(p)} = poo/(pac: + ais) §=1,2-,¢
= o0/04s s=¢q+1---,v— 1.

The procedure commonly adopted is to substitute for p in (2.9) some estimate
p* which is a function of observations. Such an estimate of 7, will be denoted
by ,(p*). In this case, the variance of #,(p*) will depend upon the estimate p*
used.

Consider a statistic P of the form

q
a8 + Db,z
=1

(2.11)
P=__ "= 14
S
where 2, = Tos — Gosl1s/01s, 8 = 1,2, -+ | g,
€0 ey
(2.12) So = D 2bs, S =D 2,
s=1 s=1

and @, by, - -+, by, d are some constants. One may choose a, b;, -+ -, b, and d
suitably and define

pf =P fP=1

(2.13) .
=1 otherwise.

1t is easily seen that fors = 1,2, -, ¢
L(p") — 1(p) = leo/an(1 + pc.)lw,
where
¢ = aos/ais = (rk — &,)/ds
[(0* — #)/(1 + p¥c))lzs .

We note that V(z,) = ot + co1,8=1,2, -, ¢.
It is shown in Roy and Shah (1962) that if p* is of the form (2.13), (") is

(2.14)

Ws
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unbiased for 7, and its variance is given by
(2.15) Vit(o™)} = V{t(p)} + [co/ass(1 + pe.)’|E(w}).
It is also shown in Roy and Shah (1962) that in this case, the combined es-

timators of 7, and 7, (s % s') are uncorrelated. Now, any treatment contrast r
can be expressed as

(2.16) T = muT + MeTe + -+ MpaTo

where my, ms, -+, M. are some constants. Let I(p*) = > 1=l mds(p")
denote the combined estimator of r when p* is used as an estimate for p. If p*
is of the form (2.13), V{i(p™)} is given by

(2.17) VIO = VIR + 3 cbmiBud) b1 + e’

where #(p) = 2221 mds(p) denotes the combined estimator of 7 when p is
known.

3. Construction of combined estimators with uniformly smaller variance. The
variance of a combined estimator of r,-is given by (2.15). In this section we
shall construct a suitable estimator p* and evaluate this variance in terms of
incomplete Beta functions.

Suppose the association matrix NN’ has a latent root ¢ of multiplicity p(p >
2). Without loss of generality we may say that the positive latent roots of NN’
are vk, ¢1, 2, v, by, pi1, , ¢ where, ¢, = ¢ for s < p and ¢, # ¢ for

s > p. Denote the common value of ag , @e, -+, Gp DY G, of au, a2, ---,
ap by @ and of ¢1, 2, -+, €p by € Also let
v
(3.1) > o =72
s=1
We take p* as defined in (2.13) where, to obtain P we shall put
a=20
b, = ey/Cp fors=1,2,---,p
(3.2)
=0 fors=p4+1,---,¢q
d= —1/¢
in the defining Equation (2.11). This gives
p* = GoZ/é'pSo —_ 1/5 if So é KZ
(3.3) i
=1 otherwise
where
(3.4) K = e/p(1 + ¢)

and ¢ is the common value of ¢, ¢2, +, Cp -
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It can be easily seen that this gives us
(2:/€){1 — p(1 + p)So/eeZ} if S = KZ
(#/€){1 — p(1 + ¢p)K/eo} otherwise

Il

W,
(3.5)

fors=1,2,---,p.
Evidently, wi, w,, - -+, w, are identically distributed and hence E(w}) =

E(wy) = -+, = E(w) = E(p' 2 2, w?). Using (3.5) one gets
D - - \2 2
Lywi= Lg -2t w)g 2+ a) Sy g gy
(3.6) D=1 pe? €o C? esc? Z
‘ - - \2
= —1_~ Z — M K7 + MKzZ otherwise.
pe? €o C? e ¢?

We shall now use the following lemma.

LemMa 3.1. Let S and Z be two independent random variables, S/a% being a
x” with e, d.f. and Z/q; being a x* with e, d.f. Let m =< e,/2 + 1 be a positive num-
ber and let K > 0 be a given constant. Consider a functton F(S, Z, m, K) defined by
F(S,%Z,m K) = 8"Z"™ ifS < KZ

= K"Z otherwise.
The expectation of F(S, Z, m, K) s given by
E{F(S,Z,m,K)} = os K", I(%e, + 1, %e,)

(38) (6. + e)o.” B(de, + m, ke, — m + 1)
z s)0z | s ) 292 1 1, —
+ (o_g/o_g)m B(%es i %ez) I1_$(266 + m) 262 m + ]-)
where © = o3/ (02 + Ko2), B(p, q) denotes the Beta function with arguments p
and q and I,(p, q) denotes the corresponding incomplete Beta function.
Proor. The joint distribution of S and Z is given by

A-exp {—(8/26%) — (Z/262)} 8P 71 g8 47

where 1/4 = T'(e,/2)T(e./2) (207)%"*(202)%".
Consider a transformation from S, Z to U, V given by

8/Z =U, 8/20s+ Z/2: = V.
The Jacobian is given by
a(8, 2)/8(U, V) = V(U/2s5 + 1/262) %
Hence the joint distribution of U and V is given by
ATyt il gy el 7902 4 1 /9y ertedl2 gry
It is easily seen that
F(S,Z, m, K)

(3.7)

VU™ (U/20% + 1/257) ifU=K
VE™(U/26% + 1/262)7" otherwise.
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Hence we have
BPGS, Z,m, K)) = 4 [ Ty avy
V=0

X {fK U(98/2)+m—1 dU f°° KﬂlU(e;/2)——l dU
vma (U257 F 12777 T |y (0267 F 17377073

The integral in V is I'(e, + e, + 2)/2). Using the substitution f = o3/ (o> +
o2U) and integrating w.r.t. f the result is readily obtained.

In the lemma, we set S = Sy, Z = Z, o> = o3, 02 = oo(1 + ép), €; = €
and e, = p. Using (3.6) and (3.7) we get

y4

},Zwi - pci F(s, 2,0, K) - 2L ps,, 7,1, 1)
s=1 0

(3.9)

- \2
+ %c—”—)— F(S, 7,2, K).
0

An application of Lemma 3.1, gives us
jJ = 2 ’
E<12w§> = (_Li‘é?ﬂ’kﬁ{l + X(X — z)Iw(?_%'__z, g)

P s=1
_ eo+2p p(eo + 2) (60+4 p-—2>}
2II—z < 2 ) + eo(p — 2) I 2 y 2 y

(3.10)

where X = (1 4+ ép)/(1 + ¢©).
It is easily seen that z = p/(p + €X).

The following expression for variance follows from (2.15) and (3.10):

— _ p+2 e
V(") = s {1+ + X(X - 21 (25 2,2)

(3.11) at2p) plo+?); (ot+4p—2
_211"( 2 )+eu<p—2)l”< 2 2 }

fors=1,2,--,p.

We note that as p — «, X — « and ¢ — 0. It is easy to prove that

(3.12) limao {V(8(0™))} = ob/ds fors =1,2 -+, p.
It can also be shown that fors = 1,2, --- , p,
av(t.e™) _ _ a5 {p(l —a); (p +2 @)
a1+ o1 — z)? o L2 \ 2 ’2

(8.13)

2e, e+ 2 p e+ 2 eo+4p—-2}
v2nn (0F2) - s e ()

We note that this is always negative if 2 e;(p — 2) = p(ey + 2) or equivalently
if (p — 4)(ep — 2) = 8.0n the other hand if (p — 4)(ep — 2) < 8, the deriva-
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tive is positive for sufficiently small values of . An examination of (3.12) and
(3.13) leads to the following.

(1) If (p—4)(e—2) 28, fors=1,2 -, p, V(i,(p")) < V(t) uni-
tormly in p. This is a consequence of the fact that V(7,(o*)) increases with p
and reaches the limit V(&) = ob/ds as p — .

(2) If p>2and (p —4)(e —2) <8, fors=1,2,---, p, V(I(p") >
V(i) when p is sufficiently large; i.e. the combined estimator considered does
not have uniformly smaller variance as compared with the intra-block estimator.
This follows from the fact that for sufficiently large values of p, V (t,(p*)) de-
creases with p. Thus the limit as p — « (which coincides with the variance of
the intra-block estimator) is reached from above. It is shown in Shah (1964)
that for values of p not exceeding 2, the combined estimator has smaller variance.

In view of (2.17), it is clear that the above analysis holds for any treatment
contrast 7 which is of the form r = > 2, 1,7, where 1;, 15, --- 1, are some
constants. It is clear that such treatment contrasts form a vector space, call it
V, with the following properties:

(i) rank V = p,

(ii) variance of the intra-block estimator of any normalised contrast in V is
the same, ‘

(iii) for any pair of mutually orthogonal treatment contrast of which at least
one belongs to V, their intra-block estimators are uncorrelated.

We thus have the following theorem:

TueoreM 3.1. Consider an incomplete block design for which the association
matriz has a non-zero latent root (other than rk) of multiplicity p, let m be a latent
vector associated with this root. Let p* be the estimator of p constructed as in (3.3)
based on this latent root. Let r = m'0, t its intra-block estimator, and I(p*) the
combined estimator using p*. Then,

(3.14) V(#(p*)) < V(¢) for all values of p

provided that

(3.15) (p —4)(eo — 2) = 8.

Further, of

(3.16) p>2and (p —4)(ep — 2) <8,

(3.17) V@(p*)) > V(t) for sufficiently large value of p.

4. Uniformly better combined estimators for all treatment contrasts in a
certain class of designs. A general procedure for constructing a combined es-
timator of a treatment contrast with variance uniformly smaller than that of
the intra-block estimator was developed in Section 3. In this section and in the
succeeding one we discuss applications of this procedure to some well-known
designs.

A combined estimator of a treatment contrast will be said to be ‘“uniformly
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better” if its variance is smaller than that of the intra-block estimator for all
values of p. Further, any statement relating to combined estimators will apply
only to those treatment contrasts on which inter-block information is available.

Let us denote by D, , the class of incomplete block designs for which the asso-
ciation matrix has only one non-zero latent root (other than rk). We shall use
Theorem 3.1 to construct a uniformly better combined estimator for any treat-
ment contrast for any incomplete block design belonging to the class D, .

For any design belonging to the class D;, we shall denote by ¢, the non-zero
latent root of NN’ (other than k). Thus the multiplicity of ¢ is given by ¢ =
(rank NN') — 1. As before, let 7,, 7o, -+ , 7, denote the canonical contrasts
corresponding to ¢. If (¢ — 4)(eo — 2) = 8, we can apply Theorem 3.1 to ob-
tain a uniformly better combined estimator for a treatment contrast = of the
form 7 = Y %=y M7, . As is evident from (2.6) for 7441, Tg42, *** , To-1, the
(v — 1 — ¢) canonical contrasts corresponding to the zero root of NN’, no
inter-block information is available. Hence, #,(p*) = t, for s = ¢ + 1, ¢ + 2,
.-+, v — 1. Now any treatment contrast r is a linear combination of =, 7.,

-, 71 and for p* defined by (2.13), %,(o*) and %, (p*) are uncorrelated for
s % §'. It follows from Theorem 3.1 that for any treatment contrast r which
admits of inter-block information, V(¥(p™)) < V(t) for all values of p.

To compute p* defined by (2.13), we note that for a design in the class D, ,
Z = Y% 2 may be expressed in the form

(4.1) Z = ¢l + O{(T'T/r — G*/bk) — (2T — r6™')0%}

where 6* is any solution of (2.2), the intra-block normal equations and as before,
¢ = (rk/¢) — 1. Thus, p* may be written down as

* ) VA > AL

= - -1 if=>-2

(4.2) P T k= <QS% 57 ¢
= 1 otherwise

where s§ denotes the intra-block error mean square.

For a design in the class D, , ¢ and ¢ may be evaluated in the following manner.
Since the association matrix is symmetric, the sum of the latent roots is equal
to the sum of the diagonal elements, and the sum of squares of the latent roots
is equal to the sum of squares of all the elements. Since only non-zero latent roots
are rk and ¢ with multiplicities 1 and ¢ respectively, we have

(4.3) gp =r(v — k)
and
(4.4) @ =’ + 2\ — K

i’
where \;;» denotes the number of blocks containing both the treatments j and j'.
We thus have the following theorem.
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TarorREM 4.1. Consider an tncomplete block design belonging to the class D; .
When p* as given by (4.2) is used, for any treatment contrast r

(4.5) V(™)) < V(t) for all values of p
provided that
(4.6) (¢ —4)(e0—2) =8

where q is obtained from equations (4.3) and (4.4). Further, if ¢ > 2 and (¢ —
4)(ep — 2) < 8, (4.5) does not kold for all values of p.

Applications of this theorem to some well-known designs are given below.

(i) Applications to BIB designs and to LB designs: It is implied in Bose
(1949) that for a BIB design the association matrix is of full rank and has only
one latent root other than rk. Thus any BIB design belongs to the class D; .
Since ¢ = v — 1, it follows that inter-block information is available for all
treatment contrasts and hence when (4.6) holds we get uniformly better com-
bined estimators for all treatment contrasts.

For all BIB designs with more than 5 treatments, the condition (4.6) holds.
It may be noted that the estimator of p given by (4.2) differs from the customary
one proposed by Yates (1940). '

Linked block (LB) designs were obtained by Youden (1951) by dualising
the BIB designs. It is shown by Roy and Laha (1956) that for a LB design the
association matrix has a non-zero latent root (other than rk) of multiplicity
(b — 1). Since rank NN’ < b, all other latent roots must be zero. Thus a LB
design belongs to the class D, .

Condition (4.6), which in this case amounts to (b — 5)(ep — 2) = 8, holds
for all LB designs with b = 6.

It may be checked that R, the untruncated form of the customary estimator
of p, can be expressed as

q
ek {Sl 4+ Z ¢32§/7'k}
s=1 _ v—Fk
oir — 1) 8o oir —1)°

For a LB design s =b —1—¢g=0and ¢ == -+ =g = r(» — k)/
(b — 1). Consequently ¢ = (rk — ¢)/¢ = v(r — 1)/(v — k). Substituting
these in (4.3) and (4.7) it is readily seen that the customary estimator of p
coincides with the one given (4.2). It is also easily seen that linked blocks are
the only designs for which these two estimators coincide.

It follows from Theorem 4.1 that for a LB design the traditional combined
estimators are uniformly better than the intra-block estimators if b = 6, but
not soif b = 4 or 5.

(ii) Applications to PBIB designs with two associate classes: Now we shall
search for PBIB designs with two associate classes belonging to the class D; .
We shall adopt the standard definition and notation for these designs as given
in Bose and Connor (1952).

Connor and Clatworthy (1954) have shown that. the association matrix of a

(47) B
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PBIB design with two associate classes has exactly two distinct latent roots
other than rk. From the values of these roots given there it can be deduced
that a necessary and sufficient condition for one of the roots to be zero (i.e.
for the design to belong to the class D) is:

(4.8) (7' —_ )\1) (7' —_ )\2)/()\1 — )\2) = piz(T bl >\2) bl piz(?‘ bl )\1).

Evidently if b < v, rank NN’ < ». Consequently zero is a latent root.
For any two-associate PBIB design in D;, ¢ and ¢ obtained from (4.3) and
(4.4) turn out to be

(4.9) ¢ = {o(r" + n\ + nA3) — K /r(v — k),
g =1 — &) /(" + m\ + nad) — Y.

Two-associate PBIB designs have been classified by Bose, Clatworthy and
Shrikhande (1954) as (1) group divisible: (a) singular, (b) semiregular, (c)
regular, (2) triangular, (3) Latin square type, (4) simple and (5) cyclic.

(1) For a group divisible (GD) design Bose and Connor (1952) have shown
that the two distinct latent roots of NN’ are (r — N;) and (rk — v)\;) with mul-
tiplicities m(n — 1) and m — 1 respectively. Thus a GD design belongs to the
class Dy if either r — \; = 0 i.e., if the design is singular or if 7k — v\, = 0 i.e.
if the design is semi-regular. For a regular GD design r > \; and 7k > v\, and
hence no regular GD belongs to D; . In a singular GD design uniformly better
combined estimators are obtained if (m — 5)(e; — 2) = 8. A corresponding
condition in the case of a semi-regular GD is (m(n — 1) — 4)(e — 2) = 8.

For the next two types, use of (4.8) gives the following conditions on the
parameters which ensure that they belong to the class D; . In each case to apply
Theorem 4.1, Condition (4.6) may be verified with the help of ¢ given by Equa-
tions (4.9).

(2) In a triangular design defined by Bose and Shimamoto (1952), v =
n(n — 1), m =2(n —2), np = 3(n — 2)(n — 3), pla = (n — 2). A nec-
essary and sufficient condition for a triangular design to belong to the class D,
isthatr = 20y — Neor (m — 3)Ne — (n — 4)\,.

(3) For a Latin square type design with 7 constraints v = n’, n; = i(n — 1),
g = (n —1)(n — ¢+ 1) and pi; = (¢ — 3) + n. A Latin square type de-
sign belongs to the class D; if and only if » = (2 — n)(\ — A2) + A or (A, —
A\2) + A:. In particular, the simple lattice is a two associate PBIB design of
the Latin square type with ¢ = 2. Since \; = 1 and \; = 0 the above condition
is satisfied. Condition (4.6) holds for » > 3. Similarly the triple lattice is a two
associate PBIB design of the Latin square type with ¢ = 3. Since \; = 1 and
A2 = 0 the design again belongs to the class D; . Condition (4.6) in this case is
satisfied for n > 2.

6. Some other applications. In this section we shall consider two applications
of Theorem 3.1 where uniformly better combined estimators will be constructed
only for treatment contrasts of a certain type.

(i) Inter- and intra-group balanced (IIGB) designs: IIGB designs were first
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introduced by Nair and Rao (1942). An IIGB design with equal number of

replications for all treatments may be defined as follows. In an incomplete block

design let there be m groups of treatments, there being »; treatments in the <th

group. Let each pair of treatments in the 7th group occur in A;; blocks and let

each pair of treatments one of which belongs to the ith group and the other to

the jth group occur in \;; blocks. Such a design is called an IIGB design.
The association matrix NN’ is given by

(T - )\11) Ivz + )\11 Evm )‘]2 Evuﬂz e )‘xm Evlvm
A2 Evzm (T - )\22)11)2 + A2 Evnz e Aom Evzvm
NN =
L )\lm Evmvl )‘Zrn Evmvz M (T - )‘mm)lvm + )\mn Evmvm J

It is easily seen that the vector of co-efficients m corresponding to any treat-
ment contrast - = m’'8 involving treatments from the ¢th group only is a latent
vector of NN’ corresponding to a latent root of multiplicity (v; — 1). By Theo-
rem 3.1, we can construct uniformly better combined estimator for any intra-
group contrast involving treatments from the sth group only provided that
(vi — 5)(ep — 2) = 8 (we consider only those groups for which r — \;; £ 0).
An estimator of p as in (3.3) may be computed as follows. Let 6,, 6; - -+, 0.,
denote the treatment effect parameters for the treatments in the sth group.
Let further 67, - - - | 0,’,“,. denote the solutions (corresponding to these treatments)
of the intra-block equations and let 61, 65, - - - , 6,, the corresponding part of
the solutions of the inter-block normal equations namely C6 = Q;. We shall
put d; = 67 — 6;. To obtain p*, we substitute in (3.3)

p=l),;‘—].,
_(7"0—7"")\11) (Zd)}
(5.2) Z= k {Zd
.tk — Ay
- T—)\ii )

(ii) Regular GD designs: Bose and Connor (1952) have shown that a GD
design is a special case of an IIGB design where, N\i; = A\, v; = n and Ai; = N,
forallz,5 =1,2,---, m (2 £ 7). The association matrix of a GD design is
obtained by substituting these in the right hand side of (5.1).

It is easy to check that the vector of co-efficients m corresponding to any
treatment contrast - = m’0 involving treatments all from the same group is a
latent vector of NN’ corresponding to the root (r — A;). Thus the vector space
of treatment contrasts associated with (r — A;) consists of all intra-group con-
trasts and this has rank m(n — 1). In this section we consider only regular
GD designs so that r — A\; 5 0.

If (m(n — 1) — 4)(eg — 2) = 8, by Theorem 3.1, we can construct uni-
formly better combined estimator for any intra-group treatment contrast.
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The following computational procedure may be adopted to obtain the estimate
of p as defined by (3.3). Let 6;; denote the treatment effect parameter for the
j-th treatment in the ¢-th group. Let further 63 and 67, (s = 1,2, -+, m, j =
1, 2, -+ -, n) denote the respective solutions of the intra-block and the inter-
block normal equations. Put d;; = 67, — 6;;. The estimate p* is obtained by
substituting in (3.3)

p=m(n—1)

g="k—r+tM 3@ — ;L_(_;_ﬁ)_

k T 5 n

. rhk—r4+ N
r — M )

When (m — 5)(ep — 4) = 8, a similar procedure can be adopted to obtain
uniformly better combined estimators of inter-group contrasts.
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