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. 1. Introduction. It has been pointed out by the author [1] that one can handle
all the classical problems of point estimation and testing hypotheses concerning
the parameters of complex multivariate normal populations much as one handles
those for multivariate normal populations in real variates. In [1], [2], the author
has derived an asymptotic formula for certain likelihood test-procedures and
[2], has mentioned the maximum characteristic root statistic for testing the
reality of a covariance matrix. The distribution of the characteristic roots under
the null hypothesis established in those two papers can be written in a general
form as
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We may also note that when n is large, the joint distribution of nw; = f;
G=1,2-,¢),0=fig -+ = f, < », can be written as
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In this paper, we derive the distribution of w, (or f;) and w; (or f1). The per- A

centage points will be given and some applications will be discussed in another
paper.

2. Distribution of w, or w; . For the distribution of w, , we shall require the
following two lemmas:

LEmmMa 1.
S [ TT 0~ apdal = TT[ [0 - 2 s ],
=1 =1 0
where@ (0 Sz £ - £z, 2 2), (x £ 1); and on the left hand side (mi,n:),
(m1 , ny) s any permutation of (ms, ns), + -+ , (M1, n1) and the summation is

taken over all such permutations.
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For proof, one may refer to Roy ([3], (A.9.3), p. 203).

LeEMMA 2.
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where 3, means summation over all permutations (ji, gz, -+ ,Ja) of (1,2, +++ , q),
and |A| means the determinant of A.
Proor. It is well known that a Vandermonde determinant
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= [H IT (e — wk)] = a, (say).
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Then, the above expression can be written as
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If in the right hand side, any two j; and j; are equal, then the value of the
determinant is zero. Hence the summation over the right hand side over
(J1,72, ** , Jq) reduces to the permutations of (1,2, - -, ¢), which establishes
Lemma 2. :

Now we shall prove the following theorem:

TuaeoreM 1. If the joint distribution of w1, w2, -+, w, 18 given by (1), then
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~ where cy is defined in (2), Biria = [o "1 — @) dw fori,j = 1,2, -+ g
and (Birj—2) s a ¢ X q matriz. :
Proor. By definition, we have

Pr(w=z) =Pr(0=2w 2 --- Sw, =)
q m -l 4 2 | ¥4
= Cl/ I w7 (1 = )7 [H Il (o5 — ) | ]] dos,
9 7=1 3=1 k=j+1 =1
whereD:(0 f i fw =< - S S,z = 1).
Using Lemma 2, the above expression can be written as
R
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(4) Pr(w=2) = clzj;) s : o H[w,-(l — ;)" dwj] ,
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i )
where >, means summation over all permutations (71, - -, 7,) of (1,2, --+, q).
Now the determinant in the integral sign of (4), can be written as
21 SigIl (tl y "t tq)w?1—1+tlw?;2+t2 e w;z )

where (4, ---, t;) is a permutation of (0, 1, ---, ¢ — 1), sign (¢, -+, &)
is positive if the permutation is even and negative if the permutation is odd, and
>, means the summation over all such permutations. Then (4) becomes

Pr(og £ 2) = 3 O j;) sign(hy, -+ , ta) (T - olt)

q
H [ (1 — w;)"™ dw;].
=1
First taking summation over (51,72, * - , Jo), the permutation of (1,2, --- , q)
and applying Lemma 1, we get
Pr(w, £ z) = ci)asign (b, -, to)BorrtBosbts By, = cif(Biriz)l,

which proves Theorem 1.
It may be noted here that

Prtci£z)=1—-Pr(yz2z)=1—-Pr(z E1 £ ---
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Going back to the c.d.f. of (w1, -+, w,) and using the transformation w; = 1 —
2 (j=1,2,---,q), we have

(5) Pr(miZ22) =1—=Pr(z S £ -+ Swg=1) =1 — i (8iris),

where 6,,2 = [0 °2""?(1 — 2)™dz and (8:45-2) is & ¢ X ¢ matrix.
THEOREM 2. If the distribution of fi, - -+, fq is given by (2) then

(6) - Pr(fy £ 2) = el (vir-2)l,
where viris = [5 o™ exp (—w) dw, (viriwz) s @ ¢ X q matriz and c; s

defined in (2).
Proof is similar to that of Theorem 1.
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