AN ASYMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL

BY CHARLES DEWITT ROBERTS

National Institute of Arthritis and Metabolic Diseases

Summary. The basic problem considered here involves k experimental categories. The experimenter must decide none of the k categories is better than the control or decide a certain category is better. For this problem a fixed sample size procedure δ_m^* is given. With a definite loss function and a cost c > 0 per observation, δ_m^* and other fixed sample size procedures are compared in a certain asymptotic sense as $c \to 0$. In particular, δ_m^* is shown to be an optimal fixed sample size procedure in this asymptotic sense. By appealing to asymptotic results the procedure δ_m^* is compared with sequentially designed procedures.

1. Introduction and statement of results. Let $X^{(j)}$ be the random variable resulting from an observation on the jth category, $j=1, 2, \dots, k$. We denote the probability density of $X^{(j)}$ by $g(x, \tau_j)$. For simplicity it is supposed here that the larger the value of τ , the more desirable the category is. We say $\theta=0$ when $\tau_1=\tau_2=\cdots=\tau_k=\tau_0$ and say $\theta=j$ when $\tau_1=\cdots=\tau_{j-1}=\tau_{j+1}=\cdots=\tau_k=\tau_0$ and $\tau_j=\tau_0+\Delta$ where $\Delta>0$, as described in the following table [where $g_0(x)=g(x,\tau_0)$ and $g_1(x)=g(x,\tau_0+\Delta)$]:

The decision D_0 is preferred if $\theta = 0$ or if none of the experimental categories is better than the control [that is, $\tau_s \leq \tau_0$ for $s = 1, 2, \dots, k$] in the model (1.1). The decision D_j is preferred if $\theta = j$ or if the jth experimental category has the maximum value of τ and is better than the standard [that is, $\tau_j = \max_{s(1 \leq s \leq k)}(\tau_s) > \tau_0$] in the model (1.1). This formulation is that of Paulson [5] and Roberts [6].

The fixed sample size procedure δ_m^* is described as follows: Let $X_i^{(j)}$ be the *i*th observation on $X^{(j)} = \log [g_1(X_i^{(j)})/g_0(X_i^{(j)})]$ for $j = 1, 2, \dots, k$. Define W after n_j observations on $X^{(j)}$ to be the integer for which

$$\sum_{i=1}^{n_W} Z_i^{(W)} = \max_j \left\{ \sum_{i=1}^{n_j} Z_i^{(j)} \right\}.$$

[If W is not unique because $\max_{i} \{\sum_{i=1}^{n_i} Z_i^{(i)}\}$ is assumed for more than one

Received 27 January 1964; revised 4 April 1964.

category, select W by a random choice of those j for which the maximum is attained.] The procedure δ_m^* takes $n = n_1 = n_2 = \cdots n_k$ observations and makes terminal decision $\theta = W$ if $\sum_{i=1}^n Z_i^{(W)} > m$ and terminal decision $\theta = 0$ otherwise.

Now assign a cost of c>0 per observation, a loss which equals 0 when a correct terminal decision is made and 1 when an incorrect decision is made, and a prior distribution that assigns probability $\xi_j>0$ to $\theta=j$ with $\xi_0+\xi_1+\xi_2+\cdots+\xi_k=1$. For θ the state of nature $[\theta]$ is one of 0, 1, 2, \cdots , k], δ a procedure, and N the total sample size required let $L(\theta, \delta)$ equal the expected loss with procedure δ , $E_{\theta}N$ equal the expected sample size required, and $r(\theta, \delta) = L(\theta, \delta) + cE_{\theta}N$ be the risk of procedure δ when θ is the state of nature. Define $r(\delta)$, the expected risk with procedure δ by $r(\delta) = \sum_{j=0}^k \xi_j r(j, \delta)$. Define $\rho(\delta)$, the price of procedure δ , by $\rho(\delta) = \limsup_{\epsilon \to 0} [-r(\delta)/c \log \epsilon]$. Finally define $A_0 = \inf_t E_0 \exp(tZ_1^{(1)})$ and $B_0 = \inf_t E_1 \exp(-tZ_1^{(1)})$. Then A_0 and B_0 are both finite and positive.

The price of a procedure is a type of measure of its desirability where the more desirable procedures have smaller prices. It is shown in Theorem 1 that there is a certain minimal price possible for fixed sample size procedures. We state now

THEOREM 1. Any fixed sample size procedure δ (whose sample sizes may depend on the cost c) has $\rho(\delta) \ge -k/\log\{\max(A_0, B_0)\}$.

With a certain choice of the sample sizes it is shown in Theorem 2 that δ_m^* has the minimal (fixed sample size) price and hence we would say that δ_m^* is asymptotically the best fixed sample size procedure possible. More precisely we have

THEOREM 2. If $n_1 = n_2 = \cdots = n_k = \log c/\log\{\max(A_0, B_0)\}$ then for each fixed m, $\rho(\delta_m^*) = -k/\log\{\max(A_0, B_0)\}$.

It is of interest to compare the procedure δ_m^* with procedures which have a sequential design. Suppose $I_0 = -E_0 Z_1^{(1)}$ and $I_1 = E_1 Z_1^{(1)}$ exist (finite) and are positive. Roberts [6] gives three different sequential procedures which have prices bounded above by $k\xi_0/I_1 + (1-\xi_0)[1/I_1 + (k-1)/I_0]$. It will be shown in Section 3 (Theorem 3) that $-\log\{\max(A_0, B_0)\} < \min(I_0, I_1)$. This shows that δ_1 , δ_2 , δ_3 are each strictly better than the optimal fixed sample size procedure δ_m^* .

This problem also has been discussed in the non-sequential case by Paulson [4] and Karlin and Truax [3]. Paulson [5] considers a sequential procedure of the problem.

2. Applications. In many practical situations the consequence of making a wrong decision cannot be evaluated in economic terms. In such situations it would seem that a reasonable approach is to ask for a solution which has some desirable properties with regard to the probabilities $L(\theta, \delta)$ without explicitly using c, the cost of an observation. A conventional formulation of an optimum procedure when n_1, n_2, \dots, n_k are fixed is to ask fo a procedure δ which will minimize $[\max_{1 \le j \le k} L(j, \delta)]$ subject to the restriction that $L(0, \delta) = \alpha$.

Using the techniques of [3] or [4] with $n = n_1 = n_2 = \cdots = n_k$, it can be shown that the optimum procedure δ is to make the decision $\theta = W$ if $\sum_{i=1}^n Z_i^{(W)} > m$ and to make the decision $\theta = 0$ if $\sum_{i=1}^n Z_i^{(W)} \le m$, where m is determined by the requirement $P_0[\sum_{i=1}^n Z_i^{(W)} > m] = \alpha$ and P_θ indicates probability with state of nature θ . When we are at liberty to choose n, a reasonable procedure would be to select n as the smallest integer so that $L(j, \delta) \le \beta$ for $j = 1, 2, \dots, k$ in addition to the requirement $L(0, \delta) = \alpha$.

If m and n are chosen to satisfy

$$(2.1) kP_0\left\{\sum_{i=1}^n Z_i^{(1)} > m\right\} \le \alpha$$

and

(2.2)
$$P_1\left\{\sum_{i=1}^n Z_i^{(1)} \le m\right\} + (k-1)P_0\left\{\sum_{i=1}^n Z_i^{(1)} > m\right\} \le \beta,$$

then $L(0, \delta) \leq \alpha$ and $L(j, \delta) \leq \beta$ for $j = 1, 2, \dots, k$. That is, the probability of selecting D_0 when $\theta = 0$ is at least $1 - \alpha$ and the probability of selecting D_j when $\theta = j$ is at least $1 - \beta$ for each $j, j = 1, 2, \dots, k$.

In the case that (2.1) and (2.2) are satisfied a truncated sequential design procedure, which preserves error levels α , β and may save observations, can be used. The procedure is as follows: Take one observation on each of $X^{(1)}$, $X^{(2)}$, \cdots , $X^{(k)}$. Then the rule is to take one observation on category W. This procedure of one observation at a time is continued until there are n observations taken on one category $X^{(j)}$ (say). Then if $\sum_{i=1}^{n} Z_{i}^{(j)} > m$ stop and make decision $\theta = j$. If $\sum_{i=1}^{n} Z_{i}^{(j)} \leq m$, continue the sampling only with $X^{(j)}$ deleted from further observation. We obey the following two rules:

- (1) Stop sampling and make decision $\theta = j$ as soon as $\sum_{i=1}^{n} Z_i^{(j)} > m$ for some j.
- (2) Stop sampling and make decision $\theta = 0$ if $\sum_{i=1}^{n} Z_i^{(j)} \leq m$ for $j = 1, 2, \dots, k$.

This truncated sequential design will not be an optimum one in the class of all closed sequential designs with the same α and β . In fact, it may be much less efficient than some other closed sequential designs in this class.

3. Proofs.

LEMMA 1 (Bounds of the sample mean). Let Y_1, Y_2, \cdots be independent and identically distributed random variables. Define for b fixed

- (1) $p_n = P\{(Y_1 + Y_2 + \cdots + Y_n)/n \geq b\};$
- (2) $\varphi(t) = E \exp(tY_1)$ for all real t;
- (3) $\psi(t) = e^{-bt}\varphi(t)$ for all real t;
- $\{f \ (4) \ T = \{t: -\infty < t < \infty, \varphi(t) < \infty\}.$
- (a) $P(Y_1 = b) \neq 1$,
- (b) T is a non-degenerate interval,
- (c) there exists a positive τ in the interior of T such that $\psi(\tau) = \inf_{t \in T} \psi(t) = \rho$

(say), then $p_n \leq \rho^n$ and for every real number ϵ such that $0 < \epsilon < \psi(\tau)$ for n sufficiently large $p_n \geq (\rho - \epsilon)^n$.

Proof. This is essentially due to Chernoff [2] but is stated and proved in this form by Bahadur and Rao [1].

Now define $A(t) = E_0 \exp(tZ_1^{(1)})$ and $B(t) = E_1 \exp(-tZ_1^{(1)})$. Let R(j, s) = $\prod_{i=1}^s [g_1(X_i^{(j)})/g_0(X_i^{(j)})]$ for $j=1, 2, \dots, k$ and $R(0, n_0)=1$. Denote $\mathbf{n}=(n_1, n_2, \dots, n_k)$ and let $\delta^0=\delta^0(\mathbf{n})$ denote a procedure with Bayes terminal decision rule based on n_i observations on $X^{(i)}$.

LEMMA 2. Given $X_1^{(j)}$, $X_2^{(j)}$, \cdots , $X_{n_j}^{(j)}$ for $j=1,2,\cdots,k$ mutually independent then a Bayes terminal decision rule makes decision $\theta = s$ if $\xi_s R(s, n_s) > \xi_t R(t, n_t)$ for $s \neq t$ and $t = 0, 1, 2, \dots, k$.

PROOF. Write $\xi_j(\mathbf{n}) = \xi_j R(j, n_j) / \{ \sum_{i=0}^k \xi_i R(i, n_i) \}$ and $L(j, \xi(\mathbf{n})) = \sum_{i=0, i \neq j}^k \xi_i R(i, n_i) \}$ $\xi_i(\mathbf{n})$ for $j=0,1,\cdots,k$. Since the Bayes terminal decision rule makes decision j when $L(j, \xi(\mathbf{n})) < L(i, \xi(\mathbf{n}))$ for $i \neq j, i = 0, 1, 2, \dots, k$, the proof now follows.

LEMMA 3. The functions A(t) and B(t) are convex.

LEMMA 4. For $0 \le t \le 1$, $A(t) < \infty$ and $B(t) < \infty$ so that the intervals of (finite) convergence of A(t) and B(t) are each non-degenerate.

LEMMA 5. (1) $0 < A_0 < 1$, $0 < B_0 < 1$ and (2) there exists a, 0 < a < 1, and b, 0 < b < 1, such that $A_0 = A(a)$, $B_0 = B(b)$.

Let P_i denote probability associated with $\theta = i$.

LEMMA 6.

- (1) $P_s(R(j, n_j) \ge e^m) \le e^{-am} A_0^{n_j}$ if $j \ne s$ and $P_j(R(j, n_j) \le e^m) \le e^{bm} B_0^{n_j}$ for $j = 1, 2, \dots, k$.
 - (2) If $0 < \epsilon < \min(A_0, B_0)$, then for n_i sufficiently large

(a)
$$P_0(R(j, n_i) > \xi_0/\xi_i) \ge (A_0 - \epsilon)^{n_j}$$

and

(b)
$$P_j(R(j, n_j) < \xi_0/\xi_j) \ge (B_0 - \epsilon)^{n_j}$$
.

Proof. By application of Lemma 1 the proof of (1) follows. We have $P_0(R(j, n_j) > \xi_0/\xi_j) = P_0(\sum_{i=1}^{n_j} Z_i^{(j)} > \log(\xi_0/\xi_j)) \ge P_0(\sum_{i=1}^{n_j} Z_i^{(j)} \ge vn_j)$ for any v > 0 and n_i sufficiently large. We can choose v so close to 0 that $A^* =$ $\inf_t e^{-vt} A(t) \ge A_0 - \epsilon/2$ and then $A^* - \epsilon/2 \ge A_0 - \epsilon$. By applying Lemma 1 again (2) (a) follows. Similarly (2) (b) follows.

LEMMA 7.

- (1) For all $n_1, n_2, \dots, n_k, L(0, \underline{\delta_m^*}(\mathbf{n})) \leq \sum_{i=1}^k P_0(R(i, n_i)) \geq e^m$ and $L(j, \delta_{m}^{*}(\mathbf{n})) \leq P_{j}(R(j, n_{j}) \leq e^{m}) + \sum_{i=1, i \neq j}^{k} P_{0}(R(i, n_{i}) \geq e^{m}).$ $(2) \text{ If } n_{1}, n_{2}, \dots, n_{k} \text{ are sufficiently large } L(0, \delta^{0}(\mathbf{n})) \geq \frac{1}{2} \sum_{i=1}^{k} P_{0}(R(i, n_{i}) > e^{m}).$
- ξ_0/ξ_i) and $L(j, \delta^0(\mathbf{n})) \ge \frac{1}{2} P_j(R(j, n_j) < \xi_0/\xi_j)$.

Proof. The proof of (1) follows by definition. We have $L(0, \delta^0(\mathbf{n})) \ge$ $\sum_{i=1}^{k} \{ P_0(R(i, n_i) > \xi_0/\xi_i) \prod_{s=1, s \neq i}^{k} P_0(R(s, n_s) < \xi_0/\xi_s) \} \text{ and so for } n_1, n_2,$ \dots , n_k sufficiently large $L(0, \delta^0(\mathbf{n})) \geq \frac{1}{2} \sum_{i=1}^k P_0(R(i, n_i) > \xi_0/\xi_i)$. Also since $L(j, \delta^0(\mathbf{n})) \geq \prod_{i=1}^k P_j(R(i, n_i) < \xi_0/\xi_i)$ then for n_1, n_2, \dots, n_k sufficiently large $L(j, \delta^0(\mathbf{n})) \geq \frac{1}{2} P_j(R(j, n_j) < \xi_0/\xi_j)$ which completes the proof of Lemma 7.

Proof of Theorem 1. If $\rho(\delta^0) < \infty$, it follows for some M > 0 and c sufficiently small that $P_0(R(j, n_j) > \xi_0/\xi_j) \leq -Mc \log c$ and $P_j(R(j, n_j) < \xi_0/\xi_j) \leq$ $-Mc \log c$ for $j=1, 2, \dots, k$. By Lemma 6 (2) it follows that $n_j \log (A_0 - \epsilon)$ $\leq \log c + \log(-M \log c)$ and $n_i \log(B_0 - \epsilon) \leq \log c + \log(-M \log c)$. Thus for each ϵ , $0 < \epsilon < \min(A_0, B_0)$, $n_i \ge \log c/\log(A_0 - \epsilon) + o(\log c)$ and $n_i \ge 0$ $\log c/\log(B_0 - \epsilon) + o(\log c)$ so that $n_i \ge \log c/\max\{\log A_0, \log B_0\} + o(\log c)$. Therefore, $r(\delta^0(\mathbf{n})) \ge [1 + o(1)]kc \log c / \max\{\log A_0, \log B_0\}$ which completes the proof.

PROOF OF THEOREM 2. By Lemmas 6 (1) and 7 (1) $r(\delta_m^*(n)) \leq \xi_0 k e^{-am} A_0^{n_1} + (1 - \xi_0)[e^{bm}B_0^{n_1} + (k - 1)e^{-am}A_0^{n_1}] + ckn_1$. Now $A_0^{n_1} \leq A_0^{\log c/\log A_0} = c = o(c\log c)$ and $B_0^{n_1} \leq B_0^{\log c/\log B_0} = c = o(c\log c)$ so that $r(\delta_m^*(n)) \leq [1 + o(1)]kc$ $\log c/\log\{\max(A_0, B_0)\}\$ which completes the proof.

THEOREM 3. If $I_0 = -E_0 Z_1^{(1)}$ and $I_1 = E_1 Z_1^{(1)}$ exist (finite) then (1) $A_0 > e^{-I_0}$, $B_0 > e^{-I_1}$ and

(2) $-\log\{\max(A_0, B_0)\} < \min(I_0, I_1)$. PROOF. Now $E_0 \exp(tZ_1^{(1)}) \ge \exp(tZ_1^{(1)}) = e^{-tI_0}$ for each t with strict inequality holding for $t \neq 0$. We have $A_0 = E_0 \exp(aZ_1^{(1)})$ for 0 < a < 1 by Lemma 5. Thus $A_0 > e^{-I_0}$. Similarly $B_0 > e^{-I_1}$ which proves (1). By applying (1) the proof of (2) follows.

REFERENCES

- [1] Bahadur, R. R. and Rao, R. R. (1960). On deviations of the sample mean. Ann. Math. Statist. 31 1015-1027.
- [2] Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23 493-507.
- [3] KARLIN, S. and TRUAX, D. (1960). Slippage problems. Ann. Math. Statist. 31 296-324.
- [4] PAULSON, E. (1952). An optimum solution to the k-sample slippage problem for the normal distribution. Ann. Math. Statist. 23 610-616.
- [5] Paulson, E. (1962). A sequential procedure for comparing several experimental categories with a standard or control. Ann. Math. Statist. 33 438-443.
- [6] ROBERTS, C. D. (1963). An asymptotically optimal sequential design for comparing several experimental categories with a control. Ann. Math. Statist. 34 1486-1493.