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Summary. This paper describes how data from a multinomial distribution, and
in particular data in the form of a contingency table, may be studied by using a
prior distribution of the parameters and expressing the results in the form of a
posterior distribution, or some aspects thereof, of the parameters. The analysis
used must depend on the prior distribution and the form described here only
applies to a certain type of prior knowledge but, for reasons given below, it is
believed that this type is of frequent occurrence. The binomial situation is first
considered and the results obtained there suggest a general result for the multi-
nomial distribution, which is then established. A few remarks on Bayesian analy-
sis in general enable the result to be applied, first to certain multinomial problems
and then, with the aid of another general result, to contingency tables. The
method used there has close connections with the Analysis of Variance and these
connections are examined, particularly with a view to simplifying the analysis of
contingency tables involving three or more factors.

1. Binomial distributions. Although it will appear as a special case of results to
be established for the general multinomial situation, it is instructive to begin
with the binomial distribution which suggested the generalizations. Let N inde-
pendent trials with constant probability 8 of success result in n successes and
(N — n) failures. The likelihood is
(1.1) 6"(1 — 6)" "

As other authors have remarked, it is convenient to take as prior distribution
one with density proportional to

(1.2) 6*(1 — 6)°

for suitable @, b > —1. The limiting case where a and b both tend to —1 is also
important. The posterior density is then proportional to

(1.3) "t (1 — 6)"tV ™

The known relation between this beta-distribution and the F-distribution enables
the last result to be expressed by saying that

(14) F= (btigi#)(lo—(i)

has an F-distribution on [2(a + n + 1), 2(b + N — n + 1)] degrees of freedom.
When Fisher first introduced the distribution he suggested using the z-transfor-
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mation of it on the grounds that z was more nearly normally distributed than
was F.

Since the distribution of the ratio of two independent x*-variables is F, the
use of the logarithmic transformation of F and its approximate normality is
intimately related to the same transformation of a x°, or gamma, variable and
its approximate normality. The latter transformation has been discussed by
Bartlett and Kendall [2] who remark that the ‘“transformation may safely be
used for » = 10 and over, more tentatively from n = 5 to n = 9, and probably
not at all below n = 5.” (Here n is the degrees of freedom for x*.) In our context
the degrees of freedom are not less than twice the number of successes (or of
failures) so that the transformation can certainly be used provided the smaller of
these two numbers is 5 or more and probably when 3 or 4. (The recommendation
is similar to that for the x*-approximation to Pearson’s goodness-of-fit statistic
which, as we shall see below, we recommend be replaced by another statistic.
We have more to say about this at the end of Section 3.)

Fisher used z = 1 In F': in this context it is more convenient to omit the half
and use the natural logarithm of F. Fisher’s approximation then amounts to
saying that if F has » and », degrees of freedom then In F is approximately
normal with mean In {(» — 1)/(». — 1)} and variance 2(»1* + »'). In both
moments the terms omitted are of order »;°, (»,) " and »;°. For In{6/(1 — 6)}
the mean is therefore

(1.5) In{(a+n+3)/(N—n+b+ 3},
and the variance
(1.6) (a+n+1)7"+ OG+N—-n+ 175

the approximations being good for large a 4+ n and b + N — n, probably above 5.

One is thus led to consider the natural logarithm of the odds, /(1 — ), in
favour of success. The initial reason for using it here is its convenient approxi-
mate posterior distribution, but reflection suggests that it is a convenient quan-
tity to consider for other reasons. If the value of # were known, and less than %,
it would be usual to quote its value to a fixed number of decimal places: the
argument being that it is proportional changes in 8 that are typically of interest.
In these circumstances the logarithm of 8 could be quoted to a fixed number of
places and a given change in it would be of equal significance for all 6. But the
argument should be symmetric in success and failure and hence the logarithm
of the odds, or simply the log-odds, can be used. A further, and more important
argument in favour of using the log-odds is the existence of certain additive
properties that they have in situations to be discussed below: essentially these
arise from the fact that the important property of independence is expressed
multiplicatively and therefore, in terms of logarithms, additively. The results of
this paper will be expressed entirely in terms of log-odds and their multinomial

generalizations.
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We next consider the prior distribution (1.2). We propose to consider the
limiting case @ = b = —1 and justify this choice by two main arguments as
follows. In many situations the prior knowledge of 6 is small, and there is some
advantage in considering an analysis for a standard prior which could be used
in most applications where no appreciable prior knowledge is available. If the
log-odds is to be used then the original Bayes hypothesis would suggest taking
all values of it to be equally likely. This gives @ = b = —1. That this is
sensible can be seen by noting that the results of trials cannot decrease the powers
of 6 and (1 — ) in the beta-distribution and presumably cannot decrease the
amount of information about 6. Consequently as small values as possible for a
and b would correspond to the least prior information about 6. In order that
the prior distribution be proper (i.e. integrate to 1) it is necessary that a and b
both exceed —1 so that @ = b = —1 is a lower bound, though not attained,
within the class of proper prior distributions. The resulting distribution is im-
proper but this need not concern us since we will be using approximations where
the degrees of freedom for F are large and the posterior distributions are proper.

A second reason for restricting attention to @ = b = —1 is that this special
case can be regarded as a canonical form for all prior distributions belonging to
the beta-family (1.2). By this we mean that any beta-distribution can be reduced
to the canonical form @ = b = —1. To see this we remark that if the prior dis-
tribution is given by (1.2) it may be regarded as a posterior distribution to data
consisting of (@ + 1) successes and (b + 1) failures, this data having prior dis-
tribution with @ = b = —1. Consequently if the actual data yield n successes
and (N — n) failures we may regard the total knowledge of 6 to consist of
(n + a 4 1) successes and (N — n + b + 1) failures for which the prior has
the canonical form. Consequently by adding (¢ + 1) and (b + 1) respectively
to the numbers of successes and failures actually observed the beta-distribution
may be replaced by the canonical form. Of course, the method is not available
for prior distributions which are not beta: see remarks in Section 8 below.

In many applications it will probably be true that the values of a and b for the
prior distribution will be small. If the sample values, n and (N — n), the num-
bers of successes and failures, are large, we see from (1.5) and (1.6) that the
actual small values of @ and b will not be important. It is therefore reasonable to
takea = b = —1. With a = b = —1 the posterior distribution of In {6/(1 — 6)}
is approximately normal with mean

(1.7) Inf(n — $)/(N — n — 3)}

and variance n* + (N — n)™". For notational simplicity the %’s which occur
in (1.7) will be omitted, with little loss in accuracy, and we shall write

(1.8) In {6/(1 = 6)} ~ Nln {n/(N — n)},n™ + (N — n)7].

Throughout the paper some improvement in the approximations for the prior
with ¢ = b = —1 may be effected by reducing the observations by % in calcu-
lating the posterior means. In words (1.8) says that the true log-odds is approxi-
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mately normally distributed about the sample log-odds with variance equal to
the sum of the reciprocals of the numbers in the two classes, success and failure.

The remainder of the paper is concerned with generalizations of the result
in the last sentence, in particular with the meaning of log-odds in the multi-
nomial situation, and with applications.

2. Multinomial distributions. In the multinomial situation a slightly different
notation is desirable. Let & denote the number of classes: in the binomial case
k = 2.Let 61, 0,, ---, 6, denote the probabilities for the k classes: necessarily
6: = 0 for all 4, and > 6; = 1 (all summations in this section run from 1 to k).
Let ny, na, « -+, ng denote the observed numbers in each of the classes when
N = ) n; independent trials are made with the above probabilities for the
classes.

We use another suggestion of Fisher’s. He remarked that if n;(¢ = 1,2, -+ k)
were independent Poisson variables with means ¥;, then the conditional dis-
tribution of them, given N = > n;, would be multinomial as just described
with 6; = ¥,/ > ¥ ;. The proof is immediate since N has a Poisson distribution
with mean _ ¥; and hence

p(nl)m, ""nklN) = P(nl,nz, "':nk)/p(N)

_ e TT(wi /ni 1)
(S w) /N

NI /ns 1),

as required. An alternative way of regarding this result is to remark that the
probability distribution of the Poisson n; factors into the distribution of N,
which depends only on § = Y ¥, , and the conditional multinomial distribution
of the n; given N, which depends only on 6, , 6, , - - - , 6 . If the prior distribution
of the ¥, similarly factors into one part which depends only on 8 and another
which depends only on the 8; , the same will be true of the posterior distribution.
Consequently, under these conditions on the prior, the posterior distribution of
the 6; will depend only on the multinomial part of the likelihood. Thus this pos-
terior may be obtained by the Poisson device.

An appropriate prior distribution for the ¥; may be obtained by supposing that
their logarithms are independent and uniformly distributed over the whole real
line. This prior distribution factors in the way described above. The Jacobian of
the transformation from ¥, , ¥, , --- , ¥, t0 0, 6;, 62, - - - , 6 is easily found to
be 6°*, whence
QY - AWy _ 1 dOdBy - - dBy _ (@) (d01 e do,,_l)

v, - U, 0%, - - - 6 0 Oy - O

as required. The posterior distribution of the 6; is then obtained by multiplying
the last factor in (2.2) by the likelihood from (2.1) with the result proportional to

(2.3) 11 6

(2.1)

(2.2)
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We seek an approximation to (2.3). We find this by considering the Poisson
distribution. The posterior distribution of the ¥, given the n, (now Poisson
variables) is proportional to

(2.4) 1T (7w ).

Thus the ¥; are independent and each isdistributed in a Type III or Gamma, dis-
tribution. But, as explained above, if a variable has such a distribution, then its
logarithm is approximately normally distributed for all but small values of n; .
It is easy to calculate the mean and variance with the result that the In ¥, are
independent and approximately normally distributed with means In n; and
variances n; .

Let a1, as, - - - az be a set of constants with D a; = 0. In common with the
nomenclature used in the design and analysis of experiments, a linear form in
quantities with coefficients which add to zero will be termed a contrast in those
quantities. Consider a contrast in the In ¥; .

Za,'hl‘l’.,;= Zailn(eoi) = Za,-lnﬂ;

since ) a; = 0. Consequently a contrast in the In ¥; is equally a contrast in
the In 6, . But the contrasts in the In ¥, are approximately normally distributed
and any set of them is approximately jointly normally distributed. The same
must therefore apply to the In 6; and, by the arguments given earlier, these dis-
tributions of the In 6; apply to multinomial sampling. Consequently we have the
following

TurorEM 1. If the random variables ni, ng, - -+, n, have a multinomial dis-
tribution with parameters 0, , 0z, -« -, 0k ; and if the prior distribution of the 0;
has density proportional to (1] 6:)™" over the region 6; = 0, >, 0; = 1: then if the
constants aps (p = 1,2, -+ ,m;4 = 1,2, .-+, k;m < k) satisfy D_sap = 0,
the joint posterior distribution of the contrasts > ;ap; Inf; (p = 1,2, -+, m)
s approximately normal with means

(2.5) Z Ap; In n;

and covariances (variances when p = q)
(2.6) Z Apilly M
k2

The expressions for the means and covariances follow from the independence
of the In ¥; and their means and variances.
The means given by (2.5) may be written

(2.7) Z ap; In (n;/N),
since Y .; ap; = 0. This may be preferred since the individual terms in the sum

are then of the same order as those in the corresponding contrast Y _; a,; In 6; :
6; being of the same order as n;/N.
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In the binomial case, k = 2, the only contrasts are multiples of In 6; — In 6, =
In {6/(1 — 6)}, the log-odds, in the notation of Section 1. Consequently the
earlier result for the binomial is a special case of the theorem. In view of the gen-
eralization we shall call a contrast in the In 8; a log-odds, despite the fact that the
odds do not necessarily refer to a single contrast of one event with another. Thus
In 6, — In 6;, for example, is the logarithm of genuine conditional odds, 6./6; ,
but we shall use the name for In 6; — 2 In 6; 4+ In 6; which has not this property.
The theorem can now be expressed as saying that the approximate posterior dis-
tribution of the log-odds is as it would be if the In 8; were approximately
N(Inn;, n;") and independent. (Of course, the In §; are not themselves even
approximately independent since ) 6; = 1.) Consequently if attention is con-
fined to log-odds then the simple normal result may be used: in particular tech-
niques of the Analysis of Variance are available. We shall see below that many
parameters of interest in the analysis of multinomial data, particularly in the
form of contingency tables, are expressible as log-odds, and that therefore the
normal theory can be applied. As in the binomial case the approximation can be
improved by subtracting ¥ from n; in (2.5).

3. Remarks on Bayesian analysis. Before proceeding to discuss application of
Theorem 1, it is necessary to clarify a few points in statistical analyses that
overtly use Bayes theorem and a prior distribution. The object of such an analysis
is to provide the posterior distribution of the parameters or, if only some of them
are of interest, the marginal posterior distribution of those. If the data are sub-
sequently to be used as a basis for decision then the posterior distribution pro-
vides the necessary material for the calculation of the best decision. Once the
posterior distribution has been obtained the only problem remaining is the de-
scriptive one of how to present it. If we follow classical statistics and its concept
of a confidence interval, it is rather natural to summarize the posterior distribu-
tion by giving an interval which contains a rather large, say 95% , amount of the
posterior probability. This has the disadvantage of only giving information about
the tails of the distribution and does not provide, for example, any good idea of
the most probable values. The provision of the median and other quantiles in
addition to the 95% values would help. For some purposes even an interval may
be thought to be an overelaborate summary, particularly in cases where one value
of the parameter is of especial interest. In these cases it may be felt adequate to
say whether this value is a probable one on the basis of the posterior distribution.
Again borrowing an idea from classical statistics, where the confidence set is the
set of values that would not be rejected if tested as null hypotheses in a sig-
nificance test at the level of the confidence set, we can perform a Bayesian sig-
nificance test by seeing whether the particular value lies within the interval
containing proportion (1 — a) of the posterior distribution. If not, then it can
be said that this value is significant at level a: in the sense that it does not belong
to a set of values having reasonably high posterior probability.

Of course there are many intervals containing a given proportion of the pos-
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terior distribution. We shall choose that interval (typically unique) which is
such that no values within it are less probable than any value without it. This
provides the shortest interval in the usual sense. These ideas are discussed in
much more detail in [15] but we would point out here that no account has been
taken, in formulating this concept of a significance test, in any economic or gen-
eral decision-theoretic considerations. This seems to be in the same spirit as a
classical significance test. Neither have we incorporated strong prior ideas about
the value of especial interest. Our prior distributions are “smooth” in the neigh-
bourhood of the special value. This is in marked contrast to Jeffreys’ significance
tests [10] where there is a concentration of prior probability on the special value.

We now apply these ideas to the posterior distributions of log-odds. The
normal posterior distribution is particularly easy to understand for a single
parameter. For several parameters the multivariate form is not so simple to
comprehend. Let ¢1, ¢, - - - , ¢, be s linearly independent log-odds with means
m; and covariances v;; , say. The expressions for these means and covariances
follow from (2.5) and (2.6). The joint density of the ¢; is constant on the
ellipsoids

(3.1) Z;l (¢ — m)v(¢; — my) = ¢,

%]

where v* are the elements of the inverse of the dispersion matrix, and ¢ is any
positive constant Furthermore the left-hand side of (3.1) is distributed as x*
on s degrees of freedom. If x% is the upper 100a% point of this distribution, the
posterior probability that

(3.2) 21 (¢: — m)v“(¢; — my) S Xa

2 J=

is (1 — a). With @ = 0.05, the posterior probability of (3.2) is 95% but, of
course, any value of o may be used. In particular if the values ¢; = ¢ are of
interest, they would seem unlikely if they did not satisfy (3.2) with
i = ¢ (i=1,2, -+, s). This provides a significance test of the hypothesis
that ; = o0 If ¥ = 0 (¢ = 1,2, - - -, s) the relevant statistic reduces to

(3.3) ._Zl mi v m;
1, J=

and may be compared with

In applications of (3.2) and (3.3) it should be remembered that although the
m; and v* are statistics and the ¢; are parameters, it is the ¢; that are the random
variables. In the usual argument, wherein the m, are random variables, normally
distributed about means ¢; with covariances v;; (supposed known), statements
like (3.2) and (3.3) are still correct. In particular the comparison of (3.3) with
the x” distribution is basic to the Analysis of Variance, the variance being sup-
posed known. Consequently in analyzing the log-odds by the Bayesian methods
just described, we have available the methods of the Analysis of Variance. In
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the following sections we will continually make use of ideas derived from that
classical field.

Before proceeding to the applications of Theorem 1, two remarks need to be
made in the light of these comments on Bayesian analyses. The first concerns
the invariance of methods based on (3.2) and (3.3) under linear transformations
of the log-odds. This is because the quadratic forms are so invariant. A conse-
quence of this remark is the observation that it is possible to replace any par-
ticular set of log-odds by linear transformations thereof which may simplify the
analysis.

The second remark concerns the approximation to the Type III distribution
(BEquation (2.4)) that is basic to the methods. There are, of course other, and
better, approximations: for example, the Wilson-Hilferty one using x?; but they
cannot compare in convenience with the log-odds. One approximation that does
merit serious attention is the classical x*-approximation based on the statistic
> (0 — E)*/E in an obvious notation. This can be used in a Bayesian analysis
along the same lines as just explained for (3.3): details are given in [15]. It is
hoped to compare the results obtained from the x* and log-odds approaches in
another paper. Preliminary numerical work suggests that x° is worse than the
log-odds in supplying an approximation to the posterior distribution. This is
not surprising in view of the fact that x* was not designed to do this. However,
if a uniform prior distribution for 8 in the binomial case replaces the uniform for
In 6 used above, the effect being to increase the n; by 1 in the log-odds results,
then x” seems to be a good approximation to the posterior distribution.

4. Certain multinomial problems. In the multinomial situation described in
Section 2, let 6; = 6 (i = 1,2, -+ k) be a simple null hypothesis specifying
the values of all the parameters. We now proceed to derive a test of this null
hypothesis using the above results on the posterior distribution of log-odds and
the principle of Bayesian analysis just outlined. The posterior density of the
In ¥; (from the Poisson distribution) is proportional to

(4.1) exp {—3>_(In¥; — Inn;)’ng,

using the approximation. This distribution will also apply to the In 6; provided
that only contrasts are considered. Now (4.1) may be rewritten, using the usual
breakdown of a sum of squares into a sum of squares about a weighted mean plus
a term involving the mean. Let w; = In ¥, — In n;, normally distributed about
zero with variance n; '; then (4.1) is

(4.2) exp { —3[ 20 ni(ui — @)* + Nu'l}

with @ = 2 nwus/ 2, n; . Make an orthogonal linear transformation from wu; to
new variables, one of which is a multiple of %. The remainder will necessarily
involve only contrasts of the u, , and hence log-odds, and will be appropriate to
the multinomial situation. Consequently the posterior distribution of the log-odds
is proportional to exp {—2 > n;(u; — @)} and, as in the argument leading to
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(3.2), the posterior probability that D ni(w; — @)’ £ x% is (1 — a), the x°
having (kK — 1) degrees of freedom. The test of the null hypothesis will be sig-
nificant at the « level if the null values for u; do not belong to the confidence set.
The null value for u; — @ is (In 6° — Inn;) — { >, n:(ln 6 — Inn,)}/ D n;.
If n;/N replace n,; , as they may do without affecting the expression, we have here
an expression involving comparisons of the logarithms of the observed proportions
ni/ N, with the logarithms of the expected proportions, 6{”. The difference between
these is d; , say, and the expression to be compared with x_ is the weighted sum of
squares of the d; about their weighted mean; the weights being n; .

The test just derived replaces, in the present analysis, the usual test based on
Pearson’s expression ), (O — E)*/E: using instead the deviations (In O — In E).
Now the Pearson test may be extended to provide a test of a composite null
hypothesis by replacing the expected numbers, E, under the simple null by the
expected numbers under the maximum likelihood value for the composite null:
the x* criterion losing a degree of freedom for each parameter estimated by
maximum likelihood. (Any other asymptotically efficient method may be used.)
The same extension to x” is similarly available in a Bayesian analysis and details
are given in [15]. It is also possible to extend the test just derived to the com-
posite case by replacing 6{” by any asymptotically efficient estimate, 6, of 6.
under the composite null hypothesis. The same test criterion is used with é;
replacing 6{” and the degrees of freedom reduced by one for each parameter
estimated. We do not give the proof here since it closely parallels that
for Pearson’s criterion which is rather long. The interested reader with the above
reference beside him should have no difficulty in making the necessary altera-
tions to the log-odds case. An example of the use of this method is provided by a
problem concerning linkage in genetics. The observational material consists of a
multinomial with £ = 4, under the null hypothesis the four probabilities are re-
spectively 9 + o, 3 — o, 3 — «, and 1 4 «, each divided by 16. There « is the
linkage parameter and under the null may be asymptotically estimated by &, say.
The deviations, In { (9 4+ &)/16} — In n;/N etc., between log-expected and log-
observed, are then found and the test criterion is the weighted sum of squares
of these about their weighted mean. This can be referred to x” on (k — 1) — 1,
here 2, degrees of freedom. It is only necessary to use this method when the null
hypothesis cannot be expressed in terms of log-odds. When it can, simpler meth-
ods are available as we shall see below.

One advantage of the present approach over the usual x*-analysis is that it
provides the whole of the posterior distribution and not just that aspect of it
provided by a significance test. Thus (4.2), when integrated with respect to 4,
provides the posterior density of all the (¢ — 1) log-odds. If any log-odds are
of special interest then they may considered on their own, integrating out the
unwanted log-odds from the joint posterior distribution. A simpler approach is
to consider the required log-odds directly. For example, suppose one is interested
in the conditional probability of an observation falling in the first class given that
it has fallen in the first two; that is, 6;/(6; + 6;). Denote this parameter by ¢,
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then In [¢p/(1 — ¢)] = In 6 — In 6, is a log-odds with variance n; - + n3". Hence
In [¢/(1 — ¢)] has a normal posterior distribution with mean In n; — In n, and
variance ni " + nz'. Note that the same result may be obtained by regarding
(n1 + ns) as fixed and treating the situation as binomial with ¢ as the parameter.

This argument does not immediately extend to the situation where the param-
eter cannot be expressed in terms of log-odds. An example is provided by 6, + 6, .
However the example may be handled by combining the first two classes, when
61 4 6. is simply the probability of falling into this new class, and inferences may
be made using the results of Section 2. But this method involves a prior distribu-
tion over the parameters of the new (k — 1) classes that needs to be shown to be
equivalent to the original prior over the k classes. Otherwise one is changing the
prior to suit the analysis which may be a good approximation but is not correct
Bayesian argument. In fact, no approximation is involved and the two priors
are equivalent. Thus, in order to make inferences about 6, 4 6, the original multi-
nomial over % classes can be replaced by a binomial over two. To establish the
equivalence of the priors it is convenient to pass to contingency tables, which
exhibit the combination of classes in its commonest form. In a contingency table
of r rows and s columns, k¥ = rs and if one is interested in the row probabilities,
these are the sum of the s probabilities in that row.

b. Two-way contingency tables. A two-way contingency table typically arises
through each of a number of items being classified into one of r exclusive and
exhaustive classes 4,, 4,, --- 4, , and simultaneously into one of s exclusive
and exhaustive classes By, Bs , - - - B, . The probability 6.; of an item being classi-
fied as both A; and B; is supposed the same for each item. If N items are inde-
pendently classified, the numbers n;(¢ = 1,2, ---r;j5 = 1, 2, --- s) of items
in classes A; and B; are multinomially distributed with index N and parameters
8;; . The probability of being classified as A;is D _jm1 05 = 0:. ,say. 0.; = D ey 0y
is similarly the probability of being classified as B; . In the usual language, the
description just given refers to a contingency table with neither margin (only the
total, N) fixed. We shall have something to say about contingency tables with one
or both margins fixed below.

It is often convenient to parameterize the contingency table other than through
the 8;; . For example, the probabilities of the classes A;(¢ = 1,2, -- - r), 6;. , and
the conditional probabilities of the classes B;, given the A;, 6,;/6;., may be
used instead. Inferences about these cannot be made directly until their prior
distribution has been determined. To this end we prove the following

TuaEOREM 2. If the prior distribution of 6,;(¢ = 1,2, ---r:j = 1,2, ---8)
is proportional to []s; 6% , then the prior distribution of 8;. and ¢:; = 0,;/0.. is
proportional to

(5.1) o T &7
T ]

Consider the change from parameters 6;;, for all ¢ and j except ¢ = r,j = s,
to 6:.(¢ < r) and ¢;;(j < s). Certain values have to be excluded because of the
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constraints that exist amongst the parameters; namely Zij 0;; = Z,- 0; =
D idi; = 1. We have

0:; = ¢:;0:. 7 < T,j <s,
(5'2) orj = ¢rj(1 - ; 0i-) ] < S,
0, = (1 — ;‘ﬁii)oi- 1< 7.

i<s

The Jacobian of the transformation from 6;; to the new parameters is easily
calculated to be

(5.3) II 67
=1

Consequently the joint density of ¢:; and 6;. is proportional to the product of
I1:.;6:; and (5.3): that is to

;1=]1: 9! (B:pi;) ™" LII 007 = JT 67 T it

as required.

The theorem establishes that the prior distribution on the rs classes is con-
gistent with the same prior distribution on the reduced number r of classes. In
particular the argument used at the end of the previous section is justified, and
generally classes may be amalgamated and the approximation of Theorem 1
applied to the reduced number of parameters. Even more can be said because of
properties of the likelihood function.

The multinomial likelihood for the contingency table is proportional to

nij ni. ngj
” b:i’ = ” i’ | I ®ii’,
¥ 7 v ]

where n;. = D ;ni;, a product of a function of the ;. and a function of the ¢;; .
The theorem proved that the prior similarly factors. The same is therefore true
of the posterior distribution and inferences concerning ;. can be made inde-
pendently of those concerning ¢;; . Inferences about the marginal probabilities
9;. follow as for the multinomial on » classes. Inferences for ¢;;(j = 1,2, - - s)
for any <, similarly follow using a multinomial on s classes since the prior dis-
tribution J]; éi; is of the usual form. There is a symmetrical result in terms of
6.;and 6,,/6.; using the other margin based on the B-classification.

Another consequence of these results is that inferences about the conditional
probabilities, ¢:;, can be made irrespective of the distribution of the n;. . The
reason for this is that the only part of the likelihood used in the inference is the
conditional probability of n;; given n,. : the distribution of the n,. is not involved.
Contingency tables often arise with the n,. fixed, rather than random variables,
as when the number of items in each class A4 is selected deterministically and then
classified according to the B-classification. The table is often said to have one
margin fixed. Contingency tables with one margin fixed may be analyzed in the
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same way as tables with only N fixed; at least as far as the ¢,; are concerned, in-
ferences about the 6;. are not possible in that case.

Let us apply the results to the 2 X 2 table (r = s = 2). A convenient parame-
terization is through 6;. = 6y + 652, the probability of the class 4; , and ¢y and
¢ , the probabilities of the classification B; given A, and A, respectively. Com-
bining the results of the two theorems we see that the posterior distributions
are approximately as follows:

(a) In {6:./6,.} is normal with mean In {n,./n,.} and variance ni. + nz.,
(b) In {¢u/d1} is normal with mean In {ny/np} and variance ni; + nis ,
(¢) In {¢u/ds2) is normal with mean In {ns/ns} and variance ny + nas ,

and these three distributions are independent. All three results follow because
in each case we are dealing with a binomial situation and the three likelihoods
and their corresponding priors factorize. Symmetrical results are available with
A and B interchanged. Inference (a) is not available if the margin corresponding
to the A-classification is fixed.

Usually a more interesting parameter is one describing the relationship between
the two classifications. Indeed, much of the literature on 2 X 2 tables is only
concerned with this aspect and even more specifically is devoted to examining
whether the two classifications are independent: that is, 8;; = 0..0.; . Two tests
available are Fisher’s exact test and the usual x’-approximation. The latter has
a Bayesian justification: no similar rationalization seems to exist for Fisher’s
method though progress might be possible on the lines suggested by Bahadur
and described below. Measurement of the association between the classifications
can be carried out in a number of ways: we seek for one in terms of log-odds. If
the classifications are independent ¢ = p(Bi| A1) = 6u/(6u + 612) =
051/ (891 + 622) = p(B1| Az2) = ¢12 and this may be written either as

011/012 = 02/0 OF Su/be = du/dn,

or in words, the odds for the B-classification are the same within A4; and A, .
Hence a possible parameter to consider is the log-odds

¢ = ln011 —_ ln021 —_ 1[1012‘[“1[1022,
=In¢n — Ingyy — In o + Inps .

By the main theorem, or by a combination of (b) and (¢) above, this parameter
is approximately normally distributed with mean

(5.4)

(5.5) Inny — Inny — Inn + Inng

and variance

(5.6) n + nat + ns + na

The null hypothesis of independence is ¢ = 0 and may be tested by referring

(ln Ny — Inny — In nyy + In ’I'L22)2
=1 =1 =1 =1
Ny + N + s 4 N

(5.7)
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to x* on one degree of freedom. The approximation can probably be improved by
subtracting 3 from each of the n;; in the numerator before taking logarithms.
This result is available for tables with one or no margins fixed. If ¢ is used as a
measure of association, Bayesian confidence intervals for it may easily be ob-
tained using (5.5) and (5.6). The natural parameters to use with ¢ are 6;. and
6.1, the marginal probabilities.

It will be helpful in passing to tables larger than 2 X 2 to note certain similari-
ties between the analysis and an analysis of variance. If the table (with no
margins fixed) is analyzed in terms of 6;., 6.; and ¢, the first two correspond to
main effects of the 4 - and B-classifications separately. The last corresponds to an
interaction between the two classifications: indeed, the form of (5.4) is exactly
that of an interaction based on the logarithms of the probabilities. However, if
¢ is thought of as an interaction a corresponding main effect would be

(5.8) In 011 —In 021 + In 012 —In 022 y

which is usually of no interest. What is of interest, and what has been used, is
((a) above)

(5.9) In {6:./6:} = In (6 + 612) — In (81 + 6an).

Even had (5.8) been used, it should be noted that it is not independent of ¢
since the In 6;; do not have equal variances. Whilst therefore analysis of variance
ideas are conceptually useful in the study of contingency tables the breakdown
of the total variation is into parts that are of separate interest and are not neces-
sarily or typically independent: neither do the individual contributions have an
additive property that is often demanded of analyses of variance or of x*. The
interdependence of the posterior distributions of ;. , 6.; and ¢ is as follows. 6,. is
independent of ¢ ((a)—(¢) above) as is 0.; . But 6;. is not independent of 6.,
nor is ¢ independent of the pair (6. , 6.;). No parameterization that is symmetri-
cal in the two classifications and gives independent distributions seems possible.

The 2 X 2 contingency table occasionally arises with both margins, n;. and
n.; , fixed. The classic example is the lady tasting tea. The above ideas do not
seem to lead to a Bayesian solution partly because of the difficulty mentioned
at the end of the last paragraph. Bahadur, in a private communication, has sug-
gested a parameterization of the conditional distribution, given the two margins,
that does lead to a Bayesian analysis. If the two classifications are independent
it is easy to calculate this distribution for ny : it is hypergeometric. Denote it by
p(n1u). Then the suggestion is to use

(5.10) p(nu|0) = eomp(nu)/; ¢"p(n)

for the distribution when the classifications are not independent. The parameter
6 measures the amount of association between the two classifications: 6 = 0
corresponding to independence. The likelihood is sufficiently simple for Bayesian
analysis to be possible but its value is limited by the difficulty in interpretation
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of 9. But this is perhaps a criticism of the design of the experiment because in
any case it is difficult to see how from any analysis one could infer what the chance
was of the lady classifying correctly any future cup of tea presented to her. The
distributions (5.10) have been used by Elfving in a Neyman-Pearson study of

the problem.
The extension of the analysis of the 2 X 2 table to the r X 2 table for general
7 is straightforward. Inferences about 6.; or about the 6;.(¢ = 1,2, --- r) can be

made in the ways described above for the binomial and multinomial respectively.
The null hypothesis of no association between the two classifications is that
6;/0;. = ¢:; does not depend on <. In terms of log-odds this is the same as saying

(5.11) In 6y — In 6z

does not depend on %, or that all the log-odds in (5.11) are equal. Now these log-
odds are independent and hence their posterior density has logarithm propor-
tional to

(5.12) S{(In 6y — In ) — (Inng — Inng)}(ni + ni)

This may be written (compare the passage from (4.1) to (4.2)) in terms of a
weighted sum of squares about the mean and a term involving the mean. Conse-
quently a test that all of (5.11) are equal can be made with the former. If
#; = Inny — Innp and m; = nit + 5 the test criterion is

(513) Z (xz - x.)zmi )
where z. = ¥, maxs/ D, mi, and is referred to x’ on (r — 1) degrees of freedom"
This test may be derived another way, which serves again to establish a rela-

tionship between these ideas and the analysis of variance. The hypothesis (5.11)

is equivalent to saying that there exist constants a;,b; (1 = 1,2, --- r;7 = 1,2)
such that
(514) In 05]' = qa; + bj .

Furthermore, provided only contrasts are considered, the In 6;; are independently
normally distributed with known variances ni; . Consequently the hypothesis
(5.14) is the hypothesis of no interaction in a two-way analysis of variance with
the usual normal distribution theory, the variances being known but unequal.
The roles of parameters and observations are interchanged: it is the parameters
that are the random variables. The hypothesis may be tested by the usual
method of considering the appropriate residual sum of squares when the model
(5.14) is fitted. The details are given in Section 4.4 of [18]. That this method
is available in the Bayesian framework is shown in detail in [15], but that it
should be so is intuitively obvious from the results given in Section 3 of this
paper. It is not difficult to demonstrate that the method of analysis of variance
leads to the same result as (5.13). It may be noted that the approach based on
(5.13) is simpler than Scheffé’s approach when one of the classifications is

dichotomous.
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New difficulties arise when we pass to the general r X s table with both r and s
greater than 2. It is not possible to find log-odds that are both independent and
reflect the hypothesis of interest, namely that the two classifications are inde-
pendent. It is easy to satisfy the latter requirement but without the former the
quadratic form corresponding to (5.12) is no longer a simple sum of squares.
Independence cannot be achieved since the variances of the In 6;; are chance
quantities. For example, consider a test of no association between the classifica-
tions in a 3 X 3 table. Four log-odds whose vanishing would be equivalent to the
independence of the classifications are

Infy — In 6y — In 6y + In 6y,
Infy — In6; — In 0y + In 6y,
In 6y — In 6y — In 63 + In 63,
In 6y — In 63 — In 63 + In 655,

But these are correlated; for example, the covariance between the first and
second is n17 + 7 2. The direct way to proceed from here is to determine the
dispersion matrix, A, of the log-odds in (5.15) and also the sample values of the
same contrasts: namely the expressions that result from replacing 6;; in (5.15) by
ni; . If n is the column vector of the sample values then the relevant quadratic
form is n’A™'n which may be referred to x* on four degrees of freedom. The same
quadratic form would result whatever log-odds were chosen since they must be
linear in the log-odds used in (5.15) and, as mentioned in Section 3, the method
is invariant under linear transformations. The calculation is not too prohibitive
on an electronic computer. If only the test is required, and not confidence limits
for the log-odds, it is not even necessary to invert A, since if the triangular
resolution A = T'T is used, the quadratic form is the sum of squares m'm where
T'm = n.

Nevertheless the computations involve square matrices of size (s — 1) X
(t — 1), and it may be better to proceed directly to the analysis of variance
approach and calculate the criterion as a residual sum of squares. To do this it is
necessary to solve linear equations in either (r — 1) or (s — 1) unknowns, which-
ever is the smaller. The matrices involved are therefore much smaller in size,
but the manipulations on them are more complicated and the computations of
the individual entries less simple. The direct calculations can be considerably
simplified by using methods suggested by Goodman [9]. He shows that the in-
version problems can in part be easily solved and that the final matrices that have
to be inverted in any numerical case are substantially smaller than described
above. For details we refer the reader to Goodman’s paper.

(5.15)

6. Three-way contingency tables. We next consider the problem of r X s X ¢
tables in which individuals are classified in each of three ways: the two already
referred to and also the exclusive and exhaustive classes C1, Cz, - -+ C;. Denote
the numbers and probabilities in the classes by 7. and 8;; respectively. As in
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the two-way table it is convenient to reparameterize the situation and, for ex-
ample, use

(6.1) 6,.. = Zkeijk, b5 = ;0ij1c/9t-~ , Wi = 0ijk/kz Oijn .
Js

Then 6,.. is the probability of 4., ¢.; is the probability of B;, given 4;, and
‘I/ijk lS the probability of Ck given both A.‘ and Bj . Clea,rly Om = 01-..¢>1~,"\I/,‘jk .
Repeated applications of Theorem 2 show that if the prior density is proportional
to J]#6:;: then the posterior distributions of {6;..}, {¢:;.} and {¥;s} will be inde-
pendent. Furthermore, from the form of the likelihood function, the distribution
of {¢s;.} will not depend on the distribution (if any) of #.. , nor will the distribu-
tion of {¥;;} depend on the distribution (if any) of n.;. . These results enable
tables in which one or two of the classifications are nonrandom to be analyzed.
The methods already discussed enable analyses of {6;..} and {¢:;.} to be made:
we therefore consider {¥;;}.

The fact that the methods for two-way tables do extend to larger tables is, we
claim, one of the main advantages of them. The classical methods based on the
x -statistic present complications when an attempt is made to extend them. One
extension to 2 X 2 X 2 tables that is well known is Bartlett’s [1] definition of no
three-factor interaction. The hypothesis is that

Ou10221 _ Oriz0200

6.2 = .
(62) Oambiz1  Baxobhros

This can equivalently be written with ¥ everywhere replacing 6, the suffixes re-
maining unaltered. If logarithms are taken of both sides of (6.2) we are led to
consider

¥ = {In 613 — In 611 — In G101 + In Gon}

(6.3)
— {In 6o — In 6312 — In 613 + In O},

which is a log-odds, and whose vanishing corresponds to no interaction in Bart-
lett’s sense. ¥ is easily interpreted as the difference for classes C; and C; of the
measure of association (5.4) between the A- and B-classifications. By the sym-
metry of (6.3) the letters A, B and C may be permuted in any way in the last
sentence. The approximate posterior distribution of ¥ is normal with mean equal
to the same expression with 7 for 8. , and variance X ;. ik -

The parameter ¥ can be used as a definition of the three-factor interaction in
a2 X 2 X 2 table. This claim is easily substantiated since (6.3) is exactly the
form of such an interaction in the analysis of variance of In 8, . It is therefore
possible, by the methods described, to investigate a 2 X 2 X 2 table using seven
parameters: 6;.., 6.;., 0..; ; the three two-factor interactions corresponding to
the measures of association defined in (5.4); and the three factor interaction ¥.
(The two-factor interactions can clearly be written in terms of ;. , ¢.r and
¢.;x.) This is a complete breakdown analogous to that in the analysis of variance
but it should be noted that the parameters are not in general independent and
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that the additivity present in the standard analysis, or in the analyses by x’,
Lancaster [13] or using information ideas, Kullback et al. [12] does not obtain
here. If one or two of the classifications are non-random then only some of the
parameters can be discussed.

The connection with the analysis of variance is an important one but there are
often other parameters that are of interest besides the main effects and inter-
actions already mentioned. For example, the above treatment is symmetric in the
three classifications and yet it may be that the main purpose of the experiment
that led to the contingency table was the investigation of the dependence of one
classification on the others. If so, an unsymmetric analysis is clearly suggested.
The Bayesian analysis provides, typically in an unmanageable form, the joint
posterior distribution of all the parameters. What the statistician has to do is to
extract from this material the main features that are likely to be of interest to the
experimenter or of value in any decision problem for which the data are relevant.
There must therefore be considerable flexibility in the type of analysis, or con-
densation of the posterior distribution that is used. Slavish attention to analysis
of variance ideas is not likely to lead to many fruitful results. We now proceed to
illustrate other approaches that are possible within the Bayesian log-odds frame-
work, emphasizing that they are only illustrative and particular situations may
demand other parameterizations. The discussion is within the framework of a
2 X 2 X 2 table. Extensions to larger three-way tables are indicated at the end
of the section.

Suppose that it is the dependence of the C-classification on the other two that
is of interest. Then we may think of A and B as providing two factors whose
influence on the dependent variable, represented by the C-classification, we wish
to assess. If A and B are non-random then the only probabilities that are defined
are

(6'4) Vi = p(Cl I Ai, BJ')) (7‘7 .7 =1, 2)

with ¥;; = 1 — ¥,;; . These four probabilities may be compared in various ways
using the log-odds

(6.5) Inp(C1| 4, B;) — Inp(Cs| 4s, Bj)

and one comparison is the expression (6.3). One possibility is to investigate
whether

(6.6) p(C1| B;, A1) = p(C1| B;, 4s) (7 =12).

If this obtains then, given the B-classification, the C- and A-classifications are
independent. Or alternatively, given B;, A; provides no further information
about A. If this holds for both B; and B, then the A-classification provides no
information not already provided by the B-classification. It is useful to refer
to this as a Markov property, in analogy with the corresponding property studied
in stochastic process theory where A, B and C refer to three points in time
conveniently thought of as the past, present and future respectively.
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The equalities (6.6) may be tested using the pair of log-odds
{Inp(Cy| B, 41) — Inp(C: | B;, A1)}

(6.7)
— {lnp(C1| B;, 45) — Inp(C:| B;, 42)}(j = 1, 2)

with means

(6.8) In map — In Nije — In N2z + In N2j2 ,
and variance

(6.9) nl_jll + nl_j12 + n;jll + n;jl2 .

The two expressions in (6.7) for j = 1 and 2 are independent and hence the
Markov property may be tested by referring the sum for j = 1 and 2 of the squares
of the means, (6.8), divided by the variances, (6.9) to x” on 2 degrees of freedom.
(The null value of (6.7) is zero.) If the posterior distribution is sufficiently con-
centrated around zero then one might feel reasonably confident that one could
proceed on the basis that the Markov property obtained. If so, then it is possible
to discuss the simpler conditional probability p(C; | B;), which is otherwise un-
defined. It is not easy to see exactly what is meant by “sufficiently concentrated”
in the sentence above. The degree of departure from the Markov property that is
allowable will depend on the “robustness’ of the analysis that results from using
the property, to departures from it. This is not a subject that can be discussed
here: some considerations of it in a different context are given in Lindley [14].

Consider next the case where it is still the dependence of C on A and B that
is of interest, but where one of the independent classifications, A say, is random
and the other, B, is not. Then, in addition to the conditional probabilities
p(Ci | Ai, B;) already discussed, the probabilities p(Ci | B;) are also meaning-
ful. The analysis of variance approach can be misleading in this context because
the natural main effects and interactions are rather differently defined in con-
tingency table analyses from the usual linear hypothesis situation. (The same
point has already been discussed in the two-way table; compare equations (5.8)
and (5.9).) The main effect of B on C is defined in terms of an average over the
levels of A : in fact

(6.10) p(Cx|B;) = p(Cr| 41, Bj)p(A:1| B;) + p(Ci| Az, B;)p(A:| B;)

which is defined since the A-classification is random. Since p(A4:|B;)
p(A4s | B;) in general this is a weighted average of the probabilities for each
A-classification. The “factors” A and B are therefore ‘“confounded” and the main
effect is difficult to interpret. An example, due to Simpson [19], also quoted by
Edwards [5] will clarify the issue. The data are as follows

Male Female
Untreated Treated Untreated Treated
Alive 4 8 2 12
Dead 3 5 3 15.

(6.11)
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The dependent C-classification is into Alive or Dead. The random independent
A-classification is by sex, and the non-random independent B-classification is by
treatment. Let us ignore sampling variations and suppose the proportions (out
of a total of 52 persons) are the probabilities {6;;}. The 2 X 2 table for Males
shows that the association between treatment and death is —5/6 when measured
by the difference of log-odds (Equation (5.4)). The same value is obtained for
the 2 X 2 table for Females. Consequently, as measured by the difference of log-
odds the treatment has been equally beneficial for the two sexes. This is equiva-
lent to saying that the three-factor interaction (6.3) is zero. But if the two tables
for Males and Females are combined to produce results that do not refer to sex,
we obtain

Untreated Treated
(6.12) Alive 6 20
Dead 6 20

and the association between treatment and death is zero: or the two classifications
are independent. The explanation is that the allocation of treatments and sex
are confounded, as can be seen by considering the 2 X 2 table that results from
ignoring the dependent classification into Alive or Dead. The result is

Male Female
(6.13) Untreated 7 5
Treated 13 27

The females, with their higher death rate have been treated more often than the
males. Consequently it is not easy to understand the separate effects of treat-
ment and sex. In the usual analysis of variance situations it is possible to separate
the effects to some extent but this method is not available with contingency
tables since the association in (6.12) is not a linear function of those in the sepa-
rate sex tablesin (6.11).In (6.12) we useIn 6. ; and not linear forms in In 6;; and
In 6 as in linear hypothesis situations (compare again equations (5.8) and
(5.9)). Had the proportions of each sex undergoing treatment been the same at
40/52 the table corresponding to (6.12) would have had about the same measure
of association as the separate 2 X 2 tables in (6.12). As it is, the only course is
to consider the sexes separately.

The extension to general r X s X t tables is straightforward. The interaction
of all three factors may be defined in terms of the parameters

{In ;55 — In 6,55 — In G5 + In 6,2}
— {In6;j; — In 6,;; — In 6;5¢ + In 6,54

fori < r,j < s,k <t (Compare Equations (5.15).) If these are all zero then
there is no interaction. The vanishing of (6.4) may be tested in the usual way,
though it must be noticed that the log-odds in (6.14) for different values of ¢, j
and k are not independent and the dispersion matrix needs to be found. The

(6.14)
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details of the calculations are substantially reduced by using the ideas of Good-
man [9].

The Markov property that given B, the A- and C-classifications are inde-
pendent may be based on consideration of the log-odds

{Inp(Cx | B, 4:) — Inp(C:| B;, A:)}

— {lnp(Ce | B;, 4;) — Inp(C:| B, 4,)}
for ¢ < r, k < tand all j. For different j these are independent. For each j there
are (r — 1)(¢ — 1) log-odds which are not independent, but the quadratic form

yields a x’-statistic having (» — 1) (¢ — 1) degrees of freedom. The total number
of degrees of freedom is therefore (r — 1)s(¢ — 1).

(6.15)

7. Relationship with previous work. There is little earlier work known to the
author on analysis of contingency tables that usesa prior distribution: exceptions
are Jeffreys [10], in particular Section 5.11; and two papers by Good [6], [7].
Nevertheless much of the material that falls within the classical framework is
relevant and illuminating for a Bayesian. It is well known and almost obvious
that if one is dealing with a normal distribution of unknown mean and known
variance, or generally with any location parameter, where the density is of the
form f(x — @) for the random variable  and the parameter 8, there is a close
parallelism between the classical analyses based on z for fixed 6 and the Bayesian
analysis using the likelihood function of 6 for fixed z. As an example consider
statements like (3.2) and (3.3). The same is broadly true in the multinomial
context and corresponding to our Theorem 1 there is a result that the dis-
tribution of In n; for fixed 6; is approximately normal with mean In N6; and
variance (N6;)™, and they are independent provided linear contrasts in the
In n; are considered. This result has been used by Plackett [16] to provide
classical analyses of contingency tables along lines closely similar to ours. In
particular he has considered the problem of testing an interaction, a problem
which had previously been studied by Roy and Kastenbaum [17]. Goodman [9]
has shown how Plackett’s computations can be simplified in the way outlined at
the end of Section 5. The first mention of the method based on the property
of In n; known to me is Woolf’s use of it for the 2 X 2 X ¢ table [20]. A paper by
Darroch [4] is relevant in deciding which hypotheses might be considered. Good
[8] has provided a general definition of interaction which is equivalent to ours
in the case of a 2" table but does not seem so easy to handle for tables involving
classifications into more than two exclusive and exhaustive classes. Good has re-
solved a conjective made by Darroch. Birch [3] has discussed definitions of inter-
actions similar to those proposed here.

The methods advocated by Lancaster [13] based on the breakdown of x* suffer
from several defects. There is no justification for the use of the statistic, nor for
the breakdown into additive components. The methods have been criticized by
Plackett.

The methods of Kullback [11] and [12] do not appear to have a Bayesian inter-
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pretation despite the use of information-theoretic concepts. Again the breakdown
into additive components is unnatural in many situations.

It is relevant to remark that the measure of association suggested for a 2 X 2
table, Equation (5.4), has been shown to have certain attractive properties by
Edwards [5]. Specifically any measure of association which is a function of the
conditional probabilities p(4; | B;) and equally of the conditional probabilities
p(B; | A:) is necessarily a function of ¢.

8. Future extensions. The prior distribution used throughout this paper is the
special one proportional to [] 6;". But as explained in the first section, the results
are available whenever the prior distribution is equivalent, in the amount of in-
formation it contains, to data obtained from a contingency table of the same type
as that to be analyzed, with the special prior. The two tables, hypothetical and
real, may be combined and the analysis based on the combined table and the
special prior.

It would be highly desirable to extend the analyses to more general priors. For
example, one might have a 2 X 2 table with little prior knowledge of 6. but sub-
stantial prior knowledge of ¢;; (for the notation see the beginning of Section 5).
Such knowledge might be equivalent to few observations on the margin of the
2 X 2 table but many observations on the interior of the table for a selected set
of marginal totals. Another example is a trinomial situation with classes 4., 4.
and 4;. One may feel fairly sure that 6; is around 0.20 whereas knowledge of
6, and 6; (apart from the fact that they add up to 0.80) is slight.

Another type of prior that needs consideration is one that allows correlations
between the In 6, . All the analyses in the present paper hinge on independence
of them. For example in a 2 X 2 table one may have prior knowledge that the
two probabilities p(A4. | B;)(j = 1, 2) are close in value, and it would be desir-
able to incorporate this into the analysis. Indeed, there are situations where this
may be essential: as where B, corresponds to the ‘“at-homes” and B, to the
“not-at-homes” in a social survey. A second example of a correlated prior is
where the multinomial distribution has arisen from a grouped frequency dis-
tribution: that is, a histogram. The smoothness of the underlying density pro-
duces a correlation between neighboring groups.

It is hoped to show in a future paper that such situations can be handled using
log-odds and multivariate normal distributions.
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