ON EXTREME ORDER STATISTICS

By JouN LAMPERTI

Dartmouth College

1. Introduction. Let X, X», --- be a sequence of independent random vari-
ables with the common distribution function F(x) = Pr (X; < z). Define the
order statistics Y% forn = k by

(1.1) Y% = kth largest among (X, X, -+, X,,)..

(We will usually write M, for Y% , the maximum.) The random variables Y*,
have, of course, been the subject of many papers, and in particular their limiting
behavior as n — « has been thoroughly investigated. A survey of results in this
area (with some new ones) was recently published by Barndorff-Nielsen [1].
However, it does not seem that {¥%} has previously been studied as a stochastic
process (with n for the parameter), and to make such a study, with emphasis
on limit theorems, is the object of the present paper.

The problem of limiting distributions for 3, has been treated very completely
by Gnedenko in [3]. He determined all the non-degenerate distribution functions
G(z) which can appear in

(1.2) - limpae Pr (M, — an)/bn < 2] = G(x)

for some choice of the constants b, > 0, a, ; such a function must be of the same
type as one of the laws &, , ¥, or A defined in [3]. (These distributions can be
conveniently found in [2], Equation (1.1).) Conditions on F insuring that (1.2)
holds are also given in [3]. In the present work, the form of the law G(x) will
usually not be important and it is convenient to simply take (1.2) as the basic
hypothesis. (But it is useful to note that all limit distribution functions are con-
tinuous. )

Following a procedure which is common enough in other contexts we define
the stochastic processes

(1.3) ma(t) = (Mg — Gn)/bn, t= 1/n,

where [u] means the greatest integer not exceeding w; it is technically convenient
to define m,(t) = m,(1/n) for 0 < ¢t < 1/n. We shall show in the next section

that whenever (1.2) holds,
(1.4) Nimpse {ma(t)} = {m(t)}

in the sense of convergence of finite-dimensional (f.d.) joint distributions; {m(t)}
is a Markov process with increasing path functions. In a sense, there is only one
process {m(¢)} despite the variety of possible limit laws G. In Section 3 the result
(1.4) is strengthened by proving two versions of an “invariance principle”,
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showing that the laws of various functionals of {m,(¢)} (and so of {M.}) con-
verge to the laws of the same functionals applied to {m(¢)}. Results of Yu. V.
Prokhorov [5] and A. V. Skorohod [6] play a prominent role here.

The immediately preceding paper [2] by M. Dwass is also concerned with this
situation, and obtains results complementary to ours. Roughly the points of
view are that Dwass analyzes the structure of the limiting processes {m(¢)}
(which he calls “extremal processes”), while here the passage to the limit is of
primary concern, as well as the study of {Y%} with & > 1. I appreciate the
courtesy of Professor Dwass and the editors of the Annals in arranging for the
two papers to be published together.

The next subject taken up in this paper (Section 4) is the joint limiting be-
havior of M, and Y2 , the two largest members of the sample, considered as a
two-dimensional process in a manner analogous to (1.3). The fifth and final
section concerns { Y%} ; we point out the momentarily surprising fact that (Y%},
for each k, is a Markov process with stationary transition probabilities. It is
then shown that when (1.2) holds {Y%} converges to a limiting process in a
manner similar to the behavior of {M,}; once again the transition function for
the limit process can be rather simply written in terms of G(z). The invariance
principles of Section 3 apply to these limit theorems as well.

2. The limiting processes for {M,}.

TrroreM 2.1. Suppose that (1.2) holds for a non-degenerate distribution G(z).
Then the £.d. laws of the processes {m.(t)} defined by (1.3) converge on the parameter
interval (0, ) to those of a Markov process {m(t)} such that

(2.1) Pr (m(t) £ z) = G(z)'
and
2.2) Pr(m(t+s) Sy|lm(s) =2) =0 ify <z,

=Gy ify=za.

Proor. We use the obvious fact that Pr (M, < y) = F(y)". Now for any
t > 0, and sufficiently large n,

Pr (ma(t) £ 2) = Pr (Mg £ baz + a,) = [F(baz + as)" ",

The quantity inside the outer brackets converges to G(z) as n — o, for that
quantity is Pr [(M, — ax)/b. < 2] and we assume ( 1.2). Thus we have

(2.3) limge Pr (ma(t) < z) = G(2)',

at least at continuity points of the right-hand side. But G(x) must be of the same
type as one of the laws &, , ¥, or A; hence G is continuous and (2.3) holds for
all values of .

Next we shall show that the f.d. laws have limits, and evaluate them. Con-
sider the event {ma(t;) < @1, Ma(ts) < @2, -+, Ma(te) S @}, 0 <l <ty ---
< t, . If for some 7 < j we have z; = x;, the condition m,(t:;) < x:canbe omitted
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without changing the event. This is clear since, due to the fact that m,(¢) is
increasing in ¢, that condition is implied by m,(#;) < «; . Thus the only k-dimen-
sional events which are not really of lower dimension are those with z; < @ - - -
< z1 . In such a case we will see that

lim Pr (ma(t1) < 21, -+, ma(t) < 1)
= G(x1)"Q(2e) " -+ G(ay) -

The reason for this is amply illustrated by the case £ = 2. Take 0 < & < ¢,
and z; < . ; then

Pr (ma(t) = @1, ma(t2) S 22) = Pr (ma(t1) < 21) Pr (ma(ta) = 2| ma(t1) < @)

=Pr(m,(t) S) Pr (X S buze+ an,1 =1 =2 [0ty | X: £ bazy + @,

(2.4)

1 é l é [ntI]) = PI' (mn(tl) é xl) PI’ (Xl é bnx2 _I" Qn [ntI] + 1 é l é [nt2])
=Pr (m.(t1) S 21) Pr (X; S buxe + a,, 1 £ 1 £ [nby] — [nti]).

But by (2.3), as n — o« the first factor tends to G(x:1)" and the second to
G(z2) " which yields (2.4) with &k = 2. ‘

To complete the proof of the theorem, it is only necessary to verify that (2.2)
does define a Markov transition function when G(y) is of one of the limiting
types, that this transition function is consistent with (2.1) and that together they
generate the family of joint f.d. laws obtained in (2.4). This verification is trivial
and will be omitted; we only comment that the form of @ is actually irrelevant
here.

ReEmarks. The convergence of {m,(t)} to {m(¢)} is almost the same as
“attraction to a semi-stable process’’ defined in [4]; the only things which may be
lacking are the requirements of [4] that b, — « and that { = 0 be included in
the convergence. In case G = &, we do have necessarily b, — « and m(0) = 0
and do obtain a semi-stable Markov process for {m(¢)}, but when G = ¥, or
G = A this is no longer true. In fact, the paths of {m(¢)} come from — « ag ¢
increases from 0 in these cases, so that {m(¢)} cannot be a semi-stable process
in the sense of [4]. Of course, these examples may be regarded as indicating that
the definitions in [4] should be broadened.

It is clear in what sense there is only one limit process {m(¢)}: for any two
cases there is a continuous one-to-one change of variable on the state space (real
line) which carries all the f.d. laws of one process into those of the other. The
following theorem ‘“‘explains’ this and the form of the limit laws by showing how
they follow from certain qualitative properties obviously possessed by {m.(?)}
and which should be inherited in the limit.

TuarEOREM 2.2. Suppose {x} is, for 0 < t < oo, a Markov process such that
Pr(—w fa<z, <b= +x)= 1. Suppose {x:} has a stationary transition
probability function p(z, E), that x: —, a as t — 0, that p.(z, (a, y]) = 0 for
y < x, and that p:(z, (¢, b)) is independent of x so long as x = c. Then there exists
a distribution function G(y) with G(a) = 0 and G(b—) = 1 such that
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(2.5) Pr (z: £ y) = G(y)'
and

t ) ) = 0 i *
(26) p(x, (a, y]) fy<ez

=Gy) ify=a.

Proor. The condition p.(z, (a, y]) = 0 when y < z obviously is an expression
of the requirement that x; increases a.s.; using it, when 2z < y we can write the
Chapman-Kolmogorov equation as

pl+8(x7 (a; y]) = fg pt(xy du)ps(uy ((1, y])

But ps(u, (a, y]) = 1 — ps(u, (y, b)) can be replaced by p:(x, (@, y]) in the
integral because of our last assumption. We then obtain

Pers(%, (a, Y1) = P, (a, yYDps(2, (a, Y]),
so that for some function G(z, y),
pt(x’ (ay ?/]) = G(x; y)t

But again by the last assumption, for x £ y the left side does not depend on z;
we thus replace G(z, y) by G(y) and have established (2.6). It is evident that
G(y) must be increasing, right continuous, and that G(b—) = 1 since x; must
a.s. be inside the interval (a, b).

Consider now the equation
Pr(z: £ y) = [ipee(u, (a,9]) d Pr (2 < w).

By the above, the right side equals G(y)" ™ Pr (z. < y). But since 2; — a in law
as t — 0, if we let ¢ — 0 we obtain exactly relation (2.5). From this it is clear
that G(a+) = 0 and the proof is complete.

REemarks. These processes generalize the class {m(¢)}; when @ is continuous
they are “equivalent”, via a transformation of the state space, to any of the
extremal processes. Any process with transition function (2.6) is a pure jump
process; the jump rate slows down as z; increases, and an infinite number of
jumps can ocecur only in the neighborhood of (¢ = 0,z = @) and (t = »,z = b).
Under our hypotheses there will always be infinitely many jumps in both of
these cases.

3. Invariance principles. In each instance of the convergence of the finite-
dimensional laws of {m,(t)} to those of {m(¢)} given in Theorem 2.1, the proc-
esses {m,(t)} have non-decreasing path functions. This automatically implies
the convergence of the laws of certain functionals f(m,(¢)) to the laws of f(m(?)).
For instance, if f is the supremum over a finite interval [r, s], f(m,(t)) is the same
as m,(s) so convergence of the laws is already contained in Theorem 2.1. More
generally, we have

TuaEOREM 3.1. Suppose the f.d. laws of a sequence of real stochastic processes
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{za(t)} converge to the £.d. laws of a process {x(t)}, and that all these processes have
path functions which are almost surely finite and non-decreasing for r < t < s,
where r and s are not fixed points of discontinuity for {x(t)}. Then at all continuity
points of the right-hand side,

(3.1) limne Pr (f(za(¢)) = 2) = Pr (f(z()) = x)

for any functional f which s defined for all increasing functions on [r, s] and con-
tinuous with respect to weak convergence at almost all paths of the process {x(t)}.

(A sequence of non-decreasing functions y,(t) ‘“‘converges weakly” to y(¢)
if [2R(t) dya(t) — [+ h(t) dy(t) for every continuous, bounded h; equivalently
if there is ordinary convergence at each ¢, where y(¢) is continuous.)

Proor. This follows quite easily from a theorem of Prokhorov ([5], Theorem
1.12). Under the Lévy metric for monotonic functions, which generates the
topology of weak convergence, the space to which the paths of the processes
{z,(t)} and {z(2)} belong is a complete, separable metric space. The set S of
functions ¢ in this space such that —» < A £ &(r) £ é(s) S B < +» isa
compact set by Helly’s theorem for any A and B; clearly for suitable A and B,
Pr (z(t) eS) = 1 — e By the assumed convergence of f.d. laws, we also have

(3.2) lim Pr (z.(¢t) eS) = 1 — e

But (3.2), with the convergence of all f.d. laws, is just what is needed for Prok-
horov’s theorem; the convergence (3.1) for the indicated class of functionals f
is the result.

ReMARrKs. This result applies to any case of Theorem 2.1 provided r > 0
and s < oo;if r = 0 it applies as it stands only when the limit law G is of the
same type as one of the &, so that m(0) is finite. Of course, in the other cases
we can apply the theorem to the convergence of {exp m,(t)} to {exp m(¢)} with
r = 0 and the proper interpretation of continuity for f. The convention follow-
ing (1.3) is necessary when r = 0 in order that m,(¢) be defined on the entire
interval.

Theorem 3.1 makes it seem quite natural to use the weak topology when study-
ing the convergence of processes with increasing paths. However, the “natural”
topology may not be the most advantageous one in a particular case. Consider,
for instance, the situation of our Theorem 2.1 and let the functional L be the
greatest jump; i.e.,

L(%) = sup,<i<s [ +0) — £t — 0)], 0<r<s< .

This functional is not continuous at any discontinuous increasing function £(¢)
with respect to weak convergence, since one can always approximate discon-
tinuous functions by continuous ones in that topology. However, it is still true
that in our case

lim,,, Pr (L(m,) £ z) = Pr (L(m) < x).

To prove this we note that L ¢s continuous with respect to the stronger “J;
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topology’’ of Skorokhod [6], in which £,(¢) — £(¢) provided there exists a se-
quence of continuous, strictly increasing functions \,(¢) mapping [r, s] onto
itself such that

liMpsw Ma(t) — & = 0, liMpse [Ea(Ma(8)) — £(2)| = O

uniformly for ¢ ¢ [r, s]. The fact stated above about the size of the greatest jump
is included in the following

THEOREM 3.2. Let {m,(t)} converge to {m(t)} in the manner of Theorem 2.1,
where m(r) and m(s) are finite and the limit process {m(t)} is assumed separable.
Then the conclusion (3.1) of Theorem 3.1 holds for any functional f which is J,

continuous a.e. (with respect to {m(t)},r =t < s).
Proor. According to Theorem 3.2.1 of [7], the conclusion will follow provided

we can show that for each ¢ > 0,

(3.3) © lime,o lim supa.. Pr (Ale, ma,(t)] > €¢) = 0,

where, for monotonic functions z(t),

(34) A(c, 2(t)) = supr<i<o min {|z(t) — 2((t — ¢)")], |2((t + ¢)") — x(t)]}.

(Here (t — ¢)’ means max (r,t — ¢); (£ + ¢)” means min (¢ + ¢, s).) In demon-
strating (3.3) two cases arise; the first when r = 0, so that G must be of the
type of some ®, , and the second when r > 0. We shall give the proof in the first
case as it is a trifle harder, and briefly sketch the necessary changes for the second.

We can assume without loss of generality that m(0) = 0; hence G(z) > 0
for x > 0. Since m,(¢) increases only by jumps, it is easy to see that the event
A(c, ma(t)) > e is contained in the union of the two events

An = {ma(0) < —¢/2}
and
B, = {m,(0) = —e¢/2 and
At < s:ma(t) = /2, ma((t + ¢)") > ma(t) > ma((t — ¢)')}.

Because lim Pr (4,) = 0, we need only consider B, . Let T, denote the first ¢
such that m,(¢) = ¢/2; then B, in turn is contained in the union of the events

Cn = {ma(Tw + ¢) > ma(T)}
and
D, = {for some t ¢ [T, s], ma(-) has at least two jumps in the
interval [, (¢ + 2¢)"]}.
Let us consider C, . In order for this event to occur, we must have
b {max (Xirmis1, 5 Xiwprom) — Ga} > ma(Th) 2 €/2.

Since the random variables in question are independent of T’ , from (2.3) and
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(1.3) we obtain lim sup Pr (C,) = 1 — G(¢/2)° which tends to 0 with ¢ since
G(e/2) > 0.
In order to bound Pr (D,), we proceed as follows:

Pr (D,) £ E(number of pairs of jumps of m,(¢) of type considered)
= > Pr(X; , X; constitute such a pair of jumps)

0si<j<mns

X:—a X, —a
< 7 n K n
=< 0§i<z_1:'§ns Pr( i > ¢/2, o > e/2>

j—t<[2¢n]

(1 — F(ba(e/2) + @) 3. L
0<i<j<ns
j—i<[2¢n]

The second factor is of course only the number of terms in the sum; it is clearly
less than 2¢n’s. As for the first factor, recall that (1.2) states that

limp,e {1 — [1 — F(bux + a,)]}" = G(2),
and that in our case G(e/2) > 0. These things mean that
lityo n[1 — F(ba(¢/2) + @n)] = —log G(¢/2) <
so that
[1 — F(ba(e/2) + @)’ = O(n7).

It follows that im sup,.. Pr (D,) = O(c) and the proof of the theorem in case
one is complete.

In the second case, r > 0, the initial coverlng of the event A(c, m,(t) > eis
by the union of 45, {G(mn(r)) < 6} and B, {G(m,,(r)) = 6 and for some
telr, s] ma(-) has at least two jumps in [¢, (¢ + 2c) "1}. For small enough & the
limit of Pr (A ) can be made small; with & fixed Bj, is treated just as was D,
above. Thus (3.3) can be proved even more simply than before. Incidentally, if
r = 0 but G = ¥, or A, we can similarly show convergence of {exp m,(t)} to
{exp m(t)} in the present sense of the J; topology.

4. A joint limit theorem for M, and Y% . In this section we shall always
assume that (1.2) holds for suitable normalizing constants b, > 0, a, and a
non-degenerate limit law G. We extend our earlier notation as follows:

(4.1) Yin(t) = (Yiag — @)/, t = k/n,

with the same convention as before when 0 < ¢ < k/n. The main result obtained
here will show that {m.(t), ya(¢)} converges as n — o to a two-dimensional
Markov process whose transition law can be simply stated in terms of the
function G.

We begin with the easily derived formula

Pr(M, <2 Y%<y)=F(z)" ify=zx

(4.2) L.
= F(y)" + n[F(z) — F(y)IF(y)" fy <a.
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Now since we are assuming (1.2), we have

(43) limy,e F(bny + am)n = G(y)
for all y, which in turn means that
(44) limp,e 2[1 — F(bay + an)] = —log G(y)

exists; the limit is + o when G(y) = 0. Combining these facts with (4.2) we
obtain

2
limy Pr (M—b“—i PR y)
(4.5) " "
_ JG(2) ify = =

B {G(y){l + log G(2)/G(y)} ify < =
In particular, under condition (1.2) we have
(4.6) L. Pr[(Ya — a2)/ba < 9] = G(y){1 — log G(y)}.

(In both (4.5) and (4.6) the limit is O for values of y such that G(y) = 0.)
Note that these new limit laws are determined from that for the maximum in a
simple way which is the same regardless of the extreme type to which G(y)
belongs. We shall see that the same thing is true of the limiting processes.

It is clear that {(M,, Y3)} is a Markov process with stationary transition
probabilities. It is by finding limits for these that we will prove

THEOREM 4.1. Assume that (1.2) holds. Then there is a Markov process
{(m(t), y2(t)} in the plane to which the processes {(my(t), yam(t)} defined above
tend in the sense of convergence of the finite dimensional joint distributions. The
limat process is characterized by

Pr (m(t) < z,y(t) = ) = G(z)' ify = x,
=Gyl + tlog G(z)/G(y)} ify<uz

for each t = 0, together with the following: for x = y, 2’ = v/, 2 = z and ' =y
we have

Pr(m(t+s) =2/, +s) =y [m@) =z, 9) = y)

= {G(y:)s ’ ’ if y,é y, =z
Gy )'{1 + slog G(z)/G(y)} ify >

In addition if y' Z & the right-hand side is G(x')°; if either &’ < x or y' < y the
right-hand side is 0.

ReEMARK. A verbal description may help in visualizing the transitions de-
scribed by (4.8). The process never enters the region y2(¢) > m(t). From m(t) =
x = y2(t) = y, one possible transition which can oceur with positive probability
in time s is to stand still. Another possibility is that m (¢ + s) = m(t) but y(¢ + s)
takes a new value 4’ on the segment (y, z); finally m(¢ 4 s) and y.(¢ + s) may
take on values (z’, ') which lie in the region z’ = 3’ = 2. The total probability

(4.7)

(4.8)
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of these alternatives is one. It is clear that a separable version of this process has
path functions which for ¢ > 0 move by jumps either straight upwards or up
and to the right, but always below y = z (on the z-y plane, with z horizontal
representing m(t)). Depending on the type of G, m(0) and y.(0) may be im-
proper random variables (— o).

Proor or Tar TaHEOREM. Equation (4.5) is equivalent to stating that the
joint law of (m,(t), yan(t)) converges to that given in (4.7) when ¢ = 1; it is
very simple to check that the proof holds also for other values of ¢. It is also
straightforward to verify that
limpse Pr (ma(t 4 8) < @', you(t + 8) £ ¢ | ma(t) = 2,92(t) = ¥)

= fs(x7 Ys x/’ y,)
exists and is given by (4.8) and its addenda. To see this, first note that obviously
ma(t) and ye,(t) are increasing so that the limitis0if " < zory’ < y. Ify’ = 2’
the condition y.,(¢ + s) < ¥’ makes no restriction on the set m,(t + s) < z';
the information y2,(¢) = v is useless in this case and the situation in (4.9) reduces
to that of Section 2: the random variables Xius41, *** , Xint+s; must all be at
most b,z + a, in order for the event in question to occur. The limiting probability
is thus G(z')" as asserted. If y < y’ < & < ', the conditional event in (4.9) occurs
if and only if all the random variables mentioned just above are at most b,y + @y, ,
so that the limiting (conditional) probability is G(y')° as in the first part of
(4.8). Finally if y < # < ¢ = 2, at most one of those random variables may
exceed by’ + @, and that one must not exceed bz’ + @, . The probability of
this is evaluated in the limit by the argument leading to (4.6) and the result is
the second expression in (4.8). Thus (4.9) is proved and f, is determined.

We wish to show now that the joint distribution of {m,(t), yeu(t); ma(t + $),
yan(t + 8)} tends to a limit given by combining (4.7) and (4.8) appropriately.
That is, using the fact that {m,(t), y2.(t)} is a Markov process, we must verify
that -

(4.9)

liMyae [ 4 Pr (2.(¢ + ) € B|2a(t) = 2) d Pr (2.(t) = 2)
= fAfs(Z, B) du(2),

where 2,(t) = (ma(t), ym(t)), 2 = (x, y), fs is the right-hand side of (4.9)
(equal, as we have seen, to the right side of (4.8)), . is the measure generated
by the right side of (4.7), and both A and B are sets of the form {z £ o, y =< 8}.
We have already shown pointwise convergence of the integrands to f.(z, B),
and convergence of the integrators which implies weak convergence of their
induced measures. By using the following simple lemma, we can easily complete
the proof of (4.10).

LemMA. Suppose u, is a sequence of Lebesgue-Stieltjes probability measures in
R which converges to u, also with total mass 1, in the usual weak sense. Let fu(x)
be a uniformly bounded sequence of Borel functions such that f.(z) — f(x) uni-
formly on compact sets. Suppose f(x) is continuous a.e. (n). Then

(4.11) litnow [ fa(2) dpa(z) = [ f(2) du(z).

(4.10)
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To apply the lemma to our case we must know that f,(-, B) is continuous a.e.
(1) and that the limit (4.9) is uniform in (z, y) on compact sets. The first is
immediate; discontinuities of f,(z, y; @, 8) occur only on the linesz = o, y = 8
on which g, given by the right side of (4.7), puts measure 0. (Recall that G
is continuous.) The uniformity of convergence is just as easy, for the values of
the conditioning variables x, y only determine which of two limiting processes
is to be used—both of which are then independent of (x, ¥). The convergence is
thus in fact uniform over the whole plane. The proof of (4.10) is complete;
higher dimensional joint laws can be handled similarly by an induction argument.

REeEMARrKs. The theorem is now demonstrated; it follows that the transition
function in (4.8) satisfies the Chapman-Kolmogorov equation and that it is
consistent with (4.7). It is clear that similar limiting results can be developed
for the joint behavior of Ying,! = 1,2, -+ -, k, but the results seem to become
increasingly cumbersome.

5. The limiting processes for { Y }. The purpose of this section is to generalize
Theorem 2.1 to include the limiting behavior of the processes {yin(¢)} defined
in (4.1) using the & the largest members of the samples. The main result is

TuEOREM 5.1. Assume F(x) continuous and that (1.2) holds for a non-degenerate
distribution G(x). Then the finite-dimensional laws of {yin(t)} converge asn — =
to those of a Markov process {yr(t)} whose state space is the interval I where
0 < G(z) < . For z, y, z € I the limit process satisfies

(5.1) Pr (y:(t) < 2) = G()° ’:Z:::[—tlog G(a)]'/1Y,

and has transition probabilities

Pr (ye(t +8) < z|m(t) = y)

(5.2) =0 if z<y,

= Stk — 1,Tog G(e)/log GWIIEE ), i3 2

where H%(z) denotes the right-hand side of (5.1).

(The notation b(l; n, p) means the probability of I successes in n Bernoulli
trials with probability p for success on each trial.)

This theorem is easily obtained from some facts about order statistics which

do not involve (1.2).
Lemma. For each k the sequence {Y% ,n = k, k + 1, -+ -} ¢s a Markov process
with stationary transition probabilities. These are given by

Pr(Yiim <2|Ye =y)
(53) =0, forz < y,

= ZZ:,) bll;k— 1, (1 — F(2))/(1 = F(y)]Pr (Y ' =e), forzzy.
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The lemma, follows from the known fact that given Y% = y, the n — k observa-
tions less than y and the k& — 1 observations greater than y form conditionally
independent sets of random variables, the variables in each set being them-
selves independently distributed according to the law F but conditioned to be
less (respectively greater) than y. Under these conditions, when m new random
variables are added to the sample the probability that Y%,.,, < z can be easily
written in each of the (disjoint) cases in which exactly I of the k¥ — 1 original
observations exceeding y are in addition less than z; the right-hand side of (5.3)
is the result.

Proor or THE THEOREM. The limit distributions of Y% as n — « were ob-
tained by Smirnov in [7], but we shall briefly discuss them here. Assume that
(1.2) holds; no distinction into separate cases depending on the type of @ is
required. It is very easy to see that

Pr(Y: < 2) = F(z)" + nF(z)"[1 — F(z)]

(5.4)

4o+ <k ﬁ 1) F(z)"™*[1 — F(2)]F.
But assumption (1.2) has the equivalent forms (4.3) and (4.4); combining
these with (5.4) we obtain

(5.5) lix;rl,,»°° Pr [(Yy — an)/bn £ 2] = G(w)g[—log Q(z)]/1L.

Tt is also easily seen that if Y% is replaced by Y{,4 in (5.5), the limit is given by
the same formula with G(z) replaced throughout by G(z)‘. In view of the defini-
tion (4.1), this statement is the same as (5.1).

It is now very easy, using (5.3) and the results above, to prove that the transi-
tion probabilities of { ¥} converge to those given in (5.2). The convergence of the
finite-dimensional distributions can then be deduced using the lemma of Section
4, for it is not hard to show that the transition probabilities converge to their
limits uniformly. in the initial state y, and the limits are continuous everywhere
except at y = z while H}(x) is continuous everywhere. We shall not go into more
detail. Incidentally, when k = 2 the limiting process can also be obtained from
Theorem 4.1, and the result is readily seen to agree with that above.

FinanL REmMArks. When G is of the limiting type ®,., the limiting processes
of Theorem 5.1 provide new examples of semi-stable Markov processes; like
{m(¢)} they are jump processes with non-decreasing paths. (More precisely, a
separable version has these properties.) It is worth noting that the invariance
principles developed above in Section 3 apply also to the convergence of {yi.(%)}
to {yx(¢)} for k¥ > 1. In fact Theorem 3.1 applies (subject to the same restric-
tions as in the maximum case) simply because {y.(¢)} has increasing paths,
while for Theorem 3.2 an examination of the proof shows that the same approach
can be carried through when £ > 1. Thus in principle we obtain many new limit
theorems for functionals of order statistics; which ones (if any) will prove useful
remains to be seen.
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