SMALL SAMPLE POWER OF THE BIVARIATE SIGN TESTS OF
BLUMEN AND HODGES!

By JeromE Krotrz

Harvard University

0. Summary. Exact power for normal location alternatives is obtained for the
bivariate sign tests of Blumen [1] and Hodges [5]. A recursive scheme, used in
conjunction with a computer, permits comparison of the two tests for sample
sizes n = 8(1)12. Efficiency values relative to Hotelling’s bivariate 7" test are
also obtained for the test of Hodges. Slight power differences are noted for the
sign tests along with surprisingly high power when compared with the 77

1. Introduction and notation. One of the drawbacks of a nonparametric ap-
proach to statistics is a general lack of multivariate procedures. A preliminary
step towards overcoming this deficiency was made by Hodges in 1955 with a
bivariate sign test. In 1958, Blumen proposed a different bivariate sign test and
thus raised the question as to which is to be preferred.

While both tests are applicable in a wider class of problems, to define the
statistics in a simple way, let (X1, Y1), (X., Y3), -+, (X., ¥Y.) be a sample of
n independent bivariate observations from a continuous distribution which
has a bivariate median (u, »). For testing the hypothesis

H: (u,v) = (0,0) against K: (g, ») = (0,0)

the test of Hodges uses the maximum number of observations with positive
projections on some directed line through the origin. If we define 6; to be the
angle that the directed vector (X, Y;) makes with the X-axis (0 < 6; < 2m),
and define

0f =0, if 0Z6:;<m

. fori=1,2 -, n,
=0, —m if 71260,<2n
then we can define a bivariate sign configuration Z = (Z,, Z,, ---, Z,) in
terms of the ordered values of 8¢y < 02y < -+ < O¢ny . We let
T, 6;
Z; = if 604y = for some j,
0 0; — =

and thus the vector Z tells which of the observations ordered by means of the
angles 6; lie above or below the X-axis. In terms of this notation, the statistic
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of Blumen is given by:

B(z) = [; (22; — 1) cos <7i%——1))]2

+| £ ez - (D)

which is intuitively the center of gravity of a circular configuration as described
in [1], p. 451 and [5], p. 524. For purposes of comparison, the statistic of Hodges
is equivalent to

(1.2) H(Z) = 2 _max (Zj ;ﬁ’”(z>)

2n—1 \7=1

(1.1)

The vector {*(Z) = (d’”(Z), e, ;5,“(2)) is a kind of rotation with comple-
mentation defined by taking ¢ to be the identity, ¢*(Z) = ¢(¢*™(Z)), and
UZ) = (Zy,Zs, -+ Zn, 1 — Zy). Thus, for example {®(11101) = (10100).
The expression (1.2) thus gives the dependence of H upon the bivariate sign .
configuration Z. From (1.1) and (1.2) we see that it is sufficient to compute
P[Z = z] for all 2" configurations z of 0’s and 1’s in order to evaluate the power
of both tests.

2. Power calculations. To compute P[Z = z], we modify further a recursive
scheme of Hodges used in [8], p. 502, [9], p. 625 and described in more detail in
[10]. In the present context, define A; (v) = P[Z = z and all 67 =< u]. Then
P[Z = z] = Az (=) is the desired probability and the recursive scheme is given
by:

(21) AW = (4 1) [ A7) dy(z)

(22) AL () = (n+ 1) / A2 z) dFy(r + 7)

with (z,1) = (21,2, *++ 2., 1) and similarly for (z, 0). Here Fy is the distribu-
tion of the angle 6; , and 4° = 1.

The most interesting alternatives for carrying out the computations are the
bivariate normal densities N((u, v), ¥) which are used to shed light on the
question of preference. Such alternatives permit comparisons with the natural
parametric competitor, the Hotelling bivariate T°. For convenience, since the
power of the T” test depends only on A’ = (u, »)¥ (i, »)’ we assume that
alternatives are N((0, A), I). This is permitted since B, H, and T” are invariant
under linear transformations. Under this assumption, the angular density be-
comes

(2.3) f(8) = [(2m) " exp (—AY/2)] + A sin 68(A cos 6)P(A sin 6), 0 < 0 < 2r

where ¢ is the standard normal density and ® its cumulative. The well known
formula for Mill’s ratio (see for example [3], p. 166) can be used to show f = 0.
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Using (2.1), (2.2), (2.3) with the boundary condition 4° = 1, all probabilities
were calculated stage by stage for n < 12 on a digital computer (I.B.M. 7094 ).
Accuracy was checked by summing the probabilities to one (to six decimals)
and checking the values with 27" for A = 0. Further checks were made on iso-
lated values using symmetry as well as relations such as P[Z = (1,1, ---,1)] =
®"(A) with agreement to seven decimals.

Power was obtained for each of the tests by summing the probabilities over
those z values in the rejection regions determined by large values of (1.1) and
(1.2) respectively.

3. Description of Tables I-V. Table I gives, for comparison, the rejection
regions of both tests for small « levels by listing the most extreme z vectors ac-
cording to decreasing values of H and B respectively. To conserve space, the
vectors of 0’s and 1’s are considered as binary numbers and converted to octal.
The octal base was chosen because of common usage with binary machines.
Because of the rotational symmetry we note that if z & B where R is a non-
randomized rejection region, we also have {*¥(z) ¢ Rfork = 0,1,2, --- ,2n — 1.
Thus in Table I the vector z represents the equivalence class {z, ¢{(z), ---,
{*" P (z)}. For example with n = 8, the-octal number 377 represents the 16
veetors {(11111111), (11111110), (11111100), ---, (01111111)}. Italicized
vectors indicate natural « levels corresponding to distinct values of the statistic.
Thus for example the use of italic for 371 in column 2 of Table I indicates that
this value and those above it form a nonrandomized rejection region (371, 373,
375, 377) for B with corresponding natural significance level « = 4(16/2%).
Sample sizes of at least n = 8 were given to avoid trivial comparisons while
speed and convenience set an upper limit of n = 12.

Tables IT and IIT give power for B and H at natural « levels for n = 8(1)12
and bivariate normal alternatives with A = 0, .50, .75, 1.00, 1.50, 2.00, and 3.00.
The accuracy is believed to be within one unit in the last decimal place.

Table IV compares the two tests at selected significance levels. For n = 11
both tests have the same natural significance level « = 9(18/2") = .09668 with
different nonrandomized rejected regions—as seen in Table I, columns 7 and 8.
Since the probability associated with 3765 becomes less than that of 3737 be-
tween A = .75 and 1.00, the power curves cross here. Difficulties arise for other
values of 7 since the nonrandomized levels do not correspond. Since the type I —
type II error curve is convex, a slight disadvantage must be imposed on one test
when randomization is used to match « levels. Because of its greater number of
nonrandomized significance levels, in order to minimize this disadvantage
randomization was performed on B to match the natural « levels of H. With
this choice, fewer z vectors are involved in the randomization and similar results

hold for n = 10, 12 as for n = 11.

Table V compares H and T” by giving power of the T” test at sample sizes
needed to bracket the power of the Hodges test. As the significance levels are
nonstandard, power of the T” test was obtained by machine using a noncentral
F routine developed by S. P. Ghosh. The routine, checked by Ghosh, was also
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checked by the author for a few values using the formulas of Nicholson ([11], p.
609). Efficiency values as defined by Hodges and Lehmann ([6], p. 329) are given
for rough comparison and are obtained by linear interpolation in the sample
size for T” using the power. For example for nz = 8, a = .06250, A = .50, we
compute

exr2 = 940 = D7 + (1 — \)8]/8

where A = (.1839 — .1721)/(.1839 — .1593).
The efficiency appears to be a decreasing function of n, «, and A.

TABLE I
Rejection Regions n = 8(1)12
n = 9 10 11 12
H B H B H B H B H B

377 877 7 77 1777 17 3y 37y 7y 7
375 876 775 776 1775 1776 3775 8776 7775 778
373 373 773 773 1773 1773 3773 3773 7773 7773
371 31 771 771 1771 1771 3771 3771 7771 7771
367 367 767 767 1767 1767 3767 3767 7767 7767
361 361 761 761 1761 1761 3761 8761 7761 7761
741 741 1757 1765 3757 8765 7757 7765

765 1741 1757 3741 3757 7741 7757

1741 3787 8741 7737 7741

7701 7755

7751

7737

7701

TABLE II
Power of the Hodges sign test P[K =< k] where H = n — 2K
n k A=0 0.50 0.75 1.00 1.50 2.00 3.00
(@)
8 0 .06250 17207 .31100 .48545 .79898 .94907 .99863

1 .37500 .58389 75177 .88047 .98518 .99913  1.00000

9 0 .03516 12421 .25085 .42419 76473 .93912 .99836
1 . 24609 .47201 .66988 .83355 97791 .99863 .99999

10 0 .01953 .08940 .20170 .36966 .73093 .92889 .99808
1 .15625 .37649 .59068 .78363 .96923 .99806 .99999

1 0 .01074 .06417 16173 .32138 .69778 .91841 99779
1 .09668 .29692 .51598 73197 .95917 .99734  1.00000

12 0 .00586 .04596 .12937 . 27882 .66539 90773 .99749
.05859 .23194 .44704 67974 94780 .99648  1.00000

—




TABLE III
Power of the Blumen sign test P[B = b)

n b =000 0.50 0.75 1.00 1.50 2.00 3.00
8 26.27 .06250 17207 .31100 .48545 .79898 .94907 .99863
18.88 .12500 .28429 .45577 .63733 .88860 97579 .99934
13.23 .25000 .44699 .62387 77945 .94578 .98925 .99970
10.17 .37500 .58389 75177 .88047 .98518 .99913 1.00000
9 33.16 .03516 12421 .25085 .42419 76473 .93912 .99836
25.65 .07031 .20712 .37315 .56615 .85979 .96906 .99915
19.52 .14063 .32768 .51703 .70129 .92087 .98384 .99955
15.52 .21094 .42610 .62231 .79283 .96031 .99400 .99985
14.13 .28125 .51523 .70955 .86106 .98350 .99904 .99999
10 40.86 .01953 .08940 .20170 .36966 .73093 .92889 .99808
33.26 .03906 .15043 .30424 .50103 .83055 .96204 .99897
26.78 .07813 .23991 .42700 .62881 .89545 .97826 .99939
22.08 11719 .31197 .51526 .71323 .93565 .98890 .99971
20.94 .13672 .34433 .55003 .74042 .94210 .98941 .99971
19.61 17578 .40885 .62545 .81082 .97568 .99857 1.00000
11 49.37 .01074 .06417 .16173 .32138 .69778 .91841 .99779
41.59 .02148 .10890 .24710 - .44188 .80108 .95473 .99877
34.97 .04297 .17520 .35122 .56176 .86958 97245 .99923
29.73 .06445 .22832 .42558 .63998 .91080 .98367 .99957
28.78 .07520 .25258 .45587 .66657 .91812 .98429 .99957
26.41 .09668 .29900 .51735 .72927 .95106 .99357 .99985
12 58.70 .00586 .04596 .12937 .27882 .66539 .90773 .99749
50.97 .01172 .07862 .20000 .38852 77156 .94716 .99857
44.04 .02344 .12758 .28776 .50012 .84332 .96644 .99907
38.38 .03516 .16680 .35038 .57254 .88564 .97830 .99943
37.58 .04102 .18495 .37656 .59824 .89382 .97905 .99943
34.38 .05273 .21873 .42730 .65482 .92658 .98857 .99973
32.31 .07617 .27885 .50932 .73638 .96372 .99783 1.00000

TABLE IV
Hodges-Blumen power comparisons
n  Statistic 2 < a()).oo 0.50 0.7 1.00 1.50 2.00 3.00

10 H .15625 .37649 . 59068 .78363 .96923 .99806 .99999
B .15625* .37659 .58774 77562 .95889 .99399 .99986
11 H .09668 .29692 .51598 i 73197 .95917 .99734  1.00000
B .09668 .29900 .51735 .72927 .95106 .99357 .99985
12 H .05859 .23194 .44704 i 67974 .94780 .99648 1.00000
B .05859* .23376 .44781 .67521 .93586 .99089 .99980

* Randomized significance level.
t Cross over point.
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TABLE V
Hodges—T* power, efficiency

Test ~ Sumple A =000 45 0.75 1.00 1.50 2.00 3.00
H 8 .06250 17207 31100  .48545  .79898  .94907  .99863
T2 6 .06250 .8693 .9945
T2 7 .06250  .1593 .2855 .4521 .7805 .9509 .9995
T 8 .06250  .1839 .3418 .5400 .8688
ew, 12 .940 .932 .923 .901 .872 .853
H 9 .03516  .12421 .25085  .42419  .76473  .93912  .99836
VA 7 .0352 .8815 .9970
T* 8 .0352 .1162 .2348 .4048 .7644 .9520 .9998
T? 9 .0352 1354 .2832 .4864 .8516
ex, 1’ .935 .926 915 .889 .869 .833
H 10 .01953  .08940  .20170  .36966  .73093  .92889  .99808
T? 7 .0195 .9855
i 8 .0195 .6353 .8905 .9983
T2 9 .0195 .0849 .1932 .3627 .7491 .9530
Vil 10 .0195 .0994 .2342 . .4376
en, 12 .931 .921 .909 .884 .861 .798
H 11 .01074  .06417  .16173 32138 .69778  .91841 .99779
T° 8 .0107 .9919
T 9 .0107 .2577 .6259 .8975 .9920
Vi 10 .0107 .0619 .1587 .3247 .7343 .9538
Vi 11 .0107 .0730 .1936
em,r? .928 917 .905 .878 .852 .803
H 11 .09668  .20692  .51598 73197  .95917  .99734 1.0000
T* 8 .0967 .9265 .9940  1.0000
T* 9 .0967 .2850 .4990 .7196 .9608 .9983  1.0000
T* 10 .0967 .3139 .5523 7782
em, 12 .856 .847 .837 .813 797 —
H 12 .00586  .04596  .12937  .27882  .66539  .90773  .99749
T 9 .0059 .9953
T* 10 .0059 .1039 .2307 .6161 .9032 .9994
T 11 .0059 .0452 .1305 .2011 .7203 .9547
Vi 12 .0059 .0535
ew, 12 .925 .913 .900 .873 .841 795
H 12 .05859  .23194  .44704  .67974  .94780  .99648 1.0000
T° 9 .0586 .9197 19939  1.0000
T2 10 .0586 .2239 .4362 .6745 .9540 .9982  1.0000
Vi 11 .0586 .2488 .4873 .7353
eq, 12 .860 .851 .840 .818 .800 —
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4. Conclusions. For the small samples investigated, it is seen that the two sign
tests have quite similar rejection regions with little difference in power. It ap-
pears roughly that the test of Blumen behaves better locally with the test of
Hodges more powerful in the region of higher power. The conjectures of Blumen
([1], p. 455) concerning relative performance, which stimulated much of this
work, appear not to hold for the small samples covered. The greater number of
nonrandomized significance levels for B must be balanced against the simplified
null distribution of H (see [4] or [7]). The slightly greater power in the region
of interest may suggest preference for H.

The efficiency of H relative to T” seems surprisingly high (94-80% in the
region covered ). The results seem comparable (even slightly better) to those in
the univariate case as given by Dixon [2].

Asymptotic results seem difficult to obtain for the two tests. The heuristic
derivation of Blumen appears to be difficult to make precise (at least for the
author). The establishment of asymptotic equivalence of the variables used in
the argument in [1], p. 455, along with the complicated dependence of the com-
ponents of Z under the alternative contribute to this difficulty. Even if the
numbers 2/x for H ([7], p. 806) and /4 for B ([1], p. 455) could be derived as a
limiting Pitman efficiency relative to 7 (limiting ratio of sample sizes as type I
and IT errors converge to a, 8 where 0 < «, 8 < 1), then the efficiency ratio
(say 8/x") may well be misleading because of the local nature of Pitman effi-
ciency and the small sample behavior of the two tests.
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