ESTIMATING THE CURRENT MEAN OF A NORMAL DISTRIBUTION
WHICH IS SUBJECTED TO CHANGES IN TIME!

By H. CHERNOFF AND S. ZACKS
Stanford University and Technion, Israel Institute of Technology

1. Introduction. The present study was motivated by consideration of a
“tracking” problem. Observations are taken on the successive positions of an
object traveling on a path, and it is desired to estimate its current position. If
the path is smooth, regression estimates seem appropriate. If, however, the
path is subject to occasional changes in direction, regression will give misleading
results long after a naive observer would have made corrections. Our objective
is to arrive at a simple formula which implicitly accounts for possible changes in
direction and discounts observations taken before the latest change.

To develop insight into the nature of a reasonable procedure, we study a
simpler problem. In this problem successive observations are taken on n inde-
pendently and normally distributed random variables X;, X,, ---, X, with
means pi, Mz, - - -, un and variance 1. Each mean p; is equal to the preceding
mean p;_; except when an occasional change takes place. The object is to estimate
the current mean u, .

We shall study this problem from a Bayesian point of view. First, we assume
that the time points of change obey an arbitrary specified a prior: probability
distribution appropriate to the special case being studied. Second, we assume
that the amounts of change in the means, when changes take place, are inde-
pendently and normally distributed random variables, with mean 0 and variance
o’. Third, we assume that the current mean u, is a normally distributed random
variable with mean 0 and variance 7°. Letting +° approach infinity, we derive,
according to these assumptions, a Bayes estimator of u, for an a prior: uniform
distribution on the whole real line and a quadratic loss function. This estimator
is invariant under translations of X;. The minimum variance linear unbiased
estimator (MVLU) of u, is also derived. The MVLU estimator is considerably
simpler than the Bayes estimator. However, when the expected number of
changes in the means is neither zero nor n — 1 the Bayes estimator is more
efficient than the MVLU one. Generally, the Bayes estimator is very difficult
for applications, since it requires many involved computations. A considerable
simplification is attainable in the formula for the general Bayes estimator by
letting the a-priori variance of the changes, ¢, approach zero. This simplified
estimator might not be an efficient one in cases of large changes. As an alternative,
we consider the problem where the a priors distribution of time points of change
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is such that there is at most one change. This problem leads to a relatively simple
Bayes estimator, called AMOC (at most one change) Bayes estimator. However,
difficulties may arise if this estimator is applied when there are actually two (or
more) changes. If the first change is larger than the second one, the method
tends to act as though the latter change had not taken place. We shall describe
an “ad hoc” estimator, which applies a combination of the AMOC Bayes esti-
mator and a sequence of tests designed to locate the last time point of change.
The various estimators are then compared by a Monte Carlo study of samples
of size 9.

In a study on “Control Charts and Stochastic Processes” [2], G. A. Barnard
has tackled the control problem as a problem of estimating the current mean of
a process. The general forms of the Bayes estimator and the MVLU estimator
were derived in Barnard’s paper in a somewhat different manner, but the general
result is essentially the same. Since the objective in the present study is different
from Barnard’s, the study of the structure and properties of the Bayes estimation
procedure is more detailed.

Our Bayesian approach seems to be more appropriate for the related problem
of testing whether a change in mean has occurred than for our estimation
problem. This problem was studied by Page [3], [4]. The test procedure obtained
by our approach is simpler than that used by Page. The power functions of the
two procedures are compared.

2. The statistical model and distribution theory. Let X = (X, -+, X,)’

be the column vector representing the n observations, and u = (u1, - - - , 1)’ the
column vector representing the corresponding means. Then,
(2.1) X=u+te
where e = (€1, - -+, €) is the vector of observation errors. The successive means
are related by:
(22) pi = piy + JiZs (t=1,.---,n—1)
whereJ; (¢ = 1, .-+, » — 1) is a random variable which assumes the value 1
if there is a change between time points ¢ and 7 + 1, and the value 0 otherwise.
Z; (i =1, --.,n — 1) is a random variable representing the amount of change,
when a change takes place.
LetJ = (J1,J2, -+ ,Jn1,0) and Z = (Zi, -+, Zua, 0)'. We assume
that ¢,J, Z, and u, are independently distributed with
(2.3) £(e) = (0, I)
1

1 0
(24) £(Z) =2 |0, ' |

0 1

0
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and
(2.5) £(u) = (0, 7°)

where £( ) designates the distribution law of the variable in the bracket;
(8, =) denotes the normal distribution law with mean 6 and covariance matrix
2; and where I is the n X n identity matrix. Without specifying it further at
present we represent £(J) by its density function:

(2.6) p(j) = PYJ = j}

where j is a point in an n-dimensional Euclidean space. We remark that although
the X,’s are independent for a given u, the a prior: distribution of u leads to a
resulting distribution for the X;’s where they are no longer independent. More-
over, given {J = j}, X and u are linear functions of the 2n linearly independent
normal variables in ¢, Z and p, . Thus, the conditional joint distribution of X
and p given {J = j}, and other such conditional distributions, may be determined
by classical normal multivariate analysis techniques. In particular, since

n—1

Xi=pn+ &+ 2 JuZ, fei=1,...,n—1
(2.7) k=i
= fn + €, ifi=mn
we obtain from (2.3) and (2.4)
(2.8) L(X | tnyJ) = N(pme, Z(J))
where ¢ is the n X 1 column vector whose elements are all 1, and
(2.9) 2(J) = I+ oTJy
in which Jr is the upper triangular n X n matrix
Ji J2 oo Jau1 O
Jo o Ju O
(2.10) Jr = -
0 Jun1 O
0

Furthermore, since the distribution law of u, is normal we derive from (2.5) and
(2.8)

(2.11) L(X |J) = (0, =*V))
where

(2.12) S*J) = Z(J) + 7ee’
and,

2*(J) e
(2.13) (X, pn |J) = |0, . 1)
TE T
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Hence, the a posterior: distribution law of u, , given X and J, is
€2 (J)X 1 )
e (e + 72 2 (J)e + 72/

The distribution law £(X |J) together with £(J) can be combined to give
£(J | X) which, according to Bayes theorem, can be expressed by

(2.15) p(j|X) =P =j|X} = p(n(X |0, 2*(:‘))/% p()n(X |0, 2%(3))

(214)  £(w|X,J) = sn(

where n(X |0, Z) represents the normal density with mean 6 and covariance
matrix Z. Finally, the a posteriors distribution law of u, , given X, can be repre-
sented schematically by

(2.16) L(ua | X) = %p(le)eﬁ(uan,J =J).

3. The minimum variance linear unbiased estimator. We present in slightly
more detail than given by Barnard [2] the formula for the MVLU estimator of
Hn . This estimator is a weighted average of X;, X,, ---, X, whose weights do
not depend on the observations but only on the a prior: assumptions concerning
the distribution of J and Z. Therefore, we expect the MVLU estimator to be
efficient only in cases where the available information on X does not substantially
affect the a posterior: distribution £(J | X). That is, when £(J | X) is approxi-
mately £(J). This is the case when changes in the means occur almost always,
or when there are almost no changes.

A standard argument shows that if £(Y) = 9U(ue, V'), the linear function of
Y which is the minimum variance unbiased estimator of u is € V'Y /e'V . In
our application, the conditional distribution of X given u, is easily obtained from
(2.8), and we have the MVLU estimator j, of u,

(3.1) gn = €VX/V e

where
n—1

(3.2) V=EzZJ) =1+ pWP,
k=1

and W isann X n matrix whose upper left & X & submatrix consists of elements
equal to 1 and all of whose other elements are zero.

Let & (2 = 1,2, ---, n) be the sum of the components of the ¢th column
vector of V. Then we can write

(3.4) o = [Z_ &+ 1]—1 [i LX + X]

=1 =1

In the special case where p, = pforallk = 1,2, ..., n — 1 one obtains the
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following formula for &; :

é’i = 1/V1V2 e Vn_z(Vn_.1 - 1), ifz =1

(3.5) e
= (vic1— 1)/vic1 -+ Vao(vpa— 1), if1 =2, ... ,n—1
where
(36) w =2+ dp, if b =
' =2+ o’p — w4, ifk=2 -.,n— 1.

According to formulae (3.4)—(3.6), when po” is large the weight assigned to
X: (¢ =1, ---, n) by the MVLU estimator is of the order of magnitude of
(pa®)~"?. Indeed, », = O(pds”) as po” — o, forallk = 1, ---,n — 1. Hence,
g = O(1/(pd®)" ™) as po® — o forall ¢ = 1, ---, n. On the other hand, if
po® — 0 the weights &; are almost equal. Indeed, in the case ps” = 0, & = 1/n
foralle =1, ---,n.

4. The Bayes estimator. In this section we first outline a derivation of the
Bayes estimator obtained by a slightly different approach by Barnard [2]. We
follow this by a more leisurely development of a reduced form of the estimator
which is of particular value in our applications where few changes of the mean
are anticipated.

Assuming a quadratic loss function, the Bayes estimator £, is the mean of the
a posteriort distribution of u,, given X. Thus, according to (2.14) and (2.16)
this Bayes estimator is given by

(4.1) fn = 200 | D)2 DX/EE (e + 7.

Substituting (2.15) in (4.1) we obtain
(42) fn= D_l%: p()n(X |0, 2*(7))e'Z7 ()X /€27 (j)e + 7]

where
(4.3) D = %p(j)n(Xlo, =*())-

To derive a translation invariant estimator we shall let > — co. Then, the
sum of the elements of ¢=7"(5)/[¢=Z7"(j)e + 77| converges to 1. Hence fi, con-
verges, as 7 — ©, to a weighted average of linear functions of X, each of which
is a weighted average of the observations X; (¢ = 1, ---, n). Note that the
coefficients of #, depend on X. Hence, the Bayes estimator is generally non-
linear. However, in the special case P{J = jo} = 1, for some jo , i.e., when all the
points of change are known, the limit of {4, coincides with the corresponding
MVLU estimator i, .

In general, the limiting behavior of fi, involves the asymptotic behavior of
=*1(J) and of det =*(j), as ©* — . It is not difficult to prove, applying
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matrix equalities in [1], that as 7 —

(4.4) det 2*(5) ~ =71 (G)e -det Z(5),
and
(4.5) =G - 27U — 2T (Gee’27H(G) /e =T (e

Denoting by [i.(j) the conditional Bayes estimator, given {J = j}, for the
uniform a priors distribution of x, on the whole real line,

(4.6) fa(f) = 27X/ 27 (5)e

we get, according to (4.2), (4.3), (4.4) and (4.5) that the Bayes estimator for
the uniform a prioré distribution on the whole real line is:

fn = DB {[¢=7(J)e-det Z(J)]

(4.7) -
-exp[—5[X — Ea(J)el 27 () X]fin(J )}

where
(4.8) D = E/[=7"(J)e-det 2]} exp[—i[X — fn(J)e]’Z7(J)X]}

and where E,{ } designates the expectation operator with respect to the a prior:
distribution of J. This general formula (4.7) has been given previously by
Barnard [2].

We now give another representation of the Bayes estimator, which is especially
suitable for cases of a small number of changes in the mean. The derivation is
parallel to that of the original Bayes estimator. The difference lies in the present
emphasis of the fact that when the time points of change are known the sums of
observations between these time points are sufficient statistics for w,. This
permits us to reduce the general n X n matrices of formula (4.7) when there
are few changes, to lower order matrices which are easier to manipulate and
incidentally add somewhat to the understanding of the nature of f.. This
approach will prove useful later.

LetJ = jwithj;=late =m,ma+me, --- ;o1 +me+ --- +m, (r =1,
2, --+,n — 1). In this case there are r changes in the mean, taking place at the
time points my , my + ma, -+, M1+ - +m, . Letm = (my, -, My, Meys)’
where m,41 = n — (my + --- 4+ m,). The vector and its dimension » 4+ 1 are
determined by 7 and conversely j is determined by m. In caseJ = j is such that
there are r changes, we transform the random vector of observations X to an
(r + 1)-dimensional vector Y as follows:

Yi= Xi4 o + Xn,
Y2 = Xm1+1 + e + Xm1+m2
(4.9) .

Y,+1 = Xml+"‘+’mr 'I" e ‘I‘ Xn .
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The random vector Y is a function of (X,J). Straightforward calculation yields,

(4.10) LY | pn,J =7) = N(pam, S(m))
where the covariance matrix &(m) is given by,
(4.11) S(m) = mp + omms
mp being a diagonal matrix of order (r 4+ 1) X (r + 1) whose diagonal elements
aremy, - -+, My, Mgy ; mr being the (r + 1) X (r + 1) upper triangular matrix
m me -+ m, 0
(4.12) mqs = ) . . .
[ 0 m, 0
0

In the following we prove that the Bayes estimator, forﬂthe a priori uniform
distribution on the whole real line, can be represented in terms of the variables
m and Y in the following manner:

(4.13) fin = DA% pGW(Y [ HImM'S (m)Y /m'S (m)m
where,

(4.14) D = %}p(j)aﬁ(l’ |7)

and where

]
N my * o Metr
15 V(Y15 = ([det@(m)]m'@—l<m)m>

1 ) e -
e[ 3O = m)) &Y + L ¥y |
in which fi.(m) represents the conditional Bayes estimator, givenJ = j, namely
(4.16) fn(m) = m'S 7 (m)Y/m'S (m)m.

The proof of (4.13) and (4.15) is similar to previous derivations. Since the
a priort distribution of u, is normal, one obtains

(4.17) L(Y|J =j) = 90, &*(m))
where

(4.18) &*(m) = &(m) + ’mm’.
Similarly,

(4.19) &Y, | J =) = 91(0, [@;inm) 72’2"]).

T
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It follows that the a posteriors distribution of u, , given (X, J) is

' o 15 m &S (mym + 72’ mMS(mym + 2]
Let Y* = (Y, Y}, -, Y5) where Y2, Y¥,, .-+, Y are orthonormal con-
trasts in X;, Xo, ---, X, and hence
r+1 n
2 (Yifn) + 3 V¥ = X'X.
= T=r+42
Since these contrasts are independent of u, and Z we have,
(4.21) L(kn l Y,J) = &(pa l Y*’ J) = L£(pn l X,J).
Hence, the conditional Bayes estimator, given J = j is m'& (m)Y/

(m'& (m)m + 7). This estimator converges, as  — , to (4.16). The
conditional density of Y*, given J = 7, coincides with that of X, given J = j,
except for a factor of (my - - - myy1)t. Thus,

n(X0,2%()) = (mq -+ mpua)n(Y |0, S*(m))
1 1 %2
(4.22) " @y &P [_ 3, =TZ+2 Y ]

= (_2%)% exp{— %X’X} <md—; t. @*z;gly exp{— %—Y'(@*_l(m) —mp) Y}.
Application of (2.15) and (4.22) yields (4.13)—(4.15) after substituting in (4.22)
(4.23) &*(m) = &' (m) — S (m)mm'S ™ (m)/m'S (m)m + *
and
(4.24) det &*(m) = det S(m)[1 + ©*'m'S " (m)m]
and letting ©* — .

5. The Bayes estimator for the case of at most one change. Applying the
formulae derived in the preceding section we obtain a relatively simple formula
for the case of where the distribution of J is such that there is at most one change
in the mean. The formula obtained sheds more light on the characteristics of the
Bayes estimator. The Bayes estimator for at most one change will serve as a
basis for an ad hoc estimation procedure described in the next section, which
can be applied in general.

Let po = P{J = 0} and pp = P{Jp = 1,Jm = Oforallm’ = m} = P{J,. = 1}

m =1, ..., n — 1. That is, po is the a prior: probability of no change, and
Pm (m =1, ---,n — 1) is the a priori probability of one change taking place
between X, and X,..:. In the case of one change taking place at time point
m(m =1, ... ,n — 1) the covariance matrix S(m) is given by:

G em =[r 0 Teeln o]=["" 5 L0
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Hence, the conditional Bayes estimator is, according to (4.16)
(52) fin(m) = [nXn + o'm(n — m)Xi-n)/In + 'm(n — m)],
' m=1 --.,n—1

where

(53) Xa=n"2X; and X}, =(n—m)" > X; (m=1,---,n—1).

=1 1=m+1

Furthermore, as easily verified, formula (4.15) is reduced in the present case to

1 o I:l 2(n _ m)2 2
i+ omln — m)) P | 22 + min — myn
(K — X>]

(54)

The conditional Bayes estimator and its corresponding weight for the case of no
change can be obtained from (5.2) and (5.4) by substituting m = 0. Thus, the
Bayes estimator for at most one change is

n—1

= D™ mZ—O [n + aim(n — m)}

5.5) i ] )
( .ex I:l _o'm’(n — m)’ (X — X;“_m)z] nXn + o'm(n — m X*_,
PL2 n? + o*m(n — m)n n + m(n — m)
where
. n—1 pm
(56) b= 2—:‘0 [n + o*m(n — m)}

1 02m2(n — m)2 5 % 2]
"exXp [2 n +am(n — m)n (X = Xan)” |-
A simplified form of the Bayes estimator for the case of at most one change is
obtained by considering the asymptotic form of Ay for ¢ — «. The Bayes
estimator is then approximated by

Rt 5|

G m=1 [m(n - m)]

(5.7)
o[ 3= (x, - ReRe)
where
(58) D** = L lnz_l _ Pm e l:l 'm_____(n m) (X, — X )2]
| m " mn — m)p P n " I

6. An ad hoc estimation procedure. The general form of the Bayes estimator,
as given by (4.7) and (4.13) is very complex. Our objective is to construct an
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estimation procedure which is robust, efficient, and yet simple enough to be of
practical use. The Bayes estimator based on the model of at most one change is
relatively simple. However, computations show that it is an inefficient estimator
in cases where the expected number of changes in the mean is greater than one.
As is to be expected, the “at most one change” estimator does not do well when
there are several changes, for a large change may hide subsequent smaller ones.
The consequent error in the location of the “one change’ leads to a poor estimate
of u. . We present here an ad hoc procedure which estimates the last time point
of change by a sequence of tests. Then, the “at most one change” estimator is
applied to the observations following the last estimated time point of change.
As will be shown later the ad hoc procedure improves upon the “at most one
change” estimator in cases where the latter is inefficient.
To present the ad hoc procedure in detail, define

(6.1) B.(m, k) = D "pf™(X™), k=0,1,---,m—1
where

(6.2) X" = (Xncmpr, =+ 5 Xa)'

and

(()m) = (1 — m—1
63) P (1—p)

plgm)=p(1_p)m—2 k=172,,"'5m_1’
and
my _ 1
0 Gl P ey
‘ -exp [1 K(m — k)’ (X — X*(’")Z] fork=0,1,--- ,n—1
2m? + omk(m — k) " ek T
in which
_ n—m-tk
(6.5) Xm =% 2 X
t=n—m+1
and
(6.6) L% =m-k"7 > X
t=n—m+k+1
and where
m=—1
(6.7) D} = kzo MY (X™).

For k > 0, B,(m, k) is the a posteriori probability, based on the data X,
that a change has taken place at some point after the (n — k)th observation.
For &k = 0, B,(m, 0) is the a posterior: probability that no change has taken

place. This computation assumes a priori probabilities proportional to pi™.
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Let K, be the value of &k which maximizes B,(m, k). Then K,, = 0 corresponds
to a tentative Bayes decision that no change has taken place during the last m
time points.

The ad hoc procedure consists of computing K,, K3, --- until we reach a
non-zero K, , say K. Then we apply the “at most one change” estimator to the
observations X, gy1, Xo-xt2, -+, Xn.

The following example illustrates the procedure with p = 0.2 and ¢ = 3.
Consider a sample of 9 observations: X; = 2.6130, X, = 1.6610, X; = 1.8145,
Xy = 1.2737, X5 = 2.6157, X; = —0.3256, X; = —2.4220, X3 = —0.1186,
Xy = —0.0341. The a posterior: probabilities By(m, k) and the Bayes estimators
for at most one change, based on the last m observations, are given in Table 1.

This table gives a strong indication of a change taking place between X; and

TABLE 1
A posteriors probabilities B(m, k) and estimates of un based on a sample of nine observations

B(m, B(m, B(m, B(m, B(m, B(m, B(m, B(m, :
" \m im8) m im7) m £m6) m (—ms) m im4) m ims) m im2) m iml) B(m, 0) Estim.

0.0702 | 0.9298 |—0.0737
' 0.2474 | 0.0722 | 0.6804 |—0.6229
0.0542 | 0.0954 | 0.0660 | 0.7844 |—0.6301
0.7149 | 0.0890 | 0.0088 | 0.0107 | 0.1765 |—0.5749
0.01753 | 0.6812 | 0.1378 | 0.0076 | 0.0089 | 0.1470 |—0.5630
0.0103 | 0.0158 | 0.7682 | 0.1398 | 0.0037 | 0.0038 | 0.0584 |—0.6232
0.0037 | 0.0089 | 0.0154 | 0.7907 | 0.1438 | 0.0025 | 0.0023 | 0.0328 |—0.6460
0.0025/ 0.0032 | 0.0086 | 0.0137 | 0.8538 | 0.1094 | 0.0008 | 0.0006 | 0.0074 |—0.6706

© 00U W

X . In fact K5 = 4 is the first non-zero K and our ad hoc procedure, computing
the “‘at most one change estimate” based on the last four observations, yields
the estimate —0.6301.

7. Comparison of estimators by Monte Carlo computations. Three methods
of estimating the current mean, u, , have been considered. These are the minimum
variance linear unbiased procedures; the Bayes procedure; and an ad hoc pro-
cedure. Accordingly we derived four relatively simple estimators. The MVLU
estimator (3.1); the “at most one-change Bayes” (AMOC Bayes) estimator
(5.5); the simplified AMOC Bayes estimator (5.7); and the ad hoc estimator in
the present section. The efficiency of these estimators and their robustness in
small samples are studied numerically. For this purpose we used a computer
(IBM 7090) to generate samples of n = 9 observations, according to the following
models:

MobzL I. A change between each time point. The parameter o is assigned the
value 0, and the observations X7 , - .-, X, are generated according to the model:

8
Xi=o) m+ e, fori=1,...,8
(7.1) =" ’
= g, forz =9
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where €, -+, & ;m, -, 7s are independent random variables, each having a
(0, 1) distribution law. In order to study the effect of the magnitude of changes
in the mean on the estimators, the parameter ¢ was assigned the values 2, 3, 4.
MonpkL II. Binomial changes, 0 < p < 1. In this model we assign a constant
probability, 0 < p < 1, of a change between any two consecutive observations.
The parameter yo is assigned the value 0, and the observations X;, ---, X,
are generated according to the model:

8
X,~=aZJn + e, fore=1,.-.,8
(7.2) =
=g, forz =9
where ¢, -+, €& ;m, -+, 73 are independent random variables, each having a
(0, 1) distribution law; and Jy, ..., Js are independent binomial random
variables, with
(7.3) P(J,=1) =p, forallk =1, ...,8.

Nine cases were considered, corresponding to the combinations of ¢ = 2, 3, 4
and p = 0.1, 0.2, 0.3.

Monpkr III. Assigned changes.

(i) IIL. A. No change.

All the means y; = .-+ = yy = 0 and,
(7.4) Xi=¢ (G=1,---,9)
where ¢, -+ -, & are 91(0, 1) independent random variables.
(ii) ITI. B. One assigned change.
The means p;, - -, ug are given, for each m = 1, ... | 8, by:
(7‘5) “1: co-=#m=o', ML+1= 000=M9=0
and we consider each case (m = 1, ..., 8) with ¢ = 2, 3, 4.

(iii) III. C. Two assigned changes.
Case 1. The means of the observations are given by

(7.6) p=-=p=0; wmw=90; p=m=0

where ¢ = 2, 3, 4. This model is used to check the effect of two adjacent changes

that cancel each other.
Case 2. Two changes in the same direction. Here the means of X;, - - -, Xy are:

(7.7) #1=”2=2g'; #3=...=”7=g; /'1'8=M9=0

where ¢ = 2, 3, 4.

100 samples of n = 9 observations were generated for each model, and each of
the following estimators was applied to each sample. In order to check the effect
of substituting incorrect values of the parameters p and ¢” in the formulae of the
estimators, we considered the following seven estimators.
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Estimator 1—MVLU, ¢* = 3, p = 0.2

Estimator 2—MVLU, ¢* = 20, p = 0.2

Estimator 3—AMOC Bayes, ¢* = 3, p = 0.2

Estimator 4—AMOC Bayes, > = 20, p = 0.2

Estimator 5—AMOC simplified Bayes, ¢* = 20, p = 0.2

Estimator 6—Ad hoc procedure, ¢* = 3, p = 0.2

Estimator 7—Ad hoc procedure, o* = 20, p = 0.2
The means and mean-square-errors (MSE) of these seven estimators, over the
100 samples generated for most of the models, are represented in Table 2.

Examination of the numerical results, which are represented in Table 2, leads
to the following conclusions:

(1) As anticipated, when there is no change in the means (Model III A) the
“at most one change” (AMOC) Bayes estimator, with the smallest value of ¢
(Bst. 3) is the most efficient one (has the smallest MSE) among the estimators
studied. Moreover, the differences between the MSE’s of estimators 3, 4, and 5
are negligible. This fact indicates that the AMOC Bayes estimator is not sensitive
to incorrect values of the parameters. The ad hoc estimators (Est. 6 and Est. 7)
are slightly less efficient than the AMOC Bayes estimators. Less efficient than
all, when there is no change, are the MVLU estimators.

(2) When changes in the mean always occur, (Model 1), we expect the AMOC
Bayes estimators to be poor ones, and the MVLU estimators to be better. This
is verified by the numerical results which also show that these estimators are
sensitive to the specification of o.

(3) When the expected number of changes in the mean is about one (Model
II, p = 0.1) the estimators based on the ‘‘at most one change” Bayes procedure
are better than the MVLU estimators. The ad hoc estimators performed most
efficiently, and turned out to be robust against variations in the parameter ¢* of
the generated samples. The other estimators lose efficiency when o becomes
large.

(4) When the expected number of changes in the mean is greater than one
(Models II, p = 0.2, p = 0.3) and ¢° of the generated samples is large, only the
ad hoc estimator performed efficiently. If ¢” of the generated samples is not large
(Model II, p = 0.2, ¢ = 2), the AMOC Bayes (Est. 3, 4, 5) may perform as
well as the ad hoc procedure.

(5) The results of applying the estimators on Model III B of one assigned
change show that when the change takes place very close to the last observa-
tion (Models II B7, IIT B8) the AMOC Bayes estimator and the ad hoc es-
timator loose their efficiency. These estimators are very efficient if the change
takes place at the very beginning of the sequence. This is not the case with the
MVLU Estimator 2 whose efficiency does not depend heavily on the place where
the change has occurred. Indeed, Estimator 2 gives most weight to the last ob-
servation and attaches very little weight to previous observations. Therefore the
actual place of change does not affect it significantly.

(6) The experiment with Model ITI C1 shows that if two changes of equal
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TABLE 2
The means (upper figures) and M.S.E.’s (lower figures) of the estimators over 100 samples
Model Est. 1 Est. 2 Est. 3 Est. 4 Est. 5 Est. 6 Est. 7
ILo=2 —0.2718 | —0.0595 | —0.1866 | —0.0726 | —0.0425 | —0.0827 | —0.0818
2.1406 0.7333 3.3140 2.3794 2.2672 1.0235 0.9912
I,e=3 0.2473 0.1251 0.2734 0.1366 0.2486 0.1379 0.1358
3.2079 0.9661 5.7730 3.8901 4.7529 1.1168 1.1202
I,o=4 —0.0891 | —0.0111 | —0.2734 | —0.2754 | —0.3818 0.0151 0.0095
5.5779 1.4063 9.1200 6.1292 | 11.9777 1.2406 1.2441
II,p = 0.1 0.0847 0.0665 0.0539 0.0469 0.0487 0.0525 0.0263
g =2 0.4460 0.6200 0.4337 0.4312 0.4408 0.4153 0.3965
II, p = 0.1 —0.0649 | —0.0458 | —0.0917 | —0.0988 | —0.0989 | —0.1139 | —0.1351
c=3 0.6394 0.7172 0.6022 0.5712 0.5809 0.5891 0.5305
II,p =0.1 —0.0528 | —0.0853 0.0462 0.0328 0.0278 | —0.0016 | —0.0173
s =4 0.7702 0.7489 0.7385 0.6283 0.6322 0.4210 0.4179
II, p = 0.2 —0.0258 | —0.0473 | —0.0502 | —0.0750 | —0.0806 | —0.0836 | —0.0865
g =2 0.5462 0.7792 0.5262 0.5216 0.5331 0.6783 0.6470
II, p = 0.2 0.0667 0.0380 0.0487 0.0040 | —0.0060 0.0397 0.0495
o =3 0.85%4 0.7777 1.1348 0.8768 0.8632 0.5425 0.5032
II, p = 0.2 0.0182 0.0386 | —0.0426 | —0.0013 | —0.0156 0.0629 0.0669
c=4 1.4807 1.0593 2.1400 1.5033 1.5460 0.6758 0.6892
II, p =03 —0.1233 | —0.0980 | —0.1418 | —0.1386 | —0.1369 | —0.0380 | —0.0436
g =2 0.7718 0.7605 0.7945 0.7458 0.7522 0.6405 0.6326
II, p = 0.3 —0.0429 0.0377 | —0.1507 | —0.1489 | —0.0992 0.0154 | —0.0094
=3 1.4082 0.9192 2.0073 1.5540 1.6971 0.7944 0.7989
II, p = 0.3 0.2000 0.0607 0.3241 0.2491 0.3326 | —0.0286 | —0.0320
=4 2.3742 1.0009 3.5142 2.7221 3.2602 0.7747 0.8088
IIT A 0.0255 0.0325 0.0027 | —0.0016 | —0.0007 | —0.0122 | —0.0070
0.3078 0.6112 0.1654 0.1746 0.1846 0.2679 0.2789
III B, 1 0.0034 0.0267 0.0194 { —0.0018 | —0.0156 | —0.0003 | —0.0063
g = 0.4069 0.8476 0.1728 0.1920 0.2039 0.5246 0.4974
III B, 1 —0.0194 | —0.0218 0.0658 | —0.0158 | —0.0396 | —0.0647 | —0.0604
g=14 0.3142 0.5868 0.1289 0.1246 0.1256 0.2685 0.2458
III B, 5 0.1059 0.0151 0.2658 0.1688 0.1332 0.0320 0.0464
T = 0.3169 0.5948 0.3397 0.3769 0.3775 0.4146 0.4265
III B, 5 0.2047 | —0.0080 0.3206 0.0722 0.0213 | —0.0045 0.0128
=4 0.4394 0.7475 0.3387 0.2769 0.2793 0.4598 0.4330
III B, 7 0.4415 0.0061 0.7190 0.5446 0.4751 0.1541 0.2048
o=2 0.5897 0.7647 1.0173 1.0892 1.0995 1.0570 1.1401
III B, 7 0.9772 0.2558 0.7161 0.2405 0.1316 0.0493 0.0451
c=4 1.2983 0.6901 1.0460 0.7467 0.7392 0.6589 0.6399
III B, 8 0.9522 0.3266 1.1722 0.9864 0.9036 0.5665 0.5636
o= 1.2950 0.8677 1.9536 1.9667 0.9452 2.0107 2.0013
III B, 8 1.9223 0.7190 1.4325 0.6353 0.4205 0.1917 0.1775
o =4 4.0753 1.3022 3.2118 2.3153 2.2392 1.6658 1.6777
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TABLE 2—Continued

Model Est. 1 Est. 2 Est. 3 Est. 4 Est. 5 Est. 6 Est. 7
II1C, 1 0.1903 0.0061 0.2633 0.2455 0.2423 0.1189 0.0955
g = 0.3352 0.6211 0.2910 0.3402 0.3651 0.5251 0.4931
IIIC, 1 0.4145 0.0242 0.6616 0.6606 0.6605 | —0.0018 | —0.0167
cg=4 0.5458 0.6719 0.8723 0.9941 1.0496 0.7509 0.7127
II1 C, 2 0.4964 0.1553 0.9684 0.7926 0.7472 0.2862 0.3129
g =2 0.6005 0.7215 1.3203 1.1810 1.1534 0.9575 0.9985
III C, 2 0.8920 0.0860 1.8091 1.4087 1.3213 | —0.0229 | —0.0196
g =4 1.1480 0.6736 4.6786 4.0504 3.9797 0.6849 0.7083

magnitude but different directions occur successively and the parameter o
of the generated samples is not large (¢° = 4) the AMOC Bayes estimators are
the best ones. The MVLU estimator with a small assigned value of ¢”p is equally
good. The ad hoc estimators are slightly less efficient, and the MVLU estimator
with a large assigned value of o’p (Est. 2) is less efficient than all the estimators
examined. The picture changes when the value of the parameter ¢ is large. In
this case the MVLU estimators are the most efficient. The ad hoc estimators
are less efficient and the AMOC Bayes estimators are least efficient. Model ITI
C2 shows that when the two changes are in the same direction, and the time
point of the second change is close to that of the last observation the only efficient
estimators for small ¢° are the MVLU ones. When o is large the only efficient
estimators are the ad hoc ones.

8. A related testing problem. The Bayesian approach applied in the present
study can be particularly useful for deriving test procedures in problems of
testing whether a change in a location parameter of a distribution has taken
place at an unknown time point. Problems of detecting a change in the location
parameter occur in many different fields. Sampling inspection of the quality of
products from a continuous production process is one example of a possible
application.

The testing problem which will be considered here is the following, formulated
by Page [4] who proposed an alternative test statistic. Given a finite sequence of

normally distributed independent random variables X;, --., X, , having ex-
pected values y;, - - -, u, and variance 1, we wish to test the hypothesis,
(8.1) Hipyy= - =p,

against the alternatives
A:P"1="'=ﬂm; Pmpr = -+ =pp; 1=m=n-—1
(8.2)
Mmtt — Mm =8 > 0

where m is unknown.
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We consider the two cases, u; known and u; unknown. The method of deriving
a test procedure consists of selecting a priori distributions for the nuisance
parameters, and characterizing the corresponding Bayes solution. The operating
characteristics of the resulting test procedure are then studied.

Let M be a random variable designating the point of change M = 1,2, -- .,

n — 1, with p.d.f.
m:PM:m = n—l)_l, ifm=1’2’...’n—1
(8:3) P { b= (
= 0, otherwise

and let A be a random variable representing the magnitude of change in the
mean,

(84) A="V'm-l-1_l-"my 0§A<°°
We assign A a semi-normal a prior: distribution, whose density is:

ha(8) =0 , ifé6=<0
(8.5) 12\ 1 o -

In the case u; = 0, we arrive at the following likelihood-ratio

(= DS A, X | M= m)

L(Xy, -, X,) =
(8.6) X Jo(X, -, Xa)
_ 2 = 1\ s < S )
arE P [E(" - m+ﬁ) Sl ®\ e = + 1o
where Si_n = D i-mi1 Xi ; and () is the 97(0, 1) c.d.f. The likelihood-ratio
(8.6) can be written, for small values of ¢, as
n—1
(87) L(Xi, %) = 2+ 2o > St to(s), asa—0.
2 " Qm)taz

A Bayes procedure is to reject Hy whenever L(X;, ---, X,) is greater than an
appropriate constant. Accordingly we derive from (8.7) the following test sta-
tistic:

n—1

(8.8) T(Xy, -, X,) = };s:f_m = ; (i — 1)X,.

A test statistic for the case of u; unknown is obtained in a similar fashion. We
consider y; a random variable having a 91(0, 7°) a priori distribution, and then
we let 7° — o . Computations similar to those of Section 6 yield the test statistic:

n

(8.9) T*(Xy, oo, Xa) = 2 (6 — 1)(Xs — Xa)

=1

where X, = n' D 14 X .
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A size a test for the case yy = 0 is easily obtained from (8.8), since under H
(8.10) (T (X1, -+, Xn) |H) = (0, 3n(n — 1)(2n — 1)).
Thus, a size « test criterion is
(8.11) Ca = W_aon(n — 1)(2n — 1)/6], 0<a<l

where %3, is the (1 — «)th fractile of 97(0, 1).
The corresponding power function, when {M = m} and {A = A} is

(8.12) Bn(s) =1— @ (ul—« -0 [3%:—_21_)]* [1 - %D

for0 <6 < oo,
A size a test criterion for the case u; is unknown can be derived from the fact
that under H we have,

(813)  &(T™(X1, -+, Xa) [H) = (0, Zgn(n — 1)(n + 1)).

Thus, one obtains the test criterion:

(8.14) ch = uro[gn(n’ — 1)}, 0<a<l
and the power function;
3im(n — m))
.1 () =1 — ey — 0 2
(8.15) Bna(d) =1—& <u1 ) (e — D]

for0 £ 6 < .

Expression (8.12) shows that the power-function of the test statistic T' (8.8)
is monotonically decreasing with m. On the other hand the power function of
T* (8.9) attains its maximum, for a fixed 8, when m ~ n/2. Page [3] formulates
the testing problem considered here in more general terms, as follows: Let
X1, .-+, X, be independent random variables. It is required to test the null
hypothesis that all the n random variables are identically distributed, with a
c.d.f. F(x|6), against the alternative that Xy, -+, X, (1 Em = n — 1)
have a distribution function F(z |8) and X1, ---, X, have a distribution
function F(z |6') where 6 # 6'; m and ¢’ are unknown but 6 is known. Page
proposes the following test procedure for one-sided alternatives: Record the
cumulative sums

(8.16) S, =2 (Xi—0) fori=1,---,n
7=1
and reject the null hypothesis when

(8.17) R = maxo<r<a {Sr — mine<icr—1 Si, S=0

is greater than a test criterion A. In his paper [5], Page evaluates the procedure
for a class of distributions symmetric about 6. He considers the random variables
Y, =sgn (X; — 0)(z = 1, ---, n) and studies the operating characteristics
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of his test procedure for the binomial random variables Y1, ---, Y, , where,
under the null hypothesis P{Y; = 1} = 2 forall7z = 1, ..., n, and under the
alternatives P(Y; = 1} = 3 forc =1, ..., mand P{Y, = 1} = p,p > %,
forj=m+4+1, ..., n.

The test statistic (8.8) can also be applied to Page’s problem with the bino-
mially distributed random variables Y;, ..., Y, . In the following table, we
compare the power function of Page’s test procedure (8.17) with the power
function of the present Bayesian test procedure (8.8) for a sample of size n = 20.

To achieve the significance level @ = 0.05 it was necessary to use randomized
procedures. For the Page test we use » = 9 with probability 0.4 and A = 10
with probability 0.6. For the statistic (8.8) we use for the limits of 7', 87 with
probability ¥ = 0.71 and 88 with probability 0.29.

Table 3 shows that using the test statistic (8.8) gives slightly more power
than using Page’s test statistic (8.17), unless the change occurs near the very
beginning (m small). The test statistic (8.8) seems to be better adapted to the
problem Page formulated. On the other hand the Page procedure seems to be
well devised to handle the variation of this problem where the initial value of

TABLE 3

The power of the Page test procedure and of the Bayesian test procedure for a sample of size
n = 20,a = 0.05

Test m ?

0.5 0.55 0.60 0.65 0.70 0.75 0.80
Page 0 0.050 0.109 0.207 0.350 0.527 0.709 0.861
Bayes 0 0.050 0.105 0.194 0.322 0.482 0.655 0.811
Page 2 0.050 0.105 0.195 0.325 0.488 0.664 0.821
Bayes 2 0.050 0.104 0.191 0.316 0.473 0.644 0.801
Page 4 0.050 0.098 0.176 0.287 0.431 0.594 0.756
Bayes 4 0.050 0.101 0.184 0.301 0.450 0.616 0.775
Page 6 0.050 0.091 0.154 0.245 0.364 0.508 0.664
Bayes 6 0.050 0.098 0.172 0.279 0.416 0.572 0.730
Page 8 0.050 0.083 0.132 0.201 0.292 0.408 0.545
Bayes 8 0.050 0.093 0.158 0.250 0.369 0.510 0.661
Page 10 0.050 0.075 0.111 0.160 0.223 0.305 0.407
Bayes 10 0.050 0.087 0.141 0.215 0.312 0.430 0.565
Page 12 0.050 0.068 0.092 0.123 0.162 0.211 0.272
Bayes 12 0.050 0.080 0.122 0.177 0.249 0.337 0.442
Page 14 0.050 0.062 0.076 0.094 0.116 0.141 0.171
Bayes 14 0.050 0.073 0.102 0.139 0.185 0.241 0.308
Page 16 0.050 0.056 0.064 0.072 0.082 0.093 0.105
Bayes 16 0.050 0.065 0.083 0.104 0.128 0.156 0.188
Page 18 0.050 0.052 0.055 0.057 0.060 0.063 0.066
Bayes 18 0.050 0.057 0.065 0.074 0.082 0.092 0.101
Exact* 10 0.050 0.099 0.167 0.261 0.382 0.524 0.679

* The exact test is the one that would be applied by the statistician who is told when
the change if any takes place.
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the mean is known only to be below a certain level and it is desired to detect if
it has changed to a value above that level.

9. Discussion. As shown in Section 4, the method of deriving a translation
invariant Bayes estimator leads to a fairly complicated expression. However, a
considerable simplification is attained when we are ready to assume that at
most one change in the means may occur. The results of the Monte Carlo experi-
ments show that the Bayes estimator derived under the assumption of ‘“‘at most
one change” (AMOC) are very efficient even if more than one change may occur,
provided that the expected number of changes is not greater than one. However,
the AMOC Bayes estimators are not efficient given that there are two or more
changes unless the last change is considerably larger than the previous ones. The
ad hoc estimation procedure was designed to use the relatively simple AMOC
Bayes estimator in such a way as to avoid its shortcomings in the case of several
changes. This procedure consists of ‘‘detecting” the last time point of change and
applying the AMOC Bayes estimator to the following observations. It seems to
be rather efficient although it can be improved upon in situations where there is
available considerable information on the nature of the time points of change.

In this paper we have neglected the dynamic and compound nature of the
problem. That is to say that in real applications, the problem is a sequence of
estimations for, after each estimate we are given another observation and have
to decide on a new estimate for the mean of the last observation.

Studying the ad hoc procedure from this repeated point of view, letting o
become large and observing some of the numerical computations have suggested
the following tentative procedure. As in the ad hoc procedure one part consists
of deciding if and where a change has taken place and discarding observations
before the suspected change. The other part consists of using the weighted
averages of the averages Xo_; = [1/(n — )] Drein1 X,, as suggested by the
ad hoc procedure. The tentative procedure is formalized as follows. After n
observations have been accumulated compute

ma (Y o fL (K= i
0 = mavan () o0 {3 0 )

and m which is that value of ¢ for which T, is attained. If T, > L = 150, dis-
card the first m observations. Then act as though only » — m observations have
been accumulated and repeat the procedure. If 7', = L, compute

n—1 n—1
(9.2) = w X D w

=0 1=0

where wy = 1 and

o no 1 (X = X))
(9.3) we = (004) <z‘<n = z‘)) P {2 /i + 1/(n — i))}

i=12-,n=L
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The tentative procedure involves the numbers 150 and 0.04 in the hopeful
expectation that these numbers yield robust results. The authors believe that in
applications involving special cost functions, frequencies of change, amounts of
change, or sample sizes, it may become desirable to change these numbers.

The technique of using Bayesian inference was applied as a technical device
to yield insight leading to simple robust procedures. It worked remarkably well
on the quality control problem formulated by Page where it led to a very simple
test which compares favorably with that studied by Page. It did not work quite
so well or easily on the simplified version of the tracking problem. It is to be
hoped that the tentative procedure described above can be applied with minor
modification in more realistic versions of the tracking problem.

REFERENCES

[1] AnpErsoN, T. W. (1958). Introduction to Multivariate Statistical Analysis. Wiley, New
York.

[2] BarnaRD, G. A. (1959). Control charts and stochastic processes. J. Roy. Statist. Soc. B
21 239-271.

[3] PagE, E. 8. (1954). Continuous inspection schemes. Biometrika 41 100-116.

[4] PagE, E. 8. (1955). A test for a change in a parameter occurring at an unknown point.
Biometrika 42 523-526. '



