A TRUSTWORTHY JACKKNIFE!

By Ruperr G. MILLER, JR.?

The Johns Hopkins University

1. Introduction. A method for the reduction of bias in parametric estimation
was introduced by Quenouille [6], and its properties were studied in some specific
situations by Quenouille [7] and Durbin [4]. Tukey [9] proposed the general use
of this technique in order to (a) reduce the bias and (b) obtain approximate
confidence intervals in problems where standard statistical procedures may not
exist or are difficult to apply. Tukey adopted the name of “jackknife’ for this
procedure, since a boy scout’s jackknife is symbolic of a rough-and-ready in-
strument capable of being utilized in all contingencies and emergencies.

The jackknife procedure depends upon judiciously dividing the data into
groups, obtaining estimates from combinations of these groups, and then averag-
ing the estimates. Let 6 be the unknown parameter, and let (X1, ---, X») be a
sample of N independent, identically distributed observations with cdf Fo,
which depends upon 6. Suppose a reasonably good (but biased) method of
estimating 0 is available. Further suppose the data can be divided into n groups
of size k (N = 'nlc),i.e., (Xl, s ,Xk ;Xk+1 PR ,sz MERR ;X(n—l)k+1 y t ,XM).
Denote by 6_1,% = 1, -+ -, n, the estimate of § obtained by deleting the ith
group and estimating 6 from the other (n — 1)k observations, e.g., by =
6(Xis1, -+, Xin). Let 65 be the estimate of 6 based on all nk observations.
Form the new estimates (called “pseudo-values” by Tukey)

(1) b = ndS — (n — )84, i=1 -, n
The jackknife estimate of 6 is the average of the §;,¢ = 1, -+ , n, i.e.,
(2) b= n‘lilléi = nfn — (n — 1),
where 6,y = (2.1 6i1)/n.
The jackknife § exactly eliminates the 1/n term from any bias. For if
(3) E(®5) = 0 + a/kn + b/(kn)* + -+,
for all n and %, then
E() = n(0 + a/kn 4+ b/(kn)* + ---) — (n — 1)(0 + a/k(n — 1)
+b/(k(n — 1))’ + -++) = 0 = b/kn(n — 1) + -+ .

Quenouille [7] and Durbin [4] have shown that in certain ratio problems this
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reduction in bias is not accompanied by an appreciable increase in variance,
and, in fact, in some instances the variance is reduced as well.

Tukey has gone one step farther and suggested that the jackknife will reduce
most forms of bias. This is true for a 1/n' term, for instance, but not a 1/n?
term. He has also proposed that in most instances 6; , - - - , 6, can be treated as n
approximately independent (identically distributed) observations from which
an approximate ¢-statistic confidence interval or test for 6 can be constructed.
The purpose of this paper is to see how true this latter proposition is. In Section
2 some simple examples are given in which this proposal is false—mildly so and
then wildly so. Sections 3 and 4 are devoted to rigorous justification of this
conjecture in two general situations, thereby giving to the jackknife a degree of
“trustworthiness”, the first scout law.

There are no mathematical guidelines yet on the relative choice of % and n,
but there may be external design reasons for their choice. Throughout this
paper it will be assumed that k¥ = 1 for simplicity. The arguments can be readily
duplicated for & > 1. ‘

Quenouille [7] has pointed out that to compute 6,_; for all possible combina-
tions of (n — 1)k observations and then average the (i) estimates would also
work, and may be advantageous in reducing the variance. For a large scale
experiment the amount of computation involved in this could become prohibitive
and/or detract from the quick, rough-and-ready quality of the technique.
Quenouille [7] has also extended his technique to eliminate terms of the order
1/n’. These modifications will not be considered in this paper.

2. Three counterexamples. The motivation of this section is to produce a
simple estimation problem in which the jackknife technique of constructing
confidence intervals or tests goes awry.

Let Xi1, ---, X, be independently, identically distributed according to Fy
which has a positive density pes on the interval [0, 6], § > 0, and no probability
outside the interval. A common example would be the uniform, i.e., ps(z) = 1/,
0 < z £ 6; = 0, otherwise. In general, the parameter 6 might be allowed to
influence the shape as well as the spectrum of F, .

Suppose because of optimality considerations (e.g., the uniform case) or
because of the intractability of any other method, it is decided to estimate
by max {X;, - ,X.},anotirrational thingtodo. Let Xy £ X < -+ = Xy

be the order statistics corresponding to (Xi, ---, X,). Then, the jackknife
gives
) 0y = X if ¢ # (n),ie., n — 1 times,
= Xy if ¢ = (n), i.e., once,
and
91; = X(n) if ¢ # (n),
(6)

nX(n) - (n - 1)‘Xv(n—l) ife = (n)r
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$0
(7 b=Xw+[(n—1)/0)(Xmwy — Xap)-

The estimated variance is
(8) &= (n— 1)—121: (b: — 6)* = [(n — 1)*/n)(Xwy — Xtn))’,

so the supposed approximate ¢-statistic is

T = (6 —0) _ ( n ) <X(n)+ ((n—=1)/n) (X — Xw-1) —0)
" s n—1 Xwy — X
(9)
~1— 0 — Xw
Xy — X

Define R, = (0 — X))/ (Xy — Xa—p). Even without additional evaluation
it is obvious the upper tail of the distribution of 7', is suffering a departure from
the conjecture since R, = 0.

The asymptotic distribution (» — 4 «) of R, , and hence T, , will be con-
sidered in the following three cases, each giving a quite different result. The
parameter 6 is now assumed to be fixed and positive.

Case A. pyis asymptotically uniform in the sense that pe(8 — x)/ps(8 — cx) — 1
as ¢ — 0 for all ¢ > 1. An example is the uniform distribution. In this case R,
has a limiting distribution:

(10) limy,e P{R, < 7} = r/(1 4 1), rz 0.

Case B. po is asymptotically diminishing in the sense that pe(8 — z)/
po(8 — cx) —» 0 asz — 0 for all ¢ > 1. An example is ps(§ — ) = ¢ 7 for x
near 0. In this case R, drifts off to + « in probability, i.e., lim,., P{R, = r} -0
for all» > 0.

Case C. peis asymptotically exploding in the sense that ps(6 — x)/ps(0 — cx) — ¢
as ¢ — 0 for all ¢ > 1. An example is ps(§ — x) = 1/z(log )* for z near 0. In
this case R, degenerates to zero in probability, i.e., lim,., P{R, < 1} — 1
for all» > 0.

For simplicity of notation in the succeeding derivations 6 will be taken equal
to 1 and dropped as a subscript on the density function.

The joint density function of (Xu_1n, Xw) is

(11) DXty Xy (T, ¥) = n(n — )p(x)p(y)(F(2))"7,

for 0 < 2z £ y < 1, zero otherwise, and the joint density of U = 1 — X,
and V = X(,.) - X(,._l) is

(12) pov(u,v) = n(n — 1)p(l — u — 0)p(1 — w)(F(L — u — v))"",
for0 v =1 — 4,0 £ u £ 1, zero otherwise. The probability P{U/V = r}
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for r > 0 is obtained by integrating (12) over the triangular intersection of the
regions0 v =<1—u,0=u=<1,andu = .
7/ (1+r) u

oz = ([ ("L [

p(1 —u —v) p(1 —u) (F(1 —u — )" dv du.

As n — 4 o the asymptotic behavior of (13) is determined solely by the limit-
ing behavior of the integral over a fixed, but arbitrarily small neighborhood
0=2u=¢0=v = u/r)of the origin.

(13)

€

litpsw P{U/V 2 7} = liMpoo f
0

(14)

u/r

f nin — Dp(l —u — o)p(l —w) (F(1 —u — )" " dvdu

(assuming limits exist ) ; the remainder of the integral converges to zero (Lebesque
dominated convergence theorem). Integration over v in (14) gives

limyse P{U/V = r} .
P ‘ p(1 —u) ) _
(15) =1 — limysw £ <p(1 —WiF ) np(l —u(l+1/r))
(F(1 —u( 4+ 1/r)))" ™ du.
Define I,(¢) to be the integral in (15). The constant ¢ in the definition of Cases
A, B, and C is now identified with (1 4 1/r). Since ¢ can be fixed arbitrarily

small, the following limits pertain.
Case A.

it n £,(8) = Ty [ “np(1 — u(l + 1/))(FQ — u(1 + 1/r)))" du
-1 ¢ r
o) i

- Ty <1‘3F17 (F(1 — u(l + 1/r))"

Case B. For é > 0,

€

lime 1a(€) S 81t [ np(L — (1 +1/r)(F(L — u(l +1/1)))"" du

v0
—0asé—0.
Case C.
limysw In(e) = (14 1/7) limpscw /enp(l —u(l+1/r)-(F(1 —u(1+1/m))"" du
J0

=14 1/r)r/(1 +7) = 1.
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Thus Case A produces a limiting distribution for 7', , which is not normal and
has all its mass below 1, and Cases B and C have extreme degenerate behavior,
i.e., degeneracy at —  and -1, respectively. The ¢-confidence intervals could
not in any sense be regarded as approximate (asymptotically) in Cases B and C,
and would require a rather loose interpretation in Case A.

For the uniform distribution n(6 — X,,) has a limiting negative-exponential
distribution, and for Cases B and C no sequence {a,} of normalizing constants
exists such that a,(0 — X @) has a limiting non-degenerate distribution. The
critical reader might complain that it is therefore senseless to investigate asymp-
totic normality. But this is just the point—to see whether the jackknife can
create asymptotic normality when none exists prior to it. .

It is interesting to note that for the uniform distribution the jackknife cor-
rects the expectation to

A no 'n — 1 0 1

(16) B =7 1+< n )n+1 - ”(1_n(n+1)>’

whereas the constant multiplier (n 4 1)/n corrects the unjackknifed X,
exactly. To get an idea of the performance of the jackknife estimator in the
uniform case, it is informative to compare it risk-wise with the standard optimal
estimators. The estimator 6, = (n + 1)X(,/n, mentioned above, is the UMV
unbiased estimator of 6, and, for mean squared error, §, = (n + 2)Xy/(n + 1)
is the unique admissible estimator of the form ¢X) , ¢ constant (see Karlin
[5]). It is clear 6 is in no sense optimal for squared error loss since it does not
depend solely on the sufficient statistic X . Due to the strict convexity of the
loss funection, the Rao-Blackwellized estimator

b = B{f| X} = (0* +n — 1)Xmy/n*

constitutes a strict improvement. The respective mean squared errors for these
various estimators are:

E(@ — 0)* = 26/[(n + 1)(n + 2)],
E(§ — 0)" = [20(n — n + )]/[0’(n + 1)(n + 2)], n
(17) E(f — 0)" = ["(n" + 0" — n + 1)]/[*(n 4+ 1)(n + 2)], n =2,
E(b — 6)" = 6/In(n + 2)],
E(b. — 0)* = 6*/(n + 1)~

For n = 3, MSE (63) > MSE (§) > MSE (4.) > MSE (4.) > MSE (),
and for n = 2, MSE (§%) > MSE (6) = MSE (6,) > MSE (6,) > MSE (.).
For n large the mean squared errors of 6% and § are roughly twice as large as
those for 6, , 6, , and §, . Thus, although the jackknife estimator improves on
the unadjusted maximum estimator, it does not do as well as the standard
optimal estimators or its conditional expectation.

1%
»
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3. Transformation of means. Transformations of statistics are frequently used
to stabilize variances and/or produce linearity or additivity. Reduction in
non-normality might also give just cause for their use. These transformations
are frequently of the form f(£) where & is a sample mean. Witness, in evidence,
arc sin ! where 7 is a binomial estimate, Z* where Z is Poisson, and log s* where
s is a normal sample variance. The family of powers, (Z + ¢)?, ¢, and log (¢ + &),
often constitues an array from which a suitable choice can be made.

Although 7 is an unbiased estimate of u, f(Z) will usually be a biased estimate
of f(u) because of the non-linearity of the transformation. For example,

(18) E(arc sin p') = arc sin p' + (4n){(p — 2)/lp(1 — p)I'}.
The jackknife procedure could be applied to reduce this bias.

Let X = n—lzn: X;, X=@m-1D"2X;=0X-X)/(n—-1).
1 GAi
The jackknife estimator of 8 = f(u) is
(19) ) = nf(X) — (n = Dn™* 2 J(X).

The theorem below gives simple conditions under which 4§ is asymptotically
normally distributed.

TuroreEM 1. Let {X;} be a sequence of independent, identically distributed
random variables with mean u = 0 and variance 0 < ¢ < + . Let f be a function
defined on the real line which, in a neighborhood of the origin, has a bounded second
derivative. Then, asn — », n*(d — 0) is asymptotically normally distributed with
mean zero and variance o (f (0))%.

Proor. Let I = (—3A, +3A), A > 0, be any neighborhood of zero in which
f” is bounded. As n — 4o, X —, 0s0 P{X ¢ (—A, +A)} — 1. Also,

(20)  P{max {[Xi|/n, -+, [Xa|/n} > A} = 1 — (Fx(nd))" —0,
as n — + o, because, as ¢ — 4 «©,
zlog (1 — (1 — Fixi(x)))
= —2(1 — Fix(%)) + 20((1 — Fix(z))") =0,

since E|X| < 4. From X° = (n/(n — 1))(X — (Xi/n)) it therefore fol-
lows that, as n — oo,

(22) P{X, X', .-+, X" ¢ I simultaneously} — 1.

For a double sequence of events {A,} and {E,} in which P{E,} — 1 it follows
that

so that the imposition or removal of the condition E, has no effect on the limit-

(21)
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ing probabilities. In the probability argument to follow it will be convenient to
assume X, X', .., X" £ I in some statements and to ignore it in others and by
virtue of (22) and (23) the limit probabilities will be unaffected by this.

For X, X', -, X"¢1,

(24) F(X) = (X)) + (X' = X)f (X) + (X" = X)*/2)f" (z),
where §; lies between X* and X. From (19) and (24)

j = () = [0 = DS DT (X = X)
(25) ]
— [0 = D/ (X = X5,

where the middle term is actually zero since X* — X = —(X; — X)/(n — 1).
Expression (25) can thus be rewritten as

(26) n}(d —6) = n*(f(X) — f(0)) — 1/[2(n*)(n — 1)@ (X — X" (50).

For X eI, f(X) = f(0) + Xf'(&), where |&]| < |X|. Asymptotically n'X
has the distribution N (0, ¢*), and f'(&) —, f'(0)(with £ defined arbitrarily
when X £ I'). Hence, by Slutsky’s theorem the first term on the right in (26) is
asymptotically N (0, ¢*(f'(0))?) with or without the condition X, X*, - .- , X" ¢ I.

It remains to be shown that the second term —,0. For X, X', ..., X" ¢ I,
[f"(¢)] < M,s=1,---,n, forsome 0 < M < +oo. Since D7 (X: — X)¥/
(n — 1) —, ¢°, the extra n! in the denominator of the second term makes it
—,0 with or without the condition X, X*, .-, X" ¢ I (where {; is chosen ar-
bitrarily if X, X’ 2 1). ||

For the unjackknifed estimate f(&) all that is required for asymptotic nor-
mality is a continuous first derivative near 0, which is weaker than what is
required here, namely, a bounded second derivative. The world abounds with
functions that have continuous first derivatives at zero but non-existent or un-
bounded second derivatives so presumably, unless the theorem can be strength-
ened, there exists an example in which f(£) is asymptotically normal but the
jackknifed # is not. Unfortunately, this author has been unsuccessful in his
attempts to find a function for which it could be proved the convergence breaks
down.

From a practical point of view the restriction to f with bounded second deriva-
tive near the X mean is a mere bagatelle. It is essentially always satisfied. In
the three specific examples listed the condition is fulfilled provided the degenerate
end-points are omitted, i.e., p = 0, 1 in the binomial, A = 0 in the Poisson, and
o = 01in the x*.

The asymptotic variance of the statistic n(6 — 6) is o*(f'(1) )% In some cases,
such as when stabilizing the variance, this is a known constant. In others where
it is not known, it can be consistently estimated by ¢*(f'(X))* where ¢* is a
consistent estimate of ¢ based directly on (X, -+, X,) such as §*, p(1 — p)
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in the binomial, or X in the Poisson. It can also be consistently estimated from
@) &= (= DTZ =0 = (0 = DX HX) = a DAY,

as suggested by the Tukey conjecture. The only condition required on f is the
weaker one of a continuous first derivative at the mean.

TueorEM 2. Let {X;} be a sequence of independent, identically distributed
random variables with p = 0,0 < ¢ < + . Let f be a function with a continuous
first derivative near 0. Then, asn — 4+, s —, o (f (0))".

Proor. Let I = (—A, +A) be any neighborhood of zero in which f exists
and is continuous. By the argument in Theorem 1 P{X, X, --- , X" eI} — 1

asn — 4o, ) . _ )
For X, X', -+, X" e, {(X') = f(X) + (X' = X)f (4:), with X =, = X°

or X' = Xand (X' — X) = —(Xi — X)/(n— 1), 50
= (0= DX (X - D) = 073 (X - D7)
= (n = DT (X = RIFO) + (X = D) = 7(0)

— 73 (X = D) — £ 0)
(28) ]
= (0 (n — 1) 2 (Xs — XY’
+ = S (X = DEG) - 1)
- -li (X; — X)(f' (&) — £(0)))* + X-product term.

The quantity (f'(O)) Zl (X; — X)*/(n — 1) —, 0 (f (0))? with or without

the condition X, X%, , X"eI. Let g(z) = f'(z) — f(0). If it can be shown
that
(29) (n = 7T (Xe = XY (5) =0,

then the second term in the final expression in (28) —, 0, and the X-product
term does as well by the Cauchy-Schwarz inequality. But for e > 0 there exists
a A, > Osuch that |¢'(z)| < eforz e I. = (—A¢, +A).For X, X%, --- X" e 1.,

(30) (- 17X (X = D) S = D7 (Xe— Do &,

so, since e is arbitrary, the left hand side must —,0. ||

No attempt has been made to investigate whether it would be better to es-
timate o> (f (1) )? by s} or by 6*(f' (X))’ since this paper is concerned with asymp-
totics. For small sample problems it would be worth investigating.

)
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The classical method of eliminating the 1/n bias term from transformations
is to use the modified estimator

(31) b = £(X) — 6"/ (2n)If" (X),

and would constitute an alternative to the jackknife procedure. This author has
not obtained any general results on which of the two estimators, § and 6,
is better in some sense. For each of the commoner transformations a study into
which estimator had a better mean squared error or better distributional prop-
erties would be worthwhile.

4. Preservation of normality. Suppose that normality is already present in the
sample estimates; i.e., suppose (fn—1, - - , On_1, 62) has a multivariate normal
distribution. Is it automatically true that the studentized jackknife statistic
has a ¢-distribution and a limiting normal distribution? The answer is no in
general. The statistic is a i-statistic except for a multiplicative constant, but
this constant can tend to 0 or + « or anything in between.

TaEOREM 3. Let (bn_y, -+, bn_y1, 0%) have a multivariate normal distribution
with means 6, variances ooy, - , ca_y, 0o, respectively, and correlation matrix
1 ppa . Pl Ta

Pn—1
(32)
Pn—1
Pn—1 : ' Pa—1 1 Tn
T . . . Tn 1
Then

Y4 — 0) b
(33) [i (éin_ 2)2/; ~ 1)]% ~ tuy [(n — 1)2(17”_/.",7,,_1) a%,_l] s

where ~ denotes “is distributed as”, tn_1 i a generic t-variable with n — 1 d.f.,
and

V. = nles — 2n(n — 1)700001 + (0 — 1) o101
+ (n — 1)00s(1 — ppy)/m.
Proor. From its definition and straightforward covariance computations
b~ N, V,). .
Under the transformation W, = 85,y — cbn_y,% = 1, - - - , n, where c is chosen
so that Cov (Wz y W,) = O, W.LN N(G(]_ —_ C), 0'%:,—-1(1 —_ Pn——l)) and '[/V1 , Wn
are independent, so

(n — 1>—1z:: (b — 6) = (n — 1)i (O 1 — )

(34)

(35) = (n — 1)2:) (W, — W)’

~ (n— 1)os_1(1 — pa_1)Xn—1,
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where X7 is a generic x*-variable with n — 1 d.f. Furthermore, § and S (6 — 6)°
are independently distributed since Cov (ns — (n — 1)8p_y, 6oy — bp_y) = 0.
Hence,

ACE) 4 3
(2@ B Z) Y(n — 1>]% - <(nxi—_11)>%<(ﬂ—1)2 f{f(l—pn_o)

= <<n — 1y ;;I_/f(l - pn_1>>;'”

For confidence intervals and tests of significance based on nf(d — 6)/
(3 (b — 8)*/(n — 1)) ~ t,, to be approximately correct, the constant
nV,/(n — 1)%¢a_y(1 — ps_y) must be approximately one. This may be the case,
but it is not necessarily so.

In view of the practical context from which the estimators (85—, ---,
fn_1, 82) were supposedly generated, certain natural restrictions can be put on
the var-covariance parameters. These are:

(37) On l 0, PnT 1, TnT 1, and  ppa < 74,
where the monotonicity is strict. Still not every matrix of the form (32) with
restrictions (37) is a correlation matrix as it must also be positive semi-definite.

It can be verified that a necessary and sufficient condition for positive semi-
definiteness is

(38) Ti = poa + n_l(l - Pn—l),

so this condition will also be imposed on the parameters p, and 7, .

The multiplicative constant nV,/(n — 1)’¢a_1(1 — ps—1) can achieve any
value in the interval [0, 4+ » ) by varying the parameters under the restrictions
(37) and (38). By choosing the parameters so that

2
(39) Ti = Pp—1 + n_l (1 — Pn—l) = <__ﬂ_"—> s

(')’L - 1) On—1

(36)

the variance V, has the value zero. Also, rearrangement and collection of terms
gives

nVa
(n — 1)2 6% 1(1 — pa-)

1 Non Non
(40) =ltn {1 — Pr ((n —Dowa 1)((" —Dowa pn—1>

e sl (=m0

80 it is clear that for 1 — p,_; very small and the other parameters chosen suitably

the ratio can be made arbitrarily large.
For the ratio in (40) to be asymptotically equal to 1 the quantity in braces
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must be 0(1/n). This cannot happen if, for instance, ¢,/0p1 — 0, 0 < o < 1,
or the first term is o(1/n) but (1 — 7,)/(1 — pp_1) — B, 3 < 8 £ 1. In these
two instances the ratio would diverge to + «.

Loosely speaking, one should have on/0,—1 =2 1 and (1 — 7,)/(1 — pp1) =2 %
for the multiplicative constant to be =21. This is the behavior exhibited by the
linear case where 6% = (D1 X.)/n:

(41) oa=d/n, =0 —nV~1—@n)", and ppu=1—(n— 1"

Trivially § has a t-distribution for the linear case since §; = X, or it can be
checked by the theorem.

It is interesting to note in closing that depending on the relative sizes of the
parameters, the variance of § may exceed, equal, or be smaller than the variance
of 8% . Thus, jackknifing could reduce or increase the variance depending on
the parameters.

6. Discussion. As Tukey has pointed out, the studentized jackknife has ap-
proximately a ¢-distribution (exactly under normal theory) in the linear case
8% = (2.1 X.)/n since §; = X;. Intuitively, this should extend to estimators
which are locally linear in the observations. so that in a power series expansion
the linear term, which behaves nicely under jackknifing, would play the dominant
role.

To get counterexamples the author chose one of the simplest non-linear
estimators he could think of—the maximum of X,, ---, X, . There would be
many other possible choices, but this was sufficient to produce the three dif-
ferent types of asymptotic behavior one might expect—a non-normal distribu-
tion, degeneracy at a point, and drift to infinity.

Trustworthiness for the jackknife was established in two situations where
the estimators had a linear quality to them. The first was where the estimator
was a twice-differentiable function of the sample mean. A power series argu-
ment, as suggested above, established the limiting normality of the jackknife
statistic. In the second case the estimators had a linear quality through the
behavior of their variances and correlation coefficients. The theorem was stated
for normal variables, but presumably if this were approximate, the result would
also be approximate.

Both of the above situations were ones in which the unjackknifed estimator
had a proper finite or limiting distribution under weaker conditions than re-
quired for the jackknife. The hope would be the reverse, namely, that the jack-
knife would create an approximate ¢ or normal distribution where none existed
for the unjackknifed statistic. The lack of theorems in this area is directly re-
lated to a lack of suitable theorems on exchangeable or interchangeable random
variables. The random variables (6, --- , 6,) are interchangeable, but they do
not sum to a constant [3] nor are they a portion of an infinite sequence of inter-
changeable random variables [1] so the asymptotic normality in these contexts
is of no help.
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The reader’s attention is also directed to two forthcoming papers on the jack-
knife by Brillinger [2] and Robson and Whitlock [8].

6. Acknowledgment. The author would like to thank Professor G. S. Watson
for some useful discussions on the jackknife.
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