AN ASYMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE PROCEDURE
FOR COMPARING SEVERAL EXPERIMENTAL CATEGORIES
WITH A CONTROL

By CuARLES DEWITT RGBERTS
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Summary. The basic problem considered here involves k& experimental cate-
gories. The experimenter must decide none of the k categories is better than the
control or decide a certain category is better. For this problem a fixed sample
size procedure &, is given. With a definite loss function and a cost ¢ > 0 per
observation, é,, and other fixed sample size procedures are compared in a certain
asymptotic sense as ¢ — 0. In particular, & is shown to be an optimal fixed
sample size procedure in this asymptotic sense. By appealing to asymptotic
results the procedure &, is compared with sequentially designed procedures.

1. Introduction and statement of results. Let X be the random variable
resulting from an observation on the jth category, j = 1, 2, ---, k. We denote
the probability density of X 9 by g(x, ;). For simplicity it is supposed here
that the larger the value of 7, the more desirable the category is. We say 6 = 0
whens7i =70 = +++ =7, = rpandsay § = jwhenr, = -+ = 701 =7j51 =
.o+ =7, = rpand 7; = 7o + A where A > 0, as described in the following table
[where go(z) = g(z, 7o) and gi(z) = g(z, 7o + A)]:

?_ X(l) X(2) X(3) . X(k)
0 do do do go
(1.1) 1 o o do Jo
2 go 01 go 9o
k Jo Jo Jo tee 0

The decision D, is preferred if § = 0 or if none of the experimental categories is
better than the control [that is, 7, < 7o for s = 1,2, - --, k] in the model (1.1).
The decision D; is preferred if § = j or if the jth experimental category has the
maximum value of 7 and is better than the standard [that is, 7; = max,a<s<k) (75)
> 7o) in the model (1.1). This formulation is that of Paulson [5] and Roberts [6].

The fixed sample size procedure 8% is described as follows: Let X{” be the ith
observation on X = log [g«(X 2Y/go(X)] forj = 1,2, - -, k. Define W after

n; observations on X @ to be the integer for which

nw n; .
> Z§™ = max {2 Z§’)} .

=1 J =1
[If W is not unique because max;{ 14 Z{?} is assumed for more than one
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1572 CHARLES DEWITT ROBERTS

category, select W by a random choice of those 5 for which the maximum is
attained.] The procedure 8, takes n = n; = ny = - - -n; observations and makes
terminal decision 8 = Wif > 7% Z{™ > m and terminal decision § = 0 otherwise.

Now assign a cost of ¢ > 0 per observation, a loss which equals 0 when a
correct terminal decision is made and 1 when an incorrect decision is made, and
a, prior distribution that assigns probability & > 0 to § = 7 with & + & + & +
-+ 4+ & = 1. For 0 the state of nature [#isoneof 0, 1,2, - - -, k], & a procedure,
and N the total sample size required let L(6, §) equal the expected loss with
procedure 8, ExN equal the expected sample size required, and 7(8,8) = L(6,8) +
¢EsN be the risk of procedure § when 6 is the state of nature. Define r(8), the
expected risk with procedure 6 by r(8) = > %o &7(j, 8). Define p(8), the price
of procedure 8, by p(8) = lim sup..i—7(8)/c log c]. Finally define Ay = inf; E,
exp(1Z{") and B, = inf, E; exp(—¢Z"). Then Ao and B, are both finite and
positive.

The price of a procedure is a type of measure of its desirability where the
more desirable procedures have smaller prices. It is shown in Theorem 1 that
there is a certain minimal price possible for fixed sample size procedures. We
state now

TuEOREM 1. Any fized sample size procedure § (whose sample sizes may depend
on the cost ¢) has p(8) = —k/log{max(4,, Bo)}.

With a certain choice of the sample sizes it is shown in Theorem 2 that &,
has the minimal (fixed sample size) price and hence we would say that 6, is
asymptotically the best fixed sample size procedure possible. More precisely we
have

THEOREM 2. If n; = me = --- = m;, = log ¢/log{max(A,, Bo)} then for each
fiwed m, p(6m) = —Fk/log{max(A,, Bo)}.

It is of interest to compare the procedure 6,, with procedures which have a
sequential design. Suppose I, = —EZ{" and I, = EZ{Y exist (finite) and are
positive. Roberts [6] gives three different sequential procedures which have
prices bounded above by k&/I, + (1 — &)[1/I; + (k — 1)/I]. It will be shown
in Section 3 (Theorem 3) that —log{max(A4,, Bo)} < min(l,, I;). This shows
that 8;, 82, 83 are each strictly better than the optimal fixed sample size pro-
cedure o, .

This problem also has been discussed in the non-sequential case by Paulson
[4] and Karlin and Truax [3]. Paulson [5] considers a sequential procedure of
the problem.

2. Applications. In many practical situations the consequence of making a
wrong decision cannot be evaluated in economic terms. In such situations it
would seem that a reasonable approach is to ask for a solution which has some
desirable properties with regard to the probabilities L(6, §) without explicitly
using ¢, the cost of an observation. A conventional formulation of an optimum
procedure when 7;,n2, ---,n; are fixed is to ask fo a procedure § which
will minimize [max;<;<r L(j, 8)] subject to the restriction that L(0, §) = a.
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Using the techniques of [3] or [4] with n = n; =ny, = -+ = m, it can
be shown that the optimum procedure § is to make the decision § = W if

71 Z{" > m and to make the decision § = 0 if Y 1~ Z{" < m, where m is
determined by the requirement Po[Y 1wy Z{™ > m] = « and Py indicates proba-
bility with state of nature 6. When we are at liberty to choose n, a reasonable
procedure would be to select n as the smallest integer so that L(j, §) < 8 for
J=1,2, ---, kin addition to the requirement L(0, §) =

If m and » are chosen to satisfy

(2.1) kP, {i ASEDS m} <a
i=1
and
(22) Pl{ > zZ¢ = } + (b — 1) P, {Z zZP > m} <8
=1 =1

then L(0,6) < aand L(j,6) < B8forj = 1,2, -+, k. That is, the probability
of selecting Dy when 6 = 0 is at least 1 — « and the probability of selecting D;
when 6 = jisatleast 1 — gforeachys, 7 = 1,2, ---, k.

In the case that (2.1) and (2.2) are satisfied a truncated sequential design
procedure, which preserves error levels @, 8 and may save observations, can be
used. The procedure is as follows: Take one observation on each of X & , X@,

-, X®_ Then the rule is to take one observation on category W. This procedure
of one observation at a time is continued until there are n observations taken on
one category X (say). Then if > 7y Z{” > m stop and make decision 6 = J.
If D247 < m, continue the sampling only with X deleted from further
observation. We obey the following two rules:

(1) Stop sampling and make decision § = jassoonas D 1— Z{” > m for some 7.

(2) Stop sampling and make decision § = 0if > 7 Z¥ < mforj = 1, 2,

o k.

This truncated sequential design will not be an optimum one in the class of all
closed sequential designs with the same « and 8. In fact, it may be much less
efficient than some other closed sequential designs in this class.

3. Proofs.

Lemma 1 (Bounds of the sample mean). Let Y1, Y5, --- be independent and
identically distributed random variables. Define for b fixed

(D) pa=P{(Y1 + Yo+ - + V,)/n = b};

(2) ¢(t) = E exp(tY,) for all real t;

(3) ¥(t) = ¢ "o(t) for all real t;

BT ={t:—o <t < »,p(t) < o}.
If

(a) P(Y1 =) # 1,

(b) T is a non-degenerate interval,

(¢) there exists a positive T in the interior of T such that ¥(v) = inf..r ¥(t) =
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(say), then p, < p" and for every real number e such that 0 < e < ¥(7) for n
sufficiently large p, = (p — €)".

Proor. This is essentially due to Chernoff [2] but is stated and proved in this
form by Bahadur and Rao [1].

Now define A(t) = Eoexp(tZ") and B(t) = Ey exp(—iZ5"). Let R(j, s) =
TLimilgn(X$?) /go( X)) for j = 1,2, --+, k and R(0, no) = 1. Denote n =
(n1, ng, -+, ng) and let & = 8°(n) denote a procedure with Bayes terminal
decision rule based on n; observations on X7,

Lemma 2. Given X1, X572, -+, X3 for j = 1,2, - -, k mutually independent
then a Bayes terminal decision rule makes decision 0 = s if £,R(s, n,) > &R(t, ny)
fors#tandt =0,1,2, - k.

Proor. Write £(n) = &R(j, n;)/{ 2= &R, n)} and L(j, £(n)) = D %o,ies
g&(n) forj = 0,1, ---, k. Since the Bayes terminal decision rule makes decision
7 when L(j, #(n)) < L(%, &(n)) for ¢ £ 5,72 = 0, 1, 2, ---, k, the proof now
follows.

LeMMA 3. The functions A(t) and B(t) are convez.

LemMa 4. For 0 £t = 1, A(f) < » and B(t) < « so that the intervals of
(finite) convergence of A(t) and B(t) are each non-degenerate.

Lemma 5. (1) 0 < 4y < 1,0 < By < 1 and (2) there exists a, 0 < a < 1,
and b, 0 < b < 1, such that Ay = A(a), By = B(b).

Let P; denote probability associated with 6 = .

LEMMA 6.

(1) Py(R(j,mj) Z €") < ¢ A7 if j = s and Pi(R(j, n;) < €") < "By for
j = 1a2: 7k

(2) If 0 < € < min(Ay, By), then for n; sufficiently large

(a) Po(R(j, nj) > &/&) = (Ao — €)™
and
(b) Pi(R(4, n;) < &/&) = (By — €)™.

Proor. By application of Lemma 1 the proof of (1) follows. We have
Po(R(j, n;) > &/8) = P2t ZE > log(b/t;) 2 Po( i Z8 z ;)
for any v > 0 and n; sufficiently large. We can choose v so close to 0 that 4™ =
inf, e "'A(t) = Ao — ¢/2 and then A™ — ¢/2 = A, — ¢. By applying Lemma 1
again (2) (a) follows. Similarly (2) (b) follows.

LemmA 7.

(1) For all ny, ny, -++, m, L(O, om(n)) < D%, Po(R(i, n:) = €") and
Ly, 3:(11)) =< Pi(R(j,ny) = €") + le?=l,i#:i Po(R (4, ni) = ).

(2) If ny, ma, - -+, my are sufficiently large L(0, 8(n)) = L3k L Po(R(4, ni) >
&/&:) and L(j, 8°(n)) Z 3P;(R(j, n;) < &/&).

Proor. The proof of (1) follows by definition. We have L(0, 8(n)) =
ZI'E=1{P0(R(2.7 nz) > EO/&')HI,:=1,3¢@‘ PO(R(S7 ns) < EO/Es)} and so for N, N2,
-+ +, my sufficiently large L(0, 8°(n)) = 3D % Po(R(3, n:) > &/&). Also since
L@, () = [Ii= Pi(R(4, ni) < &/&) then for ny, ny, ---, n, sufficiently
large L(j, 8°(n)) = 3P;(R(j, n;) < %/£;) which completes the proof of Lemma, 7.
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Proor or THEOREM 1. If p(8°) < o, it follows for some M > 0 and ¢ suffi-
ciently small that Po(R(j, n;) > &/&) = —Mc log cand P;(R(j, n;) < &/&) =
—Mclogcforj=1,2, ---, k. By Lemma 6 (2) it follows that n; log (4o — €)
=< log ¢ + log(—M log ¢) and n; log(By — ¢) < log ¢ + log(—M log c). Thus
for each ¢, 0 < ¢ < min(A,, By), n; = log ¢/log(As — €) + o(log ¢) and n; =
log c/log(By — €) + o(log ¢) so that n; = log ¢/max{log A, , log Bo} 4+ o(logc).
Therefore, 7(8°(n)) = [1 + o(1)]kc log ¢/max{log A, , log By} which completes
the proof.

Proor oF THEOREM 2. By Lemmas 6 (1) and 7 (1) r(6m(n)) < &ke “"A5* +
(1 — &)™By + (k — 1)e ™ A§"] + ckni. Now Ag* < AQ*/#% = ¢ =
o(clog c) and By* < By™*'°#% = ¢ = o(clog ¢) so that 7(65(n)) < [1 + o(1)]ke
log c¢/log{max(A,, By)} which completes the proof.

TusoreM 3. If Iy = —EoZ$" and I, = B Z{° exist (finite) then

(1) Ao > € ', By > ¢ " and

(2) —log{max(4,, Bo)} < min(l,, I1).

Proor. Now Ey exp(tZ5") = exp(tZ5") = ¢ “* for each ¢ with strict inequality
holding for ¢ = 0. We have 4, = B, exp(aZ{"’) for 0 < a < 1 by Lemma 5.
Thus 4, > ¢ ™. Similarly By > ¢ * which proves (1). By applying (1) the
proof of (2) follows. ‘
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