ON ASYMPTOTIC MOMENTS OF EXTREME STATISTICS

By James R. McCorp!

Massachusetts Institute of Technology

1. Introduction. Let Y, be the maximum (or minimum) of n independent
observations of a random variable X. On pp. 87-89 of his book, Gumbel [1]
stated that it was still not known for general cases how the mean and standard
deviation of Y, depend on the sample size n and that such knowledge would have
important applications. A later paper by Sen [2] contains some results of this
type, but only for cases in which the distribution of X has a finite upper (or
lower) end point.

A method for establishing the asymptotic behavior (as n — « ) of moments of
Y, is illustrated in this paper. It also implicitly provides formulas that can be
used to compute lower and upper bounds on these moments, for finite values of
n. The method involves the introduction of an auxiliary variable y and a double
limit, first on n and then on y.

Of the three general cases treated here, only one requires that the distribution
of X have a finite upper end point. Although none of them permit X to have a
normal or general gamma distribution, the author believes and hopes to show
later that some of the results can be extended to include these important cases.
The results are presented in the next section and are proved in the last section.

The author wishes to thank G. P. Wadsworth, E. J. Gumbel, and the referees
for valuable discussions and remarks about the results presented here.

2. The results. Let F be the right-continuous probability distribution func-
tion of X, and let a; be the value, either finite or -+ «, for which F(a;) = 1 and
F(z) < 1for z < a,. For simplicity, we assume throughout that F has a con-
tinuous derivative f on some open interval (a;, a:). No detailed knowledge of
F(z) for x < a; < a. is required, since the asymptotic behavior of a moment
of YV, (if it exists) depends only on the properties of F in a neighborhood of as .

Hereafter, u, and o. denote the mean and variance of Y,, and
M = E(]X — a*), where a is a constant to be specified. As usual, E and T' de-
note the expectation operator and the gamma function. Of course, £ — a— in-
dicates that x approaches « always with z < a. Also, g(z) ~ h(z) asz — a—,
with finite « or a— = -+ o, signifies that g(z)/h(x) possesses a limit as z — a—
and that this limit is 1. Similarly, 4, ~ B, signifies that A,/B, possesses the
limit 1 as n — 0.

TurorEM 1. If there are real constants a, b > 0, and ¢ > 0 such that F(a) = 1,

F(z) < 1forz < a,and,asx — a—,

(2.1) 1 — F(z) ~bla — x)°,
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(22) f(@) ~be(a — 2)°7,

then

(2.3) El(a — Y.)¥ ~ (bn)™°T[1 + (k/c)]; (k> —¢, M < ),
whence

(2.4) on ~ ()T 4+ (2/c)] — T + (1/0)l}; (e < ).

THEOREM 2. If there are real constants a, b > 0, and ¢ > 0 such that F(z) < 1
forxz < o and, asx — o,

(2.5) 1—F(z) ~blx —a)™,

(2.6) f(z) ~be(x — a)™ ",

then

(2.7) El(Ys — a)] ~ (bn)*°TL — (k/c)]; (b <eh < @),
whence

(2.8) o2 ~ (n)¥{T[1 — (2/¢)] — T1 — (1/¢)]}; (¢ > 2, N\ < ®).

THEOREM 3. If there are real constants a, b > 0, ¢ > 0, and r > 0 such that
F(z) < 1forz < » and, asz — «,

(2.9) 1— F(z) ~rexp[—blz — a)7),

(2.10) f(x) ~ ber(z — a) Fexp[—b(z — a)7],

then

(2.11) El(Y, — a)¥] ~ (b7 log rn)*°; M < ).

The constant a obviously has different meanings in these theorems; it is an
upper bound in Theorem 1, while it may be related to a lower limit in the other
two theorems. Although @ could be replaced by zero with no real loss in gener-
ality, it is worthwhile to retain it and to see clearly that the variances (2.4),
(2.8), and (2.15) are independent of this location parameter.

When &k > 0, it is noteworthy that the moments of (2.3) and (2.4) approach
zero, while those of (2.7), (2.8), and (2.11) approach infinity. Of course, with
k = 1, relations (2.3), (2.7), and (2.11) provide the behavior of the mean g, .

We remark that the random variable X of Theorem 1 has the limited type and
that X of Theorem 2 has the Cauchy type of initial distributions. When ¢ = 1,
X of Theorem 3 may have any initial distribution of the exponential type that
satisfies (2.9); but this requirement excludes most important distributions of
this type, namely, normal and gamma distributions. For Theorems 1 and 2 and
for Theorem 3 when ¢ = 1, the initial distribution is stable with respect to the
largest value Y, , but is not stable for Theorem 3 when ¢ = 1.

If the characteristic largest value u, , defined by
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1 — F(u,) = 1/n.
is introduced, then (2.3), (2.7), and (2.11) can be restated as

(2.12) El(a — Y.)" ]~ (a — u)*TI1 + (k/¢)] as u, —> a—,
(2.13) E[(Yn — @) ~ (un — @)*T[L — (k/c)] as u, — o,
(2.14) E[(Yn — @)1 ~ (us — a)* as Un — .

Reference to pp. 281 and 264 of [1] will show that relations (2.12) and (2.13)
are closely related to known results for the asymptotic moments of order & for
the limited type and the Cauchy type of initial distributions. But the author
believes that (2.14) is new and interesting; it implies that u, ~ wu, , independ-
ently of a, b, ¢, and r, which is also a special case of (2.12) with ¢ = 1.

If A denotes the right side of (2.3), then A, — A2; > 0. Because of this,
(2.4) follows at once from (2. 3) A similar remark applies to (2.7) and (2.8).

However, for (2.11), A, — A%1 = 0; and therefore a more complex procedure
will be required in this case to obtain the asymptotic behavior of ¢, . In fact,
this behavior has not been established, although some attempts have suggested

the conjecture that
(215) oa ~ (%) (w/be)* (b log rn) 97, A\ < ),

when at least (2.9) holds. This relation is especially interesting because it sug-
gests that even the qualitative behavior of o, depends critically on ¢. Thus,
when (2.15) applies, o, approaches o, 1r/6 b, or 0 when, respectively, ¢ < 1,
¢c=1l,orc>1.

To facilitate a definitive investigation of the validity of (2.15) by some other
author as well as to provide some insight into the limitations of the method of
this paper, a proof is given at the end of Section 3 that (2.11) and (2.15) are

satisfied when
(2.16) F(z) = exp (—rexp[—b(z — a)])

for all large z. The author has also shown that (2.11) and (2.15) are satisfied
by F(z) = 1 — exp [—b(z — a)’], (x = a). Finally, note that the exponential
and logistic distributions satisfy (2.9) and (2.10) and that the results on pp.
116 and 128 of [1] show that (2.15) reduces to the correct expressions for these

cases.

3. Proofs. Since only obvious modifications of the proof of (2.7) are required
to obtain a proof of (2.3), the latter proof is left for the reader.
To prove (2.7), first choose any 2, = a such that F has a continuous deriva-

tive fonzy S 2 < . Foreachy = 2o, let

(3.1) Ta@) =n [ (@ = @) da,
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if the integral exists. Then, since the distribution function of Y, is F”,
Y
BU(Ya — @) = Ju@) + 0 [_ (& — 0)F(2) dF (@),

whence
(3.2) |EL(Ys — a)"] — Jm(y)| < NnF" (),

where this bound is finite if and only if Az < oo.

To proceed toward certain upper and lower bounds on Ja(y), first let G(z)
and g(z) denote the right sides of (2.5) and (2.6), and define functions » and v
onz £ x < » by

u(z) = [1 — F(2)]/G(=),
(3.3)
v(z) = f(z)/g(x).
For each y = @, let
(3.4) ai(y) = max[u(z)/F(z)],  a(y) = minu(2),
' Bi(y) = mino(z), - Bily) = maxo(z),

where the maxima and minima are taken overallzony < 2 < o, withu(«) =
v(®) = F(w) = 1. Then, (2.5) and (2.6) imply that

(3.5) ai(y) > 1 and Bi(y) >1 as y— (z =1, 2).

A short computation will now show that (3.1), (3.3), (3.4), and the well-
known relation ¢ ™ <1 —t < ¢, (0 < ¢t < 1) imply that

where
an Tasw) = [ (@ = )it ) ds G =1,2),

hai(z, y) = Bi(y)ng(z) exp [—a:(y)(n — 1)G(2)].
From (3.2) and (3.6),
(38) Jwa(y) — MnF" 7 (y) S EL(Ya — @)f] £ Juna(y) + MnF"" ().

To appraise (3.7), choose any yo = o such that 0 < F () < land ax(y) >0
and Bi(y) > 0ony < y < «. Then, by setting [y = [¢ — [%and by using

properties of the gamma function, we find that, if k < ¢,y = %, and n > 2,
(3.9) Jori(y) = Awvii(y) Pull — Quii(y)],

where
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Ane = (0n)"°T(1 — K/c),
vei(y) = Bi(y)lai(y)] “7?,
Pnk = [n/(n - 1)]1—10/0’

Qi) = U@ Pul” [ @ — 0)*hui(a, ) da
= (n— 1D exp[—(n — 2)5:(y)],
8:(y) = ai(y)b(y — )™ '

Now, put (3.9) into (3.8), divide the result by 4., and let n — . Since
k <e¢, M < o, Qui(y) > 0,and F(y) < 1 and 8:(y) > 0 fory < «, even
though F(®) = 1and 6;() = 0, we see that Q..:(y) — 0 and A;;ﬁ)\knF"_l(y)
—0asn— o, fory <y < . Since also P, — 1,

(3.10) Yiu(y) = 1w ARV — 0)*] < yia(y).
Letting y — o« in (3.10) finally yields (2.7), because (3.5) implies that vz:(y)

— 1.
To prove (2.11), we first proceed exactly as before to derive relations (3.1)

through (3.8) and also choose the constant y, as before. For ¥ = y,, we now
have h.i(z, y) = Bi(y)ng(x) exp [—za:(x, y)], where

(3.11) 2i(2, y) = ai(y)r(n — 1) exp [—b(z — a)’]

and g(z) is the right side of (2.10). If the variable z in the integrand of (3.7)
is replaced by the new variable z given by the right side of (3.11), we find that,
for every real k,

(3.12) Jari(y) = Anevi(y) Purs(y) Kuni(y),
where
A = (b7 log rn)*,
vi(y) = B:(y)/ei(y),
Pui(y) = (n/(n — 1))(log gai(y)/log rn)*",

3.13 20 ()
(313) Kui(y) = /0 [1 — (log 2/log ga:i(y))]*¢ ™" de,

2i(y) = as(y)r(n — 1),
zm(y) = ’zm’(?/, y)

The desired result (2.11) follows via relation (3.10), with y;; replaced by
vi, from (3.8) and (3.12), by the same general argument used for (2.7). The
only new non-trivial fact required is that, for large finite values of y,

(3.14) Kui(y) —>1 as n— .
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To prove (3.14), we first let
(3.15) wai(2, y) = log z/10g ¢n.(y),
and substitute the finite Taylor series
(1= wp = 3 (M) (-1 + Ratw)
=0

into (3.13) to find that

(316) Kuny) = 3° <’“J/°) (—1YT(1) llog gue(s)"— Lnsin(@) + Moin(s),

=0

where T(1) = [7 (logz)’e* de,

GI7) Luan(®) = 25 (M%) (=1 Dog aus)l™ [ (log 2 a

2ni (W)
(8.18) Mukim(y) = fo Ru(was(2, y) e da.

In (3.16), T¥(1) denotes the jth derivative of the gamma function evaluated
at 1 and equals 1, —C, C* + #°/6 when j = 0, 1, 2, where C is Euler’s constant.

Because ¢qi(y) — © asn— o fory = yo , the finite series in (3.16) approaches
1, for every integer m = 0. Therefore, (3.14) will be proved when we show that,
for large finite y,

(3.19) Luzin(y) =0 and Muein(y) — 0 asn — .

To prove (3.19), we hereafter let y = y, have any fixed finite value and let
n = mo(y), where no(y) is any fixed integer such that z,:(y) > 1 for all n =
no(y) and ¢ = 1, 2. Then, because z,i(y) — » asn — «, the first part of (3.19)
follows at once from the following appraisal of the integral in (3.17):

0 -]
f (log 2)’e " dz < g i@ f Fe " de = j!2’+le_’z"“”).
2ns (V) 0

If k/c equals a non-negative integer, we can set m = k/c; then R.(w) and
M uiim(y) are identically zero, and (3.19) has been proved. Otherwise, we use in
(3.18) Cauchy’s form of the remainder, viz.,

Rm(W) = (mk-/l-c 1) (m-l— ]_)(_1)m+1,wm+l[(1 _ E/?l))/(l _ E)]m(l _ g)(k/c)—l’

in which £ is some number between 0 and w. To bound this remainder, we first
note that, as z in (3.18) varies from its lower to its upper limit, w of (3.15) varies
from — o to the positive value

(3.20) wai(y) = log z.i(y)/10g gus(y) = 1 — [b(y — a)°/log ¢ai(y)].
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Since w,:(y) < 1, an examination of the two cases in which —0 <w < £ <0
and 0 < ¢ < w < wa:(y) shows that

(3.21) [Rn(w)| £ Chmfrw|" 1 — g7

for — o < w =< wui(y), where Com = (m + 1) ‘(mk_/: 1> .

The appraisal of (3.18) must now be divided into two cases, depending on
whether k/¢ is smaller or larger than 1. If — o < k/c < 1, [1 gt <
[1 — wai()] ¥ for — o < w < wai(y). Substitution of thls result, (3.15),
(3.20), (3.21), and the fact that

2ni (W) 1
/ llog 2|" e dz < f (—log 2)™*" dz
0 o

(3.22) o
+ f e dz = 2(m + 1)1
0

into (3.18) shows that, if k/c < 1,
[Moakin(y)| < 2Ckm(m + 1)1y — a) 7" [log gi(y)] "+,

which -0 as n — o, if m + k/c > 0. If k < 0, note that m must be chosen
large enough so that m > —k/c.

If k/c > 1, we note that (1 — £)*“™ < 1 when 0 < £ < w < 1. When
w < £ = 0, we let h be the smallest integer such that & g (k/¢) — 1, and note
that

h h .
(1 . E)(k/c)—l < (1 _ w)(k/c)—l < Z <> (_w)J'
J

=0

Putting these facts, (3.15), (3.21), and (3.22) into (3.18) shows that, if k/c > 1,

sl 5 ([ 4 [ ) 1Bt 1)1

< Cion [log i)™ {(m + 1!+ E( > (m 4§+ 1)! [log gai(y)]” }

which — 0 as n — o.

Finally, we indicate how (2.15) can be obtained when F has the form of
(2.16), which clearly satisfies the hypotheses and therefore the conclusion of
Theorem 3. In this case, evaluate Jn.:(y) of (3.2) by direct substitution into
(3.1). The result is (3.12), (3.13), and (3.16) through (3.18) with v:(y),
Puii(y), @ni(y), and z.:(y) replaced respectively by 1, 1, rn, and rm
exp [—b(x — a)°]. Since ¥ now appears only in the error terms (3.17) and (3.18),
the series in (3.16) with m = 2 can be used to show that Jas(y) — Ja1(y) equals
the right side of (2.15) plus other terms of no relative importance for large n.
If Ay < o, then (2.15) follows from this result and (3.2). Unfortunately, the
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method of this paper does not seem to yield (2.15) in such a simple manner
from merely the hypotheses of Theorem 3, because of complications caused by
'Y@(y) and Pnkz(y) in (312).
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