VARIATIONS OF THE NON-CENTRAL ¢ AND BETA DISTRIBUTIONS'

By Joun H. Parxk, Jr.

University of Minnesota

1. Introduction. Many functions of independent normally distributed random
variables have become classical; for example, Student’s ¢, the beta, chi-square,
and F distributions [1]. These classical distributions are related to zero mean
normal variables. Some extensions to the case when some of the component
variables are non-central such as the non-central F [12] and non-central beta [3]
have also become widely known. Much of the work on the non-central variates
involves expressing their distribution functions as certain infinite sums, and
tabulating these functions, ete. [4], [8], [13]. In many engineering applications
it is necessary to obtain simple (in terms of possible instrumentation) expressions
which are good approximations to the mode, moments, etc. This paper is directed
in this vein.

Two functions of random variables where all the component functions are
non-central will be considered. With X normal (¢, 1) and Y an independent
non-central chi variable with N degrees of freedom we let

(1.1) U= X/Y
and
(1.2) U, = X/(X*+ V) = U/(1 + UL

If Y were central then Uj would be a certain non-central beta and N U, would
be a non-central ¢ with non-centrality £ and N degrees of freedom. In addition
to statistical applications these variables enjoy certain engineering applications
in the treatment of random vectors in N + 1 dimensional spaces [5], [11]. In
this instance U is a direction cosine of such a vector. Another engineering appli-
cation occurs when we consider a function of time that is non-linear in a param-
eter o and embedded in Gaussian noise. The posterior distribution of statistics
and optimum estimates of such a parameter can often be described or approx-
imated through considerations of variables like U; and U, .

In general, neither the frequency nor the moments of U; and U, can be ex-
pressed except in terms of an integral or infinite series. Therefore, approximations
to the mean, variance and other moments are obtained in terms of elementary
or well tabulated functions. Asympototic expressions for the ‘“tails’’ of the distri-
bution are also obtained. Maximum likelihood estimates of one-sample cases
are of interest in engineering applications, hence approximations to the peak of
the density functions are derived.
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In the case when Y has one degree of freedom, i.e. a non-central normal
variable, the density functions can be reduced to expressions containing only
error functions and elementary functions. Therefore, in the last section graphs
of some of these density functions are given for this special case.

2. A generalization of the non-central {. The frequency function of Y,
g(y), is given in [6], p. 138. It is O for y < 0, and is otherwise given by

(2.1) 9(y) = «(y/)"* expl— (y* + &)/21 w2 2(yx).

(I, is the modified Bessel function of the first kind and nth order.) The random
variable in this section is U the quotient of a non-central normal and a non-
central chi, hence a generalization of the non-central #. This variate has the
following properties:

(i) The asymptotic expression for the probability density, ki(«), as |u| — o is

(2.2) ha(u) ~ K/|ul™
where
(23) K = (2/n)} <%>N/2 exp (—«*/2) ﬁw o" exp [— (0 — £)?/2] do.
(ii) The mode, denoted w1 , is given by
uo = (&/0){1 — 3/[1+ &/(F + &) + /(N +3)}}  forx>10
(2.4) =¢/(N + 1)} for k < 1.0 < |¢]
= (¢/2)T[(N + 2)/2l/TI(N + 3)/2] for , £ < 1.0.
(iii) The expectation is (for N > 1)
B(Uy) = (/0L — (N — 3)/2¢ — (N — 3)(N — 5)/8 — -]
(2.5) forx > 1
= (/2)exp(—) Al + (N — 1)’/2N) + -] fork <1
where
Ay = T[(N — 1)/2]/T(N/2).
(iv) The variance is (for N > 2)
Var(Ur) = 1/€TL + (£/¢)]
— (/AN —4) + (N =3)(E/ + -+ forx>1
(2.6) = exp(—K/2){[(1 + £)/(N — 2) — (£/2)Avexp(—«/2)]
+ (/21 + )/N — (£/2)Ax(N — 1)/N
cexp(—«/2)] + -+ -} for k < 1.
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To obtain the above results we first derive a general expression for ;. The
probability density of the quotient of two independent variables is given by
f oyg(y)f(uy)dy, where f and g are the respective densities of the numerator
and denominator. Using this and (2.1), we obtain for A;(u)

7y MO0 = (/2 exp(— D e (= 72)
cexp[— (uz — £)*/2lL w5 2(k2) da.
It can easily be shown that

[I(z) — (2/2)% = 2 exp(z)(2/2)"";

hence replacing the Bessel function I.(z) by (x/2)% in (2.7) and denoting the
result by hi (u) we observe immediately that

(2.8) |ha(u) — hi(w)| = O/ |u|").

Changing the variable of integration to w, @ = uz, in the expression for A (u)
we obtain

(2.9) B (u) = lc(u)u_(N+1)
where
k(w) = (2/7)27" exp (—«*/2)

. fm o exp (—w’/24") exp [— (0 — £)*/2] dw.

0

(2.10)

Expanding exp(—w’/24’) in a power series about zero and integrating term by
term we obtain

N/2
B = (2/m)} (-;-) exp (—i/2)

- f o exp {—[(0 — £)%/2]} do + 0(1/u%)
= K + 0(1/4%).

Combining (2.8), (2.9), and (2.11) we obtain the desired result, namely (2.2).
When £ = « = 0 the expression for a;(u) reduces to

(2.12) h(u) = (1/m)YTI(N + 1)/2]/T(N/2)}(1 + o)~

which is the well known Student’s distribution.

If we replace u by k& (k > 0) in (2.7) it can be seen that ki (k) > hi(—ké)
for £ ## 0 and hi(u) = hy(—u) if and only if £ = 0. That is, hi(%) is symmetrical
about zero if § = 0 and in fact has its only maximum at 4 = 0. Furthermore,
if &£ % 0 hy(w) has its maximum at a value of » which has the same sign as £.
It can be shown that h;(%) is not symmetrical about any value of » if £ = 0.

It is instructive to obtain approximate values of h; and wuy , the mode, when
« is large. Since the probability density function has a continuous derivative
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the mode occurs at a relative maximum where this derivative vanishes. In the
case £ = 0 it has only one relative maximum and we shall assume it has only one
in general. We observe that in the integral in (2.7) an e- neighborhood about the
origin (e independent of «) can be deleted with a negligible effect on the integral.
With this e fixed we can use the asymptotic expansion for the Bessel function
with good accuracy for « sufficiently large. The resulting expression for h; is

(2.13) hy(u) =2 (1/27)4%5 27 ‘[” LD
cexp [— (2 — «)*/2] exp [— (uz — £)%/2] d.

Since « is large we can approximate the integral resulting in
(2.14)  ha(w) =2(1 + u") TP+ (ug/i0)] T Pexpl— (€ — w)’/2(1 + W),

We now use standard techniques to obtain the mode of the above distribution.
Using a first approximation of £/x we obtain a second approximation given by
(2.4). It can be seen that for « large the correction term is small and this second
approximation is sufficient.

When « is small, we obtain an approximation to 4; by making the upper limit
on the integral in (2.7) a finite value A. By picking A sufficiently large (this
can be done independent of «) the portion neglected is made arbitrarily small.
With A fixed we replace for the Bessel function the first term of its power series.
The error introduced here is arbitrarily small for sufficiently small x. The re-
sultant expression is

~ (2 exp {—/2 — [£/(1 + )]}
h1(u) = (;) 2N/2I‘(N/2)(1 + uz)(NH)

) @® . —1 _ Eu 2
[#ow =il - b

If |¢| is large compared to 1 we can approximate the integral resulting in

h‘(“)g[ 5 ]Nzex“”%[”2—fz/<1+u2>]}.

(2.15)

(2.16) 1+ u?) 2V2T(N /2)(1 + u?)?
Again using standard techniques we obtain the mode given in (2.4) for the
above restrictions on « and &.

Similarly if |£| is small compared to 1 we obtain an approximation to % by
using Newton’s method on the derivative of (2.15) beginning at v = 0. The
resulting expression is that given in (2.4).

The moments of the distribution, especially the expectation and the variance
are of considerable interest. It can easily be shown that only the first N — 1
moments exist. Expression for the moments of ; cannot, in general, be reduced
to elementary functions; therefore, in the cases when |£| is large or small com-
pared to 1, approximations in terms of elementary functions are given.
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Since z and y are independent
(2.17) E(Ur) = El(2/y)"] = E(z")E(y™").

E(z") is well known and E(y™") will be denoted M_,(N, ). (For a discussion
of the moments of g(y), including negative moments, see Reference 10.) There-
fore,

1) BN = oyt g (B) e (4 D),

=0

where [ ] means the “‘greatest integer contained in.” In particular, the first few
moments are

E(Ul) = 01 = EM_l(N, K),
(2.19) , )
E(Ul) = (E + I)M—2(N7 K))

and
E(U1) = £(& + 3)M_s(N, «).

The moments about the mean, 6;, are obtained using the value of 6;, given
above;

B = 0 = (1) 2 (~0m a0

[ )z (ey)]

In particular the first few moments about the mean are
E(U, — 6,) =0,
E[(Uy — 61)"] = Var(Uy) = (£ + 1)M_o(N, k) — £M2(N, «),

(2.20)

(2.21)

and
E[(Uy — 6,)%) = 28M2(N, k) — 3&(8 + 1)M_y(N, k)M _o(N, )
+ £(& + 3)M_5(N, «).
The power series and asymptotic expansion, in «, of M_,(N, «) are (from (10))

Mon(N, 6) = 27 exp (—i/2) 3 PE«EZ;[(—;,.]YF 7\,)"/)2/]2] (&/2)"

and )
n n(N —n—2)
Moy )~ (17000 [ 1 = MV = 2)

nn —2)(N—n—2)(N —n—4)
+ 21(2:)? + :I
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respectively. Using these expressions in (2.19) and (2.21) we obtain the expres-
sions for the expectation and variance given in (2.5) and (2.6).

3. A variation of the beta distribution. Let X and Y and U, be as defined
in Section 1. The non-central Beta distribution is the quotient of a non-central
chi-square and a chi-square variable. Qur variate U, is the square root of such
a variate where the numerator has only one degree of freedom and the de-
nominator has been generalized to be non-central. U, is therefore called a vari-
ation of the non-central beta variables. It will be shown that this variate has
the following properties:

(1) The asymptotic expression for the probability density, ho(u), as |u| — 1is

(3.2) ha(u) ~ (1 — 1) DK ¥+

where K is given in (2.3).
(ii) The mode of h., denoted wuy , is given by

un = [£/(£ + &)L — DA + E/) + (& + &)/ (N +3)7}
for k> 1
(3.3) =¢(E+ N+ 1)} ‘ for k < 1 K |¢]
= ¢T[(N + 2)/2){£T°(N + 2)/2] + 4I°[(N + 3)/2]}
for «, |£] < 1.0.
(iii) The expectation is
E(U) =[5/ + X+ N~ - G/ (E+ &+ N—1)

(3’4) 4 4 3 2 2
+ 0(s") + O(&) + 0()O(J&°) + 0(x)O(E).

(iv) The variance is
Var(Us) = (@ + N - 1)/(£ 4+ +N—=1)
+ 0() + 0(F)0(x*) + O(E)O(<).

To obtain the above results we first derive a general expression for ;. It can
easily be shown that if X and Y are independent with probability densities f
and g respectively that the probability density, hs(u), of U, is zero for |u| = 1
is otherwise given by

(3.5)

(36) ) = 1/(1 =)' [ " yg(fuy/ (1 — ) dy.

Hence in our case it is zero for |u| = 1 and is otherwise

k €Xp (—K2/ 2) ® Wi
2m)}1 + w?)ki Jy

or () [ 2~ o

hz(u) =
(3.7)
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If we replace u by k¢ (k > 0) in the above, it may easily be shown that k(%) >
ho(—k¢) for 0 < k¢ < 1 and hy(u) = he(—wu) for § = 0. That is, he(u) is sym-
metrical about zero if £ = 0 and in fact has its only maximum at 4 = 0. Further-
more, if £ % 0, he(u) has its maximum at a value of » which has the same sign
as ¢£. It may also be shown that A;(u) is not symmetrical about any value for u
for £ == 0.

It can easily be shown that the corresponding density functions of the variables
U, and U, are related by

(3.8) ho(u) = [1/(1 — u*)hafu/(1 — o)} for Ju| < 1.

From this expression and (2.2) we obtain the asymptotic expression for As(u)
when u goes to 1.0 given by (3.2). Similarly with (2.4) we obtain the ex-
pression for the value of u when hy(u) is a maximum given by (3.3).

Approximations to the mean and variance of this distribution are computed
for the case £ and « are both large compared to 1. The mean is given by

(39) B0 = [ 15/ + ) 1ie)gt) dady,

where f and g are the same as in the préyious section. The above integration is
approximated by expanding z/(2” + ¢*)* in a Taylor series with a remainder in
x about £ Using the first four terms and performing the integration over z we
obtain

(310) E(U) = [ Tl + o) — 3aY/2(E + ) + 3Rlg(y) du.

0

The remainder term, R, is easily shown to be bounded by 1/2y".

In order to perform the y-integration we expand 1/(£ + v and y*/ (£ + )
in Taylor series with a remainder about M (the first moment of g(y)). After
performing the integration we obtain

£ (eM; — &) (M, — M3) — 3Mi
E(U,) = -+
() (& + M2} 2(8 + MO)F

+ 3Rot(My — M3) + ER\(M; — 3My My + 2M3) + [ 3Rg(y) dy.
0

(3.11)

The remainder terms R; and R; are dominated in the following way: Ry < 1/3&",
R: < 1/|£. Using the asymptotic expressions for the M,’s and the appropriate
dominating terms for the R’s we obtain (3.4).

To obtain the variance of h, we first compute the second moment about zero
of hy , E(U3) in the same way we obtained the expression for E(U.). The variance
is obtained from these expressions and the relation Var(U,) = E(U3;) — E*(Us),
resulting in

(3.12) Var(Us) = [M3/(£ + M1l + 0() + O(«*/£)].
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Using the asymptotic expression for M; we obtain the desired expression given
in (3.5).

4. Reduced forms for two dimensions. It is instructive to consider the two
variables in the previous sections in the case when N is one. In this case the
density functions can be reduced to error functions and hence easily computed
and plotted. The approximations for the peak of these functions can then be
checked and a general idea of the shape of these families of density functions
obtained.

In this reduced form the cumulative distribution functions of these variables
are closely related to Ruben’s W function [14], Owen’s T [9] and Nicholson’s
V [7]. These are all concerned with the probabilities of certain infinite sectors
under a circular normal distribution: Ruben’s W is the probability content of a
sector bounded by an arbitrary line through the center of the distribution and a
ray drawn from a point Co on the z-axis at an angle 6. The probability under
this area is denoted W (¢o, 6) where ¢, is the distance between C, and the center
of the distribution. Writing the cumulative distribution function of U.,
H»(U), more explicitly as H.(U/, «), then for § < 0,

1 — Ha(u/t ) = W’ + £)}, cos™u — tan™'(—«/£)]
+ W& + &)} cos ™ u + tan™ (—«/£)]
for cos'u = tan™'(—«/¢)
= W[(* + &)}, cos'u + tan™"(—«/£)]
— W& + &) tan™ (—x/E) — cos ]

for cosu < tan'(—k/£)

(4.1)

(for each v in the range (—1, 1), cos u is to be interpreted as the angle, 6, in
the range (0, =) satisfying cos § = U). In particular, 1 — Hy(U/—co, 0) =
2W (co, cos 'u), where ¢y = 0 by definition, (or, equivalently, H,(cos 6/—cy,0)
=1— 2W(e, 0)). Hy enjoys a similar relationship since H; and H, are related
by (for |[u| = 1),

(4.2) Hy(u) = Hi(u/(1 — ')

The relationship between Owen’s 7, Nicholson’s ¥ and Ruben’s W are discussed
in [14] and hence H; and H, can be related to these. The resulting expressions
are more cumbersome than the above and hence are omitted.

Consider the random variable U; of the form U; = X/|Y|, where X and Y
are independent Gaussian random variables with means ¢ and « respectively and
unit variances. The probability density of U, is obtained from (2.7), resulting in

h(u) = (1/2x) fow 2 {exp [—(%) (z — K)Z]
+ exp [—(%) (z + K)Z:I} exp [—(%) (uz — 5)2] dz.

(4.3)
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€=07 17 2 r5

N=1
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u—

F1c. 1. Probability density function of the generalized non-central ¢ with one degree
of freedom.

It can easily be seen that the expectation does not exist. The asymptotic ex-
pression and the mode of hy(u) are obtained by setting N equal to 1 in (2.2),
(2.3) and (2.4).

In order to compute hi(u) for various values of £ and « we reduce (4.3) to an
expression in terms of the error function. That is

hi(u) = {exp[—(3)(& + )]/x(1 + u))}
(4.4) A1+ (x/8)Y[Va(1 + 2 erf Vy)exp(Vi/2)
+ Va(1 + 2 erf Vi)exp(V3/2)]},
where
Vi= (uE+x)/(L+ '), Va= (ut —«)/(1+ ).

The probability density k() can now be computed and typical results are
shown in Figure 1.

Consider now the random variable of the form U, = X/(X* + Y*)! where
as before X and Y are independent Gaussian variables. The probability density
is obtained as in Section 3 and is zero for |u| = 1 and is otherwise given by
ho(u) = 1/27(1 — uz)*/o. z {exp [—(z — x)*/2] + exp [— (2 + ¥)*/2]}

cexp {—(3) [uz/(1 — u")! — &} de.
The asymptotic expression, the mode, the expectation and the variance are
obtained by setting N equal to one in (3.2), (3.3), (3.4) and (3.5).

he(u) can also be expressed in terms of error functions, the expression being

zero for |u| = 1 and otherwise

ho(u) = (1/7)(1 — @*) exp[— (3)(F + «)]
(4.6) A1 4 (7/8)}[Bi(1 + 2 erf By)exp(Bi/2)
+ Bs(1 + 2 erf By)exp(B3/2)]},

(4.5)
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! ! I I
-6 -4 -2 0] 2 4 6 .8

Uy —

F1a. 2. Probability density function of a variation of the non-central g8 with one degree
of freedom.

where
By = tu + (1 — D)k, By = tu — (1 — M)k

The probability density was computed for various values of ¢ and « using (4.6)
and the results are shown in Figure 2.

The above curves can be taken as an indication of the form these density
functions will have for values of N other than 1.
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in this paper to Ruben’s W function.
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