ORTHANT PROBABILITIES FOR THE QUADRIVARIATE
NORMAL DISTRIBUTION

By I. G. ABRAHAMSON
Unaversity of Chicago

1. Summary. Let 21, %2, %5, x4 be jointly distributed with a quadrivariate
normal distribution with mean 0, and correlation matrix {p;}. The orthant
probability, i.e. the probability that all the z,’s will be simultaneously positive,
is not, in general, given by a closed expression; but is easily computed in a
special class of cases, here called orthoscheme probabilities. It is explicitly shown
how the general orthant probability can be expressed as a linear combination of
six orthoscheme probabilities. Orthoscheme probabilities have been tabulated by
the author and instructions for the use of this table [1] are given. In addition, an
abridged table is appended.

2. Introduction. Suppose %1, Z2 , « -+ , %, are jointly normally distributed with
mean 0 and correlation matrix {p;;}, and let P, be the probability that the z,’s
are simultaneously positive. For n = 4, there is no general closed expression for
P, ; but it is of considerable interest in several fields to know P, or, at least,
have a reliable approximation to it. Approximations to P, , and even to more
general probabilities, exist, but are ordinarily tedious to compute.

For example, some slowly convergent expansions are available [8], [11], [12].
David [5] has produced a reduction formula for odd n, which requires a knowledge
of P, for all £ < n, and several more general (but less simple) reduction formulae
are available (e.g. [3], [4], [7], [9], [14], [16]). Some special cases which prove
more tractable (such as the equicorrelated case) have been investigated [2], [10],
[13], [22] and Ruben [18] has investigated the probability content of various
types of regions in n-space, under a normal distribution. In [19], I. R. Savage
discusses sequences of bounds to normal orthant probabilities which are not
centered at the origin.

To each matrix {p;;} corresponds an n-dimensional polyhedral half-cone, C, ,
whose vertex is at the origin and whose n sides are (n — 1)-dimensional hyper-
planes with the property that the cosine of the angle between the normals to
the ¢th and jth hyperplanes is p;; . Let S, be the (hollow) unit n-sphere, centered
at the origin, and let T, = S, N C, . Then if £, and s, are the (n — 1)-dimensional
contents of the regions 7T, and S, respectively, we have P, = t./s, [18], [21].
Schlifli has shown that C, can be dissected into n! n-sided polyhedral half-cones
for each of which the matrix of cosines between the normals to the bounding
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1686 I. G. ABRAHAMSON

hyperplanes is of the form:

1 a O T
a

(2.1) 0 b 1 ¢
0o 0 -~ -~ 0 k 1]

(i.e. the only non-zero off diagonal terms are in the sub- and super-diagonals).
Such a division of ', implies a division of the spherical simplex T, into n! regions
(called orthoschemes by Schlifli) each of which is a spherical simplex with
2(n — 1)(n — 2) right angles.

Let the content of an orthoscheme with cosine matrix given by (2.1) be
denoted by P.(a, b, - -+, k). Pa(a, b, - - -, k) is, of course, the probability that
7 jointly normal variables, with mean zero and correlation matrix given by (2.1),
will be simultaneously positive. Rogers [15] has derived an expansion for
P.(a,b, -+, k). Pu(a,b, - -+, k) has also been studied by van der Vaart who has
derived a general formula for n = 4 [23], [24].

Forn = 2, 3 we have

P, = 4; + (1/27(‘) aresin P12
P; = § + (1/4n){arcsin p» + arcsin pi; + aresin pas}
For n = 4, the content of the orthoscheme (with cosines (a, b, ¢)) is given by
van der Vaart as

Py(a, b, c) = 1 {1 + ?r (arcsin @ 4+ arcsin b + aresin ¢)

16
+ () [[10 =0 - &)~ ¥ dain}

The integral involved in (2.2) is easily evaluated numerically, and by a
suitable choice of a starting point, 7’4 can be divided into (n — 1)! = 6 (instead
of n! = 24) orthoschemes. It is the purpose of this paper to show how P, can be
expressed as a sum of the form

(2.2)

6
'Zl == P4(a¢, bi,ci)
by exhibiting the simplicial division explicitly and to demonstrate the use of the
table of “orthoscheme probabilities” [1], to compute P, by this means.

In Section 3 the geometrical ideas behind the simplicial division of 7' into six
orthoschemes are examined and the division is explicitly carried out. In Sections
4 and 5 the use of the table is discussed and the reader with no theoretical
interest may proceed directly to Section 4 without any loss.
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3. Discussion and derivation of the simplicial division. Let x be a random
vector in R*. Tt is sufficient for our discussion here to assume that x is the vector
sum of the random variables x; , 2, x5, 24 in the direction of the vectors ¢ , e,
€3, & respectively, where e; is the 7th unit vector (1 in the ¢th place and zeros
elsewhere), so that the zs act orthogonally (in space) to one another. The
concept of orthogonality is the one conferred by the use of the usual inner
(or dot or scalar) product of two vectors y and z, denoted by (y, z), so that

4 4 4
(y,2) = > yz:wherey = > ye;andz = D 2.
=1 =1 =1

Let x have mean 0 and nonsingular covariance matrix C. C has the property
that for any two vectors y and z, Cov[(y, x), (2, X)] = (y, Cz). C can always be
written in the form ¢ = BB’ where B is nonsingular and the prime denotes
transposition. Let z = B™'x. The covariance matrix of z is (B~")C(B™) = I,
the identity matrix.

Since z; = (%, &) = (Bz, &) = (z, B'e;), the probability that the z.’s are
simultaneously positive is the same as the probability that the (z, B'e;)’s will
be simultaneously positive, i.e., that

(z, B'e;) =20 for i=1,2,3,4.

Let a; = (B'e:;)/||B'ed],
H; = {z: (z,a;) = 0}
and Q = {z:(z,a;) =0 forall 4}.

H; is a hyperplane with normal a; of unit length, such that a, is directed into
the half space {z: (z, a;) = 0} which we will call the positive side of H;. Ob-
viously Q = {z: (z, B'e;) = 0 for all 5} so that the probability that the z.’s are
simultaneously positive is the probability of lying in the region @, which is a
polyhedral half-cone, with vertex at the origin, bounded by the planes H,; and
positive with respect to each. We notice that the cosine of the angle between
the normals to H; and H; is
(e, Cg;)

[(e:, Ces)(es, Ce)lt
_ Cov (x.;, xj) _

= [Var (z:), Var ()P "9

If the distribution of x is normal, the distribution of z will be spherical and
hence P, = P{z: zecQ} = ti/ss where ¢, is the three-dimensional content of
R = T, = 8: N Q and s, is the three-dimensional content of S, .

The region R very closely resembles a tetrahedron whose bounding faces are
the surfaces of spheres with unit radius, and for the purposes of illustration we
shall consider it as a tetrahedron, bounded by planes, to which it is topologically
equivalent, bearing in mind that certain restrictions on the angles of the Eu-
clidean simplex of the illustrations do not actually apply.

(a"i7 ai) =
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Our task then reduces to evaluating the volume (#) of a ‘“hyperspherical
tetrahedron” (R) lying on the unit 4-sphere ,bounded by and on the positive
side of each of the hyperplanes H;, H., H; and H,, where the angles between
the normals to the hyperplanes are known.

R has four vertices, and we denote by V; that vertex opposite H;. Let v; be
the position vector of V; . Since V' is on the unit hypersphere, v is of unit length.

Van der Vaart’s formula allows us to evaluate #, provided R is an orthoscheme;
and Schlifli shows that, in general, R can be split into 24 orthoschemes by a
four dimensional analogue of the following method for spherical triangles.
Suppose the vertices of the spherical triangle T3 are V1, Va, V5. Then we can
choose any point P on the sphere and by constructing great circles through P
to V1, Vi, V3 and perpendicular to the planes bounding 7’5 , we can split 7', in
general, into six spherical right-angled triangles (see Fig. 1).

Fia. 1. Simplicial division of a spherical triangle V1V,V; into six orthoschemes.

However, if we choose one of the V; as P, then T'; will be split into two spherical
right-angled triangles. (This will also happen if we choose P to be the antipodal
point to one of the vertices.)

Our analogous procedure in four dimensions, therefore, is to ‘“‘drop” a ‘““perpen-
dicular” from V4 onto Hs 1 Sy ; i.e., we construct a great circle on S; which is
orthogonal to H, N S, and passes through V,. Because of the homogeneity
present in the situation, we can do this by locating the projection of v, on H,,
and multiplying by a scale factor to find the appropriate point, V,, on S, . But
although the projection is unique, the intersection of H, N S, and the great
circle perpendicular to H, M Sy is not, since we have the choice of a positive or
negative scale factor. If we settle on a V, (with position vector v,) we find
ourselves confronted with two possibilities:

(i) (a, vp) = O for at least one 7z = 1, 2, 3, i.e., the foot of the perpendicular
falls on the positive side of or on at least one of the planes H, , H., H;.

(ii) (a;,v,) < Oforall<, i.e., the foot of the perpendicular falls on the negative
side of all the planes.

The reason for this becomes clear if we consider the three-dimensional case,
where the corresponding simplicial division would be into two right-angled
spherical triangles. In the first case, P; is a simple sum or difference of surface
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areas. In the second, multiplication by a positive constant results in the evalu-
ation of 3 — P;. Clearly it is most desirable to be in situation (i), and we can,
as we shall show, always ensure that we are (see Fig. 2).

(a) (b)

F1a. 2. Three dimensional case. H; (corresponding to H, in the four dimensional case)
is in the plane of the paper. In each case, V, is the point which results when the projection
of V; onto Hj is extended to the surface of the sphere in the ‘“‘natural’’ way: i.e., by multi-
plication of its position vector by a positive constant. Evaluation of the area 7' by a simple
sum or difference of the areas of the orthoschemes V1V3V, (vertically hatched) and V,V5V,
(diagonally hatched) is possible in (a) since V), lies on the positive side of H: ; but is not
possible in (b) since V, lies on the negative sides of H; and H, . Notice that the construction
fails when V; is above the centre of the circle representing H; N S .

Having located V, so that (i) holds, we can now construct great spheres
through V, and V, of two kinds: those which pass through some other V; and
those which are perpendicular to H; N H, N S, for some <. In the first case this
is done by finding the hyperplane K; which passes through 0, V,, V, and V,
and in the second case by finding hyperplane M ; which passes through 0, V,, V4
and has a normal (m;) orthogonal to a;. This accomplishes the simplicial di-
vision of R into six orthoschemes (see Fig. 3).

Va

ms| H3
V3 3 Vo

4 Wz ‘Hz N Hg

Vi
F1a. 8. Part of the simplicial division of a spherical tetrahedron into six orthoschemes.
Intersection with Ss is understood.
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We now establish the method of finding the matrices of cosines of the angles
between the normals to the planes bounding the orthoschemes, for each ortho-
scheme. The difficulty lies mainly in keeping track of the direction of the normal

vectors.
Let h; be the distance of V; from H,, so that h; is given by

(v,-,a,-) = Bijhi 1 = 1, "',4.

Notice that this necessarily implies that k; > 0.
Let

Tijek = Pij — PikPjk
uiy = +1if p;; = 0
= —1lif p;; <0
Ui = +1if 745 2 0

= _1ifTij.k < 0.

We now drop a perpendicular from V4 to H4, by locating the projection of
vson H, , which is v¢ — hay, and extend it to S, as follows: let V, = {v,}, where

Vp = —UndasUiasc( Ve — haa),
where ¢c=(1—hi)t

Notice that ||v,]| = 1 and v, is uniquely defined provided we do not have p4 =
pu = pss = 0 (for then v, = a4 and by = 1), and furthermore that

(31) (Vp, ai) - uj4uk4ch4|p,-4| T # j #Z k= 1, 2, 3.

Since these three quantities can never be simultaneously strictly negative, V,
cannot lie on the negative side of H, , H; and H; simultaneously; hence we avoid
situation (ii). V, is of course, the foot of the perpendicular from V,to H,in R.

If pu = pu = psu = 0, the construction fails, but we can deal with this by
appealing to the 3-dimensional case since x; will be independent of z; , z; and x5 .
We assume this is not the case.

To locate (say) Ws = {ws}, the foot of the perpendicular from V,to H, N H;
in R, we project v, onto H; N H, and conclude that w; must be proportional to
(1 — psa)Vs — hsas — pahsas . We do not want it to be possible that W lies on
the negative slide of both H; and H, simultaneously, so we define w; uniquely as

Wy = —pad[(1 — p2)Vs — ha(as — pais)]
where

M2 = %[1 + Uiz + Usaz — u14-3u24-3]

—1if T14-3 and Tz < 0
-+1 otherwise
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and d > 0 is such that ||w;|| = 1. Hence

(W3, a1) = piodrias
and

(32) (W3 , az) = #l2dT24.3

cannot be simultaneously strictly negative.

Let us now consider the orthoscheme, R, whose vertices are V4, V,,W;
and V,. H, and H; are the bounding planes opposite V4 and V, respectively.
Denote by K; the bounding plane through V., V,, Vi and opposite W3, and
let M; be the bounding plane through V4, V,, W3 and opposite V; (see Fig. 3).

Since K; contains the origin, we express its equation as

(ki, z) = 0 where |k = 1,

and since K; passes through the intersection of H, and H;, we must have for
some «, 3

k1 = @ag + 63.3 .

But V,and V, both lie in K, hence v, and v, both satisfy (k;, z) = 0, hence
(k1, as) = 0 80 apas + Bpzs = 0 and ky is proportional to ps@e — paas,unless
pss = pae = 0, in which case V, = V; and Ry is degenerate.

Similarly, M5 contains the origin, and we may express its equation as

(m3, z) = 0 where |mg|| = 1.

Now M ; passes through the intersection of K; and K., and the normals to M,
and H; are orthogonal, hence mj; is proportional to

Tos.341 — T332 + (P14P23 - P13P24)a3 .

We now choose unit normals to these four bounding planes which are directed
into the orthoscheme.

H 4 - Q4

Hj @ wigusiag

K,k = #12u34u24~391(P34a2 - P24aa)

Ms:mz = u24~&f3[724~3a1 — Tu.382 + (P14P23 — p1apas)as),

where
g1 = ”P343-2 - P24a3||_1
and
(3.3) fi= |‘|7'24-33.1 — Tu.382 + (P14P23 - 1713)024)313”_1

provided that these two quantities are both finite, which will be the case when
neither k; nor m; are the zero vector. Assuming that this is not the case, it may
be checked that the normals do, in fact, point into R3 . This is done by taking
the inner product of the normal to each face with the vector which defines the
opposite vertex and checking that the result is positive or zero.



1692 I. G. ABRAHAMSON

If k; = 0, then we must have psy = py = 0, or pss = po and a» = as. The
first possibility implies that a, is orthogonal to both a; and a, , in which case it is
obvious that V, coincides with V; and R3; has no three-dimensional content.
In the second case, R is degenerate.

If m; = O, then we must have T24.3 = Ti4.3 = (p14p23 — p13p24) = 0, or that ax
is a linear combination of a; and a; . The first case implies (w3 ,a:) = (W;,a;) = 0
and we certainly have (ws, as) = (ws, as) = 0 since wze Hs | Hy ; so that
ws = 0, which is impossible, or, as is implied also by the second case, there is a
linear relation between a;, as, a3, and a,, so that R has no three-dimensional
content.

The matrix of cosines of the angles between the normals to the bounding
planes of the orthoscheme Rj , is given by

H, H; K. M;
Hy |1 63 0 0
H; |03 1 on O
Ki 10 oea 1 ya
Ms; [0 O ¢u 1
where
O3 = (@4, Uralos@s) = UraUpaUsa| p3a
(34) o3 = (Unlosds , K1) = — pol1aUoalhsags|7os.3]
Ys = (K1, M) = piogifs| paal[raasrios — 71as(1 — pas)].

The volume (V) of Ry can now be found using (2.2) or the table, as dis-
cussed in the next section. The volumes of the five remaining orthoschemes can
be found by substituting the permutations of (1, 2, 3) in (3.3) and (3.4).

Now the orthoschemes Ry and Rj, have M; as a common face, and a common
edge connecting V; and V, . From (3.2) we see that W lies in R, and hence be-
tween V; and V,, if and only if 7.3 and 7.3 have the same sign. If W; does
lie in R, R and R3 will be adjacent; but if W; does not lie in R, either Ry C Ry
or Ry D Ry according as i3 < 0 or 7e.3 < 0 respectively. Hence we may
define X; as the volume of the region R; which has vertices Vy, Vo, V,, V4,
and we see that

Xi= |umiVij + waiVa| %5 #k=123.

Since we have defined V, so that it cannot fall on the negative sides of all the
hyperplanes Hy, H, and H; simultaneously, it follows that the contribution of X;
to the total volume is positive if (a;, v,) is positive, and negative otherwise. From
(3.1) we see that the condition that (a;, v,) be positive is that u; and
urs (4 £ j # k) have the same sign. Hence the total volume, X, of the region
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R is given by
X = |u24u34X1 + Uiz X, + u14u24X3|.

4. How to use the tables. In this and the following section we drop the sub-
seript from Py(a, b, c).

Using van der Vaart’s formula (2.2), P(a, b, ¢) has been tabulated in [1]
for all non-negative values of ¢ and b (at intervals of .05) and ¢ (at intervals
of .01) which are compatible with the correlation matrix being positive definite,
i.e. with

d+V+E—add <1

(4.1)
a,b,c <1

In addition, a shortened table is appended to this paper where the increments on
a, b, ¢ are .1, .1, .05 respectively.

For negative a, b or ¢, we notice, from (2.2), the relations, setting Q(¢) =
(1/47) aresin ¢,

P(—a,b,¢) = § + Q(b) + Q(c) — P(a, b, ¢)
P{a, —b,¢c) = P(a, b, c) — Q(b)
P(—a, —b,¢) = %t + Q(c) — P(a, b, ¢)
P(—a, —=b, —¢) = P(a, b, ¢) — {Q(a) + Q(b) + Q(c)}
P(—a,b, —c) = P(a, b, c,) — {Q(a) + Q(c)}
P(a,b,c) = P(c, b, a)

The last identity has further uses in interpolation, since the increments on the
third parameter are finer.

An explicit description of the use of the tables now follows. In practice, ob-
vious symmetries may much reduce the labor, which, in the general case, is
unfortunately tedious.

(1) Find the correlation matrix {p;;} of the four variates under examination.
Check that it is nonsingular. If pyy = pa = pzu = 0, the fourth variate is in-
dependent of the rest and

P, = #{§ + (1/4r)(arcsin p;2 + aresin pss + aresin pis)};

but if this is not the case, proceed as follows.
(2) For each permutation (7, j, k) of three of (1, 2, 3, 4), omitting the cases
where k = 4 and noting the symmetry in ¢ and j, calculate

Tijk = Pij = PikPik -
(3) For each permutation (7, j, k) or (1, 2, 3) calculate
(a) U =41 if pu=0
= —1 if pu<O0.
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(b) Uig = +1 if 7i4;2 0
; = —1 if 74;<0.
(e) o wi; = $H{1 4 Ui + Ujaer — UstrUjar).

. ' (Note Mij = i)
(d) fo = [riex(l — i) + 7aa(l — pjk) — 2rijwrisirion]
(Note the symmetry in 7 and j.)
(e) If pjs and pis are not both zero, find
i = lpsrsan + poarias
(Note the vsynllmetry injand k.)

If pjs = pra = 0, but pis 5.0, then X; = X; = 0in (5).
(f) If prs # 0, find

Ors = ui4uj4ulc4lplc4l

i = _ﬂij(ul4u24u34)gil?'j4'kl

Vi = pisglifil orel [rjairisn — Tar(1 — pje)].

If Prs = 0, X, =0in (5)
(4) Foreachk = 1, 2, 3 for which pis 5 0, find X; by the following method :
For each permutation (4, 7, k) of (1, 2, 3), put

a = O, b = oni, ¢ = Y.

Then find Vi; = P(a, b, c), using the table. It will almost certainly be the case
that (a, b, ¢) will not correspond to an entry in the table and some method of
interpolation will be required. Some comments are made about this in the next

section.
Now compute

Xy = |warVii + upnaVis|, ¢ #j =k
(5) P,=X = lu44u34X1 T+ X, + u14u24X3|-

6. Some comments about the table and examples of its use. The practical
problem of tabulation lies mainly in the integration of the double integral of (2.2),
which reduces to a single integral, for

[ [ 10 =0 = o) = By dady

[ (1 = 4 7* aresin [a {—1———72—}1 d
=[u- T |
For the purposes of computation, the arcsin was converted to an arctan because
the computer used could then deal with it automatically.

(5.1)
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The comments which follow apply equally to the detailed table of [1] and the
shortened version. Both tables give P(a, b, ¢) for all permissible values of b
and ¢ for fixed a. Since the increments on ¢ are finer than on a and b, it may be
desirable to exploit the symmetry in @ and ¢ when interpolation is necessary.

No startling claims of accuracy are made. On the basis of a small number of
checks, it seems reasonable to suppose that accuracy is to five decimal places
except possibly for large values of the parameters and possibly to six for small
values of the parameters. Obviously errors accumulate with interpolation and the
addition of the six component probabilities.

It is obvious that if one of a, b, or ¢ is zero, P(a, b, ¢) will reduce to the form
1Ps(ao , bo) which can be evaluated exactly by the formula given in Section 2.
Some checking shows that for large values of ao and by , the computed table may
be off by nearly 10, so that in such cases, at least, the easy exact computation
is generally worthwhile.

Interpolation is a problem. Linear interpolation in three dimensions is not
very appealing and is not unambiguous. However, let us suppose that we desire
P(a, b, ¢c) where

a; S a = o, B =b =B Ym S C = Vu,

the a’s, 8’s and +’s being values in the table and, letting each pair (4, 5), (&, 1),
(m, n) be some permutation of (1, 2) so that (a, b, ¢) is “nearest’’ to (a1, B1, 71),
we have approximately

P(a,b,c) = P(a1761)7l) +
(5.2)

R Ba[P(a2 B, 'Yl)]
2 — o1

[67

+ 2B (e, 2, )]+ 2 5P, B, ),
B — B Y2 — M
where 8.[P(cz, 81, 71)] = P(az, 81, v1) — P(eu, B1, 71), ete. Some terms of
higher order might be warranted, but the computations involved could be
lengthy unless one of the parameters is a tabulated value (in which case inter-
polation is two dimensional).
In an attempt to improve on linear interpolation, we might employ Taylor’s
theorem to obtain an approximation (easily derived from (5.1)), where (e, 8, v)
is the “nearest’’ entry to (a, b, ¢):

P(a,b, ¢) = P(a, B, 7) + (1/87){f(a, @) + f(b, B) + f(c, 1)}
+ (1/47")[f(a, @) sin™ v{(1 — o*)/(1 — o — )}’
+7(b, B) sin” [apy{(1 — o* — (1 — £ — ¥ )7
+ fle, v) sin ™ a{ (1 — N/ (1 = £ = )}

where f(z, §) = (& — £)/(1 — £).

It is not at all clear under what circumstances this is better than linear inter-
polation. The behavior of this approximation does not compare consistently

(5.3)
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one way or the other with linear interpolation, even in the equicorrelated case.
When all factors are accounted for, it seems that an accuracy of at least 3%
decimal places can be expected on the large table, and 2% decimal places onthe
shortened version.

As an example, consider the probability that four random variables jointly
distributed with a quadrivariate normal distribution with mean 0 and correlation
matrix

1330
1130
T 313
00 % 1

are simultaneously positive.
Since piy = p2u = 0, we have immediately that X; = X, = 0, so we have only
to consider the permutations (¢, j, k) = (1, 2, 3) and (2, 1, 3). We then find

= 1
T12.3 = T13.2 = T23.1 = ¢

T34.1 = Ty.2 =

(S

'™

T = Ty = —
T = 701 = 0
U = Uy = Uy = +1

Uy = Uz = +1

pe = —1
fi={fitded—1d&" =
n=g=EF4"=2

O = 0 = 3

o= =3

Yo = ¢p = —3.

From the table we find V3 = Vi = 075000, so that Py = .15000 (obtained
by both McFadden and Plackett).

A special case is that where the variables are equicorrelated, i.e., p;; = p
when 7 # j, and p;; = 1. Then we always have

a=p; b=-B1-pF c=-}

and Py = 6P(a, b, ¢). Actually, the equicorrelated case can be much more pre-
cisely dealt with in other ways (see, for example, [22]) so that the brute-force
method given here is of no great value; but, as an example, let us suppose p = %.
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We then have to find P(%, —3!/3, —1%). As a first approximation we might enter
the unabridged table to find P(.33, .6, .5) = P(.5, .6, .33) = .128149. Then
P(%,31/3, 1) = .127069 (from (5.3)) and P(%, —3'/3, —}) = .024975, so that
P, = .149848. Linear interpolation, in this case only two-dimensional, gives
P, = .149585. The exact value of P, is .149738 (McFadden obtains .14976
and Ruben obtains .14974). Using the abridged table, (5.3) gives .15043 and
linear interpolation gives .15115.
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