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1. Introduction and summary. A generalization of Tukey’s polykays [3], [4],
and [5], was made by Hooke [1] in reference to sampling from a two-way array
or population. These generalized polykays were christened “bipolykays.” Smith
[2] also developed these functions of degree two independently. Working with
certain structural patterns in the analysis of variance, a set of functions denoted
by Z’s were introduced by Wilk and Kempthorne [6] and formally defined and
extended to include all “balanced” population structures by Zyskind [7]. Because
of certain “nice” properties of symmetric means of degree two, the = expansions
were found to be relatively simple and could be defined for a large class of struc-
tures. In contrast, the work on the extension of the polykays was limited only to
sampling from a two-way population structure though polykays of higher degrees
were also considered. Zyskind [8] recognized the equivalence of Hooke’s bipoly-
kays of degree two and a certain subset of thé 2’s, and conjectured the equiva-
lence of appropriately extended polykays with the whole set of 2’s for all balanced
structures.

In this paper an extension of the bipolykays of degree two to ‘“n-way-polykays”
(henceforth referred to as generalized polykays) is made to encompass all
balanced structures (as defined in [7]). (Since this paper was submitted, general
definitions of polykays and symmetric meansof all degrees have been formulated,
properties of these developed, and the basic results applied to obtaining variances
and co-variances of estimates of components of variation in certain two and
three-factor balanced structures.) The equivalence of these generalized polykays
and the 2’s is then shown.

2. Preliminaries. The symbol Y shall mean the sum over all subseripts that
follow with the restriction that differently primed subscripts remain unequal.
Symmetric means and polykays have been previously denoted by brackets and
parentheses respectively [3], e.g. the symmetric mean (ab) = »_~z5zl/N(N — 1)
where ¢ = 1, .-+ | N, and the corresponding polykay is denoted (ab). In con-
trast to this “primary” notation Hooke [1] used a ‘“secondary’ notation, for
example the secondary notation for {ab --- d) being (mp: - D, Qs - ¢,

-, My« Tq), where p;, ¢ =1, ---, a, denotes the individual z; and g¢;,
i =1, - -+ b, the individual z,, etc. The entries a, b, - - - , d in the angle brackets
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are said to form a partition of the integer m = a + b + - - - 4 d, where m is the
degree of the symmetric mean. Thus in the secondary notation the comma
separates the parts of the partition with a, b, - - - , d, denoting the lengths of the
partitions. Two partitions are said to be equivalent, or not distinct if they are
identical, except possibly for the order of parts and the order of symbols within
a part. For m = 2 the only partitions are 1 1 and 2 itself, or in the secondary
notation p;, ¢; and pips, respectively, which in this sequel will be denoted by
p, ¢ and pg.

Henceforth let & denote the partition pg and 8 the partition p, q. Let v, §, - - -
denote arbitrary partitions. A subpartition § of a partition v may be formed by
inserting one or more commas between the letters of v. Thus for m = 2, 8 is a
subpartition of «. The following implicit definition of the polykays is given by
Hooke:

DerFiNiTION 2.1. {v) = (v) + 2.:(3:) where the summation is over all dis-
tinet subpartitions §; of v. Two symmetric means, or polykays, are equivalent, or
not distinet, if the partitions representing them can be made equivalent by
renaming the symbols.

Thus, for example, the polykays of degree three are defined by the equations

¢, = (p,gr1),

P, q) = (p,qr) + (p, g, 1),

(pgr) = (pgr) + (p, qr) + (g, pr) + (r, p0) + (D, ¢, 7)
which may be solved to yield

(2,0,7) = (P, g, 7,

(Dar) =@, ) — @07,

(pgr) = (par) — (p, qr) — (g, pr) — {r, pg) + 2p, ¢, 7),

or in Tukey’s primary notation,
by = (111),
ke = <12) - <111>’
ks = (3) — 3(12) + 2(111).
In introducing bipolykays Hooke defined generalized symmetric means to be

averages of monomial functions over a matrix, i.e., a polynomial of the form
=~

(/M) > a%ge--- au
P st
where the symbol D _* indicates the sum over all the subscripts with the restric-
tion that subscripts represented by different letters must remain unequal through-
out the summation, and M is the number of terms in the summation. The general
term 72 - - - 25%¢ contains m factors, of which a,, are equal to z,,, etc., the
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degree of the symmetric mean being m = a,q + - -+ + a.;. To each factor a
different symbol is assigned and the resulting set of symbols partitioned in two
ways—once by rows and once by columns. Hence the secondary notation for the
g.s.m. is an ordered pair (y;/vz) of partitions y; and v, , each on the same set of
symbols.

Following Hooke’s formalization of the bipolykays we now define a non-
commutative “‘dot-multiplication” for symmetric means from an n-way popula-
tion structure as follows:

DEFINITION 2.2 {y1)+{y2) *- - * {yn) = (v1/v2/ *++ /vx) if the v; consist of the
same symbols wherey:, - - - , v, are different partitions of the same set of letters,
and is zero otherwise. Distributivity is assumed to provide dot-products for
linear combinations of symmetric means.

3. Extension of bipolykays. The extension of bipolykays to generalized
polykays is made simply in the following definition:

DeriNtTioN 3.1, (vi/v2/ <<+ /va) = (y1)*(v2) ¢+ - -+ (v») Where it is under-
stood that the polykays are expressed in terms of symmetric means before dot
multiplication.

Exampre 3.1. Consider a two-way crossed population structure, ie. ¥Y;; =
Y.+ (Y. =Y.)+ (Y;—-Y.) + (Yiyy—Y.—Y.,;+Y.) where i=

,Aandj =1, ---, B, and a dot indicates a mean over the corresponding
subscript has been taken. Then

(pe/pa) = (pg)+(pa) = ({pg) — (p, 9))+(({p9) — (D, ®))
= (pg)+(pg) — (P, ©)+(Pg) — (P9 (D, @) + (P, O+, @)
(3.1) = (pg/p9) — {p, 9/P9) — {Pa/D, ) + (P, 9/D, Q)
= 2Yi/AB — > #Y:;Ys;/AB(A — 1)
— 2*Y;Yiy/AB(B — 1)
+ 2#Y;Yoy/AB(A — 1) (B — 1).

Note that the g.s.m.’s above occur with a plus or minus sign according to whether
the letters in an odd or even number of the polykays contained in (a)+(a) have
been subpartitioned. The generalization of this result to products of many poly-
kays is obvious.

Hence for a n-way structure the following definition of polykays of degree two
in terms of g.s.m.’s may be given:

DErintTioN 3.2. (61/ -+« /8:) = {61/ -+ /0n) + E( 1)"(61/ - - - /6%) where
0@ is a subpartition of ;. If, for instance, 6; is a, 6; can be « or 8 and if 8 is B,
0; must be 8. The sum is over all poss1ble subpartitions of the 8; and = is the
number of changes o to 8.

A general structure, however, consists of both nested and crossed factors. If
in Example 3.1, the subscript j is considered nested within ¢, rather than crossed
with it, sums of the form D * Y ;;¥; and D _~Y ;Y s, will be taken to have the
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same meaning since the sum over the subscript j is independent from one z-level
to another, and the corresponding g.s.m. may be denoted

Z#Yfini’j'/AB2 4 —1).

In view of this, g.s.m.’s of the form (p, ¢/pg) and (p, ¢/p, ¢) will be considered
the same and in (3.1) may be canceled when they appear with opposite signs.
Hence for a situation with the second factor nested within the first factor Equa-
tion (3.1) becomes

(pg/pg) = (pa/pg) — (Pa/P, @) = 2 Yi/AB — 3 #Y;¥:;y/AB(B — 1),

the polykay (pg/pq), of course, having a different meaning now.

Before formalizing a definition of generalized polykays to include nesting in
structures we shall review a few definitions given by Zyskind [7].

DeriNiTION 3.3. An admissible mean corresponding to a given population
structure is a mean in which whenever a nested index appears then all the indices
which nest it appear also.

Thus in Example 3.1, Y.., Y,., Y.;, and Y,; are admissible means, while in
the nested situation, Y.., Y., and Y, are admissible means.

DerFINITION 3.4. Indices of the rightmost bracket are those indices of an ad-
missible mean which nest no other subsecripts of the mean. For convenience these
indices are distinguished from the others by enclosure in parentheses.

Thus in Example 3.1 the indices <, j of the mean Y,; are included in the right-
most bracket, (since 7 and j are both in the rightmost bracket the parentheses
are omitted) while in the case of nesting only j is in the rightmost bracket and
the admissible mean is denoted by Y, . To denote a general admissible mean
we shall use the symbol Y, where R is the set of subseripts in the rightmost
bracket and L is the set of remaining subscripts.

We now propose a general definition of generalized symmetric means and poly-
kays of degree two, for any balanced structure.

DerintTIoN 3.5. Consider a general structure with n factors. Let S denote the
set of subscripts 7, 7, k, - - - , ete., and let the range of the subscripts be N1, N»,
N3, -+, N,. Then

(61/0s) -+ [6n) = D * @y /NT'NG* -+ N

where

0; can be « or B if the 4th factor is not nested by any other factor and Ni = N,
Ng = Ni(N; — 1);

0; can be « or g if all factors which nest the sth factor have o and then Ni = N,
N% = Ni(N: — 1);

6; = B if one or more of the factors which nest the sth factor have 8 and then
N% = N?; and where the sum is over all subscripts of S with the restriction that
those corresponding to 3 are unequal.

In this definition we use the rule that a nested factor has a different subscript
for every one of its levels [e.g. if 7 is nested in ¢ then the values j takes for different
values of 7 are different].
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As an example consider again the case of factor 7 nesting a factor j. Then
(pa/pg) = 2. wii/AB,
(pa/p, @) = 27 wiwiz/AB(B — 1),
(p, ¢/pg) = is not defined,
(p, 4/p, @) = 2 *wijwoy/AB (A — 1).

It is obvious that there is a one-to-one correspondence of generalized sym-
metric means of degree two and admissible means. In the above case the admis-
sible means are Y, , Y. none, Y.. respectively.

DeriniTioN 3.6. Given a population structure P and an admissible mean
Y 1) , denote by S the set of all subscripts of P where 8 = L + R 4+ @, @ being
the set of remaining subscripts. Then

(6/02/ -+ /0a) = 64/88/ -+ /0n) + 22 (—=1)7 (63/63/ - -/07)
where 0, = aifieL and 6; = 6;ifieL
=qaifiecR aorBifieR
BifieQ = 0:ifieQ
and 7 is the number of &’s which are changed to 8, and the sum is over all pos-
sible subpartitions of 6; where 7 ¢ R.

4. The = functions. The following two definitions from Zyskind [7] are stated
before introducing the =’s.

DerintTION 4.1. A component corresponding to the admissible mean Y.z, is a
linear combination of admissible means obtained by selecting all those means
which are yielded by Y .z when some, all, or none of its rightmost bracket sub-
seripts are omitted in all possible ways. Whenever an odd number of indices is
omitted the coefficient of the mean is minus 1 and whenever an even number is
omitted the coefficient of the mean is plus 1.

Then it can be easily seen that a typical response or observation can be ex-
pressed as the sum of the components. This expression is commonly called the
population identity.

A consequence of this definition of components is that the component corre-
sponding to Y (5 vanishes when summed over any of the subseripts in R.

Examprii 4.1. In a two-way crossed structure the basic identity was seen to be
are four components, each corresponding to an admissible mean. This identity
could be written Y;; = u + A+ B; + (AB),;.

ExampLe 4.2. In a two-factor nested structure the population identity is
Yig=Y.+ (Y —Y.)+ (Yuy — Yi)or Yip = n+ A + A(B)y; -

DerintrioN 4.2. The component of variation corresponding to the admissible
mean Y, is defined as

oiw = 2 [L(R)/L I;I (R: — 1)
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where L(R) represents the component in the population identity corresponding
to Y , and the summation is over all subseripts of the leading mean of L(R)
and L; and R; denote the population range of the respective subscripts with
HiLi = Land HtRz = R.

For example, consider the two-factor nested structure whose identity
is given in Example 4.2. Corresponding to the means Y, , Y., and Y.. are
the components of variation ohm = D (Yiy — Yi)/A(B — 1),0% =
> (Y:i—Y.)’/A — 1, 6" = Y. respectively.

Using the above notation, Zyskind’s definition of the =’s is as follows:

DeriniTION 4.3. Consider a particular component L(R) and all ¢”’s of the
following form:

(i) the set of subscripts of ¢” includes the set of subscripts corresponding to the
leading term of the component as a subset,

(ii) the excess subscripts lie exclusively in the rightmost bracket of ¢°.

The linear combination of all such ¢’s, where the coefficient of a particular o
with % excess subscripts is

(—1)* 1/Product of population ranges of the excess indices,

is defined as the = corresponding to thelcomponent L(R) and is denoted by
2 L(R) -

Again taking the two-factor crossed structure as an example we have accord-
ing to this definition

24; = Y?., ZA = 0'31 - (I/B)(Tig,
Zap = UiB, ZB = 0'?; - (I/A)Uis-

6. The equivalence of the polykays and the =’s. Before proceeding to the
equivalence of the 2’s and generalized polykays a few lemmas will first be demon-
strated.

LeEmMA 5.1. The sum of the coefficients of the g.s.m.’s in any generalized polykay
except (8/- - -/B) add to zero. The coefficient of the g.s.m. in (B/- - - /B) is undty.

Proor. By definition, (8/---/8) = {8/ --/B). Consider now the generalized
polykay corresponding to Y &) . Let k denote the number of R; ¢ R. Then the
number of possible subpartitions of the « corresponding to the subscripts R; will

be 2 = D% ( k ) and by Definition 3.6 the sum of the coefficients of the

=\k — 1
g.s.m.’s is ‘
k k—1 k k
;)(—1) (k_i>= 1-1*=o0.

Lemma 5.2. A g.s.m. of population values 7s equal to the sum of corresponding
g.s.m.’s of all components, a corresponding g.s.m. being obtained by deleting all
factors in the name of the population g.s.m. which do not occur in the name of the
component and using the same partition of the remaining factors. For example in
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the two-way crossed structure

27 Y Yy _ + 2A + 2" B; By + 2" (AB):;(4B).y
ABB —1) * A TBB -1 AB(B — 1)

Proor. This result is obvious as regards products of like components when the
population identity is substituted for the population values appearing in the
generalized symmetric mean. All products consisting of unlike components will
vanish for there will be at least one subscript not common to the rightmost
brackets of the two components of a product and the sum over this subscript
will be zero by definition of the components.

LemMA 5.3. Each numerator of a g.s.m. of any component can be expressed as a
sum of squares of that component, if it does not vanish. The sum of squares will be
preceded by either a plus or minus sign. For example Y = A(B)inA(B) g = 0
but, Z#AgA,‘r = — Z Al.

Proovr. If the name of a g.s.m. of a component contains 8 partitions corre-
sponding to factors in the non-rightmost bracket of the component that com-
ponent g.s.m. vanishes because the factors of the non-rightmost bracket will nest
at least one factor contained in the rightmost bracket and the sum over sub-
scripts of a nested factor is independent from one level of the nesting factor to
another—which is the case when there is a 8 partition corresponding to a nesting
subscript— and by definition this sum is zero.

Thus the name of a g.s.m. of a component contains « or 8 partitions for the
factors of the rightmost bracket of the set of factors involved in the component
and contains only the « partitions for all other factors involved in the com-
ponent. So with regard to the « partitioned factors contained in both the right-
most bracket and the non-rightmost bracket we have a sum of squares over levels.
With regard to a factor in the rightmost bracket for which the name of the
g.s.m. involves 8 we have a sum over all pairs of unequal levels. But

> Fxmy = > 2 if Dz;=0.

So with regard to the numerator of a component g.s.m. each. 8 in the name of the
g.s.m. for a rightmost bracket factor can be replaced by « with multiplication by
(—1). The numerator then becomes a sum of squares of the components if the
particular type with a coefficient of (—1)" where r is the number of such 5’s
corresponding to factors in the rightmost bracket.

Consider again the population structure P and the admissible mean Y., .
As before let S denote the set of all subscripts of P where S = L + R + Q, R
being the set of rightmost bracket subscripts and @ the set of subscripts not con-
tained in the name of the admissible mean. Then we state the following theorem:

THEOREM 5.1. 21 = the generalized polykay, as defined in Definition 3.6, whose
name contains o for the factors of L, o for the factors of R, and B for the factors of Q.

Proor. Consider a given component g.s.m. whose corresponding component of
variation is denoted by o7 , where 8 = L’ + R’, R’ being the set of rightmost
bracket factors in the name of the given component. When the generalized poly-
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kay above is expressed in terms of the component g.s.m.’s (by Lemma 5.2) it will
be shown that g.s.m.’s of all components vanish except those whose subscripts .S’
are of the form S’ = L + R + Q* where Q* is a subset of Q and lies exclusively
in R’, the set of rightmost bracket subscripts of S’. These component g.s.m.’s
will then be expressed as components of variation of the form o7 ¢+ With the
coefficient given in the definition of =z .

CasE 1. Consider first the case where the set of subscripts S, is null. Then the
component g.s.m. Y = oy = o oceurs in each g.s.m. of the polykay and by
Lemma 5.1 vanishes for all polykays except (8/8/---/B) in which case it occurs
with a coefficient of (41).

Now consider g.s.m.’s of components whose set of subseripts S’ is non-empty.
Then we distinguish the following three cases of component g.s.m.’s according to
the relationship of the subscripts S’ to the subscripts R of the generalized poly-
kay.

CasE 2. Assume R is non-empty and take g.s.m.’s of components whose sub-
scripts Sz do not contain any of the subscripts R, i.e. Ss © L + Q, where either
L or Q may be empty. By Definition 3.6 the partitions corresponding to the fac-
tors in L and Q are o and S respectively in each g.s.m. of the generalized polykay
and by Lemma 5.1 the g.s.m.’s of components vanish.

Case 3. Consider again R to be non-empty but component g.s.m.’s whose sub-
seripts Sa contain some, but not all, of the subscripts of R, i.e. 83 C L + Q + R*
where R* c R. In the polykay any g.s.m. has a correspondlng g.s.m. differing
with regard to one subscript in R — R* and therefore in sign but these two g.s.m.’s
give the same component g.s.m. and therefore cancel each other.

Cask 4. Now take the components whose subseripts S: contain all the sub-
scripts R, where R may be null as in the case of the polykay (8/8/---/8). Since
the subscrlpts of R are contained in Si so must be the set L, and hence S; =
L+ R+ Q where Q* C Q. This case may be subdivided into the followmg
two cases dependmg on whether Q* lies exclusively or not in the set R, the set
of rightmost subscripts of S .

Cast 4a. If the set Q* is non- empty and does not lie exclusively in R , then a
subset of Q* must be contained in Lz , the non-rightmost bracket part of S1 , but
according to Lemma 5.3 the component g.s.m.’s whose subscripts are of this form
vanish.

CasE 4b. Consider now component g.s.m.’s whose subset of subscripts Q" is
either null or lies exclusively in Ri. Then each component g.s.m. may be ex-
pressed as a sum of squares of the corresponding component by Lemma 5.3, pre-
ceded by a plus or minus sign. In fact, the sum of squares will appear with like
sign in each g.s.m. of the polykay, positive if the number of subscripts in Q" is
even and negative if the number is odd. For suppose Q* has an odd number of
subscripts. The original polykay has « partition for the set L, « partitions for the
set R and g partitions for the set Q* and when the polykay is expressed in terms
of g.s.m.’s we get the leading term appearing with a plus sign and w1th the same
number of o’s and 8s as in the name of the polykay. But since Q" contains an
odd number of subscripts the sign of the sum of squares of the component in
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question will be (4+1)(—1) = —1 in the leading g.s.m. by Lemma 5.3. Now a
second g.s.m. of the polykay will have one « of R changed to 8 and thus preceded
by a negative sign because of the additional 8. But the component g.s.m. now
has an additional 8 partition so that the sum of squares will be preceded by a

(=1)(—1)(—1) = —1 again. Another g.s.m. will have two of the a’s changed
to 8 and hence preceded by a plus one so that the sum of squares will be preceded
by a (+1)(—1)(—1)(—1) = —1 and so on. A similar argument shows the

sum of squares of a component in this case will occur with a plus sign if the
number of subscripts in Q* is even.

Thus we see that the sums of squares of components in Case 4b do not vanish
in the polykay whose name contains « partitions for L and R and 3 partitions for
Q. We must now find the proper coefficient for these sums of squares.

Let a component of the type in question be denoted by I'(¥) and the corre-
sponding sum of squares by Y [T'(¢)]> where T contains p subscripts and ¢
contains k subscripts. Let I'; denote the population range of the corresponding
subscripts with T = J]% T:. Similarly let ¢ = ][ ¢:. Further let N =
(IL:to(ILivi) = Tv.

Suppose ¥;, % = 1, -- -, » corresponds to subscripts which are contained in R
and ¢;,7 = » + 1, .-+, k correspond to subscripts in Q*. Then the partitions
corresponding to the latter are of the form 8 while those of the former are sub-
partitioned according to Definition 3.6. By the argument given in Case 4b the
sign of the components is (—1)*™, so the coefficient of ) [T'(¢¥)]% will be:

(_l)lc—~v . 1 + 1k
NVI;Il(w—l) N(%—l)}}lﬁ(w—l)
L + -
N(p — 1) ”I;Il (i —1) NG — 1) — 1) };[1 (y; — 1)

_|__|_ 1 %
N(yps — 1) --- (wy—l)g(wf—l)

(-7 b (14 S - )
NI -1 7

v

+Zyw—mw—n+~~uw—n~4w—n}

i<j=

=1 — (_l)k—v ki=1

— (_l)k—v .
1NI11(1//:‘—1) NIII(%‘—I)

SH [(y: — 1) + 1]1 II i
|
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= (=) — T '
(e () (fro )
Thus
(“D” T (=D

(ﬁ; 1!/1')(1?[ I‘,-> I:EI (i — 1) ) l:l Yi

which is the typical term in the expansion of Zrc) according to Definition 4.3,
q.e.d.
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