ON FISHER’S BOUND FOR ASYMPTOTIC VARIANCES!

By R. R. BamADUR
Unaversity of Chicago

1. Introduction and summary. For each n let ¢, be an estimate (based on n
independent and identically distributed observations) of a real valued parameter
6. Suppose that, for each 9, n(t, — 0) is asymptotically normally distributed
with mean zero and variance v(8). According to R. A. Fisher we then have

(1) v(8) = I'(0),

where I is the information contained in a single observation. It is known how-
ever that, in the absence of regularity conditions on the sequence {¢.}, (1) does
not necessarily hold for each 6. On the other hand, according to LeCam (1952,
- 1953, 1958) the set of points 6 for which (1) fails is always of Lebesgue measure
zero. This note gives a simple proof of the stated result of LeCam, along the fol-
lowing lines. First a sufficient condition for the validity of (1) at a given value of
9, say 6°, is obtained. This is a little weaker than the condition that ¢, be asymp-
totically median-unbiased (i.e. P(¢, < 6|8) — % as n — o) uniformly for ¢ in
some neighborhood of ¢°. It is then shown that the sufficient condition is auto-
matically satisfied at almost all ¢°.

The main propositions are stated in the following paragraphs of this section,
and the proofs are given in Section 2. The proofs depend on the Neyman-Pearson
lemma concerning the optimality of the likelihood ratio test of a simple hypothe-
sis against a simple alternative. This lemma is made available in the present
context by means of the well known considerations that an estimate of 6 can
provide a test of the value of 6, and that the quality of the resulting test is
heavily dependent on the quality of the estimate. A similar application of the
Neyman-Pearson lemma to estimation theory is made in Bahadur (1960). It is
shown there that if instead of asymptotic variances one considers quantities
called asymptotic effective variances, Fisher’s bound becomes valid for all 4.

Now let X = {2} be a sample space of points z, ® a o-field of sets of X, and
{P(-|8):6¢ 0} a set of probability measures P(- | 8) on ®, where 6 is a real
parameter and © is an open interval on the real line. It is assumed that the fol-
lowing conditions (i)—(iv) are satisfied.

(i) There exists a o-finite measure on ®, say u, such that, for each 6, P(- | 9)
admits a probability density with respect to g, f(z | 6) say, i.e.,

@) P(B | 6) =ff(x]0) du forall Be®,0¢ ©.
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1546 R. R. BAHADUR

(ii) For eachz ¢ X,
(3) L(0|=z) = log f(z|06)

is a twice-differentiable function of 6 and the second derivative is continuous in 6.
(iii) With dashes on L denoting partial differentiation with respect to 6,

4) O<E{L(0|2)}*|0) =1(0) < o, EL'(6|z)]6) =0,
and
(5) E(L"(0|z)|6) = —I(0)

for every 6.

(iv) For any given 6° in O, there exists a 6 > 0 and a ®-measurable function
M (z) such that |L" (6 |z)] £ M(x) for all z¢ X and all 6 ¢ (6" — 6, 6° + 4),
and such that E(M(z) | 6°) < «; 8 and M are, of course, allowed to depend on
the given 6°.

The above conditions are a simplification, along the lines of LeCam (1953),
of the conditions formulated by Cramér (1946) for his analysis of the likelihood
equation. It may be added that the present regularity conditions are in a sense
weaker than those of LeCam (1953, 1958), since the method of proof of the latter
papers requires local conditions such as (ii)—(iv) and also the existence and con-
sistency of maximum likelihood estimates based on independent observations
onz.

Let x;, 22, - - - denote a sequence of independent and identically distributed
observations on z. For each n = 1, 2, --- write 2™ = (21, -+ -, %.). Let X'™
denote the sample space of 2™, and ®™ the o-field of sets of X™ which is deter-
mined by the given ® in the usual way. For any measure @ on ®, the correspond-
ing product measure on ®™ will be denoted by Q™. For simplicity, Q™ is ab-
breviated to Q in cases where the domain of Q'™ is plain from the context.

Now let there be given a sequence {t,} such that t, is a ®-measurable func-
tion on X™ into ® (n = 1,2, - - -). It is assumed that for each 6 in © there exists
a positive constant v(6) such that, asn — oo, n(t, — 0) is asymptotically nor-
mally distributed with mean 0 and variance v(6) when 6 obtains. (For a treat-
ment of the case when the present assumption 0 < » < « is weakened to 0 =<
v < o, cf. the last paragraph of Section 3.) The given sequence {¢,} will remain
fixed throughout. We note that

(6) liMyw P(t, < 6] 6) = %

for each 6 in .
ProrosiTioN 1. If 6° is a point in ©, and if

) lim infpae P(t, < 6" + 078 6 + n7%) <

then (1) holds for 6 = ¢°.
It follows from Proposition 1 by symmetry that if

(8) lim infpoe P(t, > 6" — 07t | 6" — n7F) =
then also (1) holds for 6 = ¢".

=
-
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Another consequence of Proposition 1 is that if (6) holds uniformly for ¢ in
some open interval of ® then (1) holds for each 6 in that interval. A somewhat
weaker conclusion concerning the sufficiency of uniform convergence for (1) has
been obtained independently by Rao (1963).

The sequence {t,} is said to be superefficient if »(8) < I"'(9) for all 6 and the
inequality is strict for at least one 6. Examples of superefficient estimates were
discovered by J. L. Hodges, Jr. (cf. LeCam (1953)). General studies bearing on
superefficiency, using methods different from the present ones, were carried out
by LeCam (1953, 1958). An informal discussion along lines similar to those of
LeCam was given independently by Wolfowitz (1953). It is shown in LeCam
(1953) that if {t,} is superefficient then v(8) = I"*(6) for almost all ¢ in ©; the
following more general conclusion is given in LeCam (1958):

ProrositioN 2. The set of all 6 in © for which (1) does not hold is of Lebesgue
measure 2ero.

It was observed by Chernoff (1956) that the asymptotic variance of an esti-
mate is always a lower bound to the asymptotic expected squared error; in view
of Proposition 2, this observation yields:

PROPOSITION 3. lim inf, .., {nE[(t, — 0)*| 6]} = I7'(6) for almost all 6 in ©.

The conclusions stated in this section can be extended to the case when 6 is a p
dimensional parameter; a brief account of these extensions is given in Section 3.
An extension to sampling frameworks more general than the present one of inde-
pendent and identically distributed observations is described in Section 4.

2. Proofs. For any ¢° in © and any n let
(9) 9% = 6 + ot

It is convenient to begin with some computations concerning the likelihood ratio
test of 6° against 6%, based on z'™. For any 0 ¢ O, n, and '™ ¢ X, let

(10) L,(6|2™) = iL(()]xi).

Now choose and fix a particular ¢6°, and let
(11) K, = K (2™, 6") = [La(60 | 2'™) — L.(6° | 2*™) + 311/1,

where I = I1(6°), and 65 is given by (9). It should be noted that K, is a strictly
increasing function of the likelihood ratio statistic for testing 6° against 65 when
the datum is ™. Let

(12) H,(2) = P(K, < z|6).

Let & denote the standard normal distribution function.
LemMMA 1. Asn— o, H,(2) — ®(2) for each 2.
Proor. It follows from (9) by Taylor’s theorem that

(13)  La(6% | &™) = Lu(6" | &™) + 07 La(6" | 2™) + §n'Lu(62 [ 2™),
where ¢° < 0%(z™) < 6% . Let us put w " |Ln(0% | 2”) — Ln(6° | 2™)| = £,.
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It is shown in the following paragraph that ¢, — 0 with probability one, and it is
plain from (5) and (10) that n 'L (6" | ™) — —1I with probability one. Conse-
quently, it follows from (11) and (13) that K, = (nI) L5, (6° L) + .,
where 75, — 0 with probability one. The desired conclusion now follows from (4)
and (10) by the central limit theorem.

To show that &, — 0, forany 8 > 0let A(z,8) = sup {|L" (6 | 2) — L"(6°| 2)|:
6e0®, |6 — 6° < & and let m(8) be the expected value of A. It follows from
conditions (ii) and (iv) of Section 1 that A | 0 as 6§ | O for each z, and that
m | 0asd | 0.Given e > 0, choose a § > 0 such that m(8) = e Then, for each
n> 5" and all 2™, we have |&,| < n ' Doim Az, n ') St DT Az, 6),
by (10) and |65 — 6’| < n~'. Hence lim sup & < m(8) < e with probability
one. Since e is arbitrary, this completes the proof.

Let k be a constant, and for each n let

(14) C, = {a"":K, =k,

where K, is given by (11).

LemMA 2. P(C, | 6") = 1 — ®(k) + o(1) and P(C, | 6%) = 1 — &k — I})
+ o(1) asn— .

Proor. The first part of Lemma 2 is plain from (14) and Lemma 1. To es-
tablish the second part, we note that

1 — P(C.|6) = P(K. < K |65)
= exp [Ln(65 | £™)]edu®™
K<k
= f exp [Ln(ogl, l x(n)) _ L,,(OO l .’v(n))]-dP(")(-] 00)
K<k
- eﬂ/?f exp (I' K.)-dP ™ (-] ') by (11)
Ko<k
= 6_”2f exp (I' 2)-dH, by (12).
—olz<lk

It follows easily from Lemma 1 that

f exp (I 2) dH, f exp (I' 2) d® + o(1)
—L2<lk — 2 <k

(16)
=?®(k — I') + o(1).

The conclusion required follows from (15) and (16).

The referee has pointed out that the preceding proof exemplifies a computation
carried out previously by LeCam (1960), and that the second part of Lemma 2
is deducible from Theorem 2.1 of the latter paper.

Proor or ProposiTioN 1. For each n let

(17) D, = {z'™:t, = 6%).
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Choose and fix a constant & > I %, and let C, be defined by (14). Then P(C, | 6%)
tends to a limit <3, by Lemma 2, while lim sup,.. P(D, | %) > % by (7) and

(17). Hence there exists a sequence of positive integers, say m; < ms < - - - such
that

(18) P(D, | 6%) > P(Cy | 63)

forn =m, (r=1,2, --- ). For each n regard C, and D, as alternative critical

regions for testing 6° against 65 . Since (', is an optimum critical region, (18)
implies

(19) P(D, | 6") > P(C,|6").

Hence (19) holds for n = m, (r = 1,2, --- ). It follows from (9) and (17) that,

with » = v(6°), P(D,|6") =1 —®®*) + o(1) as n — . Consequently, by
letting n — o through the sequence {m,} in (19), it follows from Lemma 2 that

(20) 1—a0w™) =1 — k).

Hence v* < k. Since & > I' is arbitrary, we conclude that (1) holds at 6°.
Now regard 6 as a real variable and, for any n and any 6, let

fu(0) = |P(ta < 0|0) — 1 if 6e0®

21
(21) =0 if 6¢0.

LevMmA 3. For each n, f, is a Borel-measurable function of 6.

Proor. For given 2™, the likelihood function exp L,(6 | ™) is continuous in
6. It follows hence from the theorem of Scheffé (1947) that the set of discon-
tinuities of P(%, < 6| 8) is a countable subset of ®. Hence the set of discon-
tinuities of f, is countable; hence f, is Borel-measurable. The details of this proof
are omitted.

It follows from (6) and (21) that

(22) 0<f(6) 3, limpw fu(6) = 0
for each 6. Let
(23) gn(a) = fn(0 + n_%), 0 é Jn é %.

Lemma 4. There exists a set N of Lebesgue measure zero, and a sequence my <
me < - -+ of positive integers m, , such that lim,., gm,(8) = 0 for each 6 2 N.
Proor.

+eo +oo
[ o ae0) = [ o+ ) aeo)

oo

=/, Ja(6) cexp (-%@ + n‘%o>.dq>(o) = o(1)

asn — o, by (22), (23) and Lebesgue’s dominated convergence theorem. Hence
g» — 0 in ®-measure. Hence there exists a sequence {m,} such that, except for a
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$-null set, g, — 0 as r — oo . This completes the proof since #-measure is equiva-
lent to Lebesgue measure.

It would be interesting to know whether, in Lemma 4, one can always take
m, = r for each 7.

Proor or ProrosiTioN 2. Lemma 4 implies that lim inf,., ¢.(6) = 0 almost
everywhere; it now follows by referring to (21) and (23) that (7) holds for
almost all 6°, and Proposition 2 follows from Proposition 1.

Proor or Prorosition 3. For each n and 6,

nE{(t, — 6)* |6} =n fm P{(t, — 0)> > y |6} dy
(24) L
- f Pin(t, — 6)° > 2|6} dz.

It follows from (24) by Fatou’s lemma that
(25)  lim infow nE{(t, — 6)*| 0} = f 28(—[2/v(0)]}) dz = v(0)
0

for each 6; now Proposition 2 applies.

3. The multiparameter case. Consider the previous framework X = {z},
®, {P(-]6):60e0}, dP(-|6) = f(x|0) du concerning a single observation z,
but suppose now that 6 is a p dimensional parameter, say 6 = (¢1, - -+, ¢p) and
that © is an open subset of p dimensional Euclidean space. The following regu-
larity conditions are assumed to hold. For each z in X, all second-order partial
derivatives of L = log f with respect to the coordinates of 6 exist and are con-
tinuous. With L; = L/d¢: and Li; = 9°L/d¢:0¢; , L:(0 | x) is square integrable
when 6 obtains, and E(L;) = 0, E(LL;) = —E(Ly) = I;;(0) say
(1,7=1,---,p). {I;;(6)} = I(8) is a positive definite matrix. For any given
6" in @, there exists a neighborhood of 6° and a function M (z) with E(M | §°) <
o such that |L;;(6] z)| < M(z) for all  in X, 6 in the neighborhood, and
7;7‘7.: 17 27 Tt D

Foreachn = 1,2, ---let t, = (ugn, - , Ups) be a function on X into O.
Suppose that, for each ¢ in O, there exists a p X p symmetric positive semi-
definite matrix v(0) = {v:;(6)} such that n}(t, — 6) tends in distribution to the
p-variate normal distribution with mean vector zero and covariance matrix
v(0) when 6 obtains. It can then be shown that there exists a subset of © of
Lebesgue measure zero, say N, such that

(26) v(8) — I'*(0) is positive semi-definite

for all 9in ® — N. It follows that » is necessarily positive definite for almost all
6. It also follows that if the components of » and I are continuous functions
of § then (26) holds for all § in ©.

The following is a well known consequence of (26). Suppose it is required to
estimate m(6) where m is a real-valued function of 6. If we take s, = m(t,) as
the estimate of m, and if m is a sufficiently smooth function of 6, then
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(s, — m(0)) is asymptotically normally distributed with zero mean and vari-
ance o (0) >F j—1mi(6) »m;(6)+v:;(6) when 6 obtains, where m; = dm/dp:.
Hence o° = D man;I¥ for every 6 for which (26) holds.

That (26) holds for almost all § can be shown as follows. Suppose first that v

is positive definite for each 6. Consider a fixed ¢’ in ©. Let a = (a1, -+ , ap)
and b = (b, -+, b,) be arbitrary non-zero vectors. For each n, let
(27) 6% = 6"+ n—ga,

and let K, be defined by (11) with I replaced by ala’, where o denotes the
transpose of a. Then Lemma 1 of Section 2 holds. Consequently, with C,, defined
by (14), Lemma 2 also holds, with I again replaced by ald’. Next, for each n let

(28) D, = {z™:t,b" = 65b'},
and assume that
(29) lim SUPnaw P(D, | 65) = 4

Then with k > +(ala’)? in the present definition of C,, (18) holds for in-
ﬁmtely many n; hence (19) holds for infinitely many n. Since P(D, | 6°) =
Pt (t, — 6 )b = ab’ | 6°) by (27) and (28), it follows as in Section 2 that
k= ab (bv(6")b')}; hence

(30) ab’ (bo(6)6)F = (al(6")a') .

We observe next that lim,.. P(t,b" = 6b’ | ) = % for each 6 in ©. It follows
hence (cf. Section 2) that (29) is satisfied for all ¢°in ® — N°, where N’ is a set
of Lebesgue measure zero. (The set N° depends, possibly, on a and b.) Hence
(30) holds for almost all 6° in ©.

Let N be the set of all ° in © such that (30) fails for some pair a and b such
that all co-ordinates of @ and b are rational. Then N is of Lebesgue measure
zero, and for each 6 in ® — N, (30) holds for all non-zero @ and b. The validity
of (30) for all non-zero a and b is equivalent to (26).

Now consider the case When v is not necessamly positive definite for each 6.
For each n, let £ = t, + en” Y, where ¢ # 0 is a constant, and z is normally
distributed independent of the z,, with E(z) = 0 and with E(2'z) = w (say)
positive definite and independent of § and of ¢. Then n (t — 0)is a,symptotlcally
normally d1str1buted with mean zero and covariance v*(6) = v(6) + ¢w when

obtains. Since »* is positive definite for each 6, the precedmg argument (or,
rather, a trivial extension thereof) shows that v(6) + ¢ 2w — I(0) is positive
semi-definite for almost all 4. Since e > 0 is arbitrary, it follows easily that in
fact (26) holds for almost all 6.

4. Another extension. Professor L. LeCam has pointed out to the writer that
the arguments and conclusions of this paper continue to hold in sampling frame-
works much more general than the one treated in the preceding sections. It will
suffice to consider here the case when 6 is a real parameter taking values in an
open interval ©. For each n let X' be a space of points 2\ and ®™ a o-field
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of sets of X For each n and each 6 in ® let P (- | §) be a probability measure
on ®&™. Suppose that the following conditions are satisfied.

(a) For each n, there exists a o-finite measure 4™ on @™ such that, for each
in O, P (- | §) is absolutely continuous with respect to u'™, say dP'™ (- | 6) =
exp(Ln (8] ™)) du'™.

(b) For each 6° in © there exists a positive constant 7(6°) such that with
0% = 6° + n* and K, defined by (11) (with the present definition of L,), K,
tends in distribution to a standard normal variable as n — « when 6° obtains.

(¢) For each m, at least one of the following two conditions is satis-
fied: L,(0 | ™) is continuous in 8 for each ™, or L, is an 9 X & ™-measurable
function of (8, ™) where 91 is the class of Borel measurable sets of ©.

Now, the argument of Section 2 uses the special structure of the framework
described in Section 1 only in the proof of Lemma 1. Since Lemma 1 is valid by
assumption in the more general framework being treated here, it follows that the
arguments of Section 2 hold verbatim for any sequence {t,} of ®™-measurable
functions on X into © such that n%(tn — 0) is asymptotically normally dis-
tributed with mean 0 and variance v(8). (The first condition of assumption (c)
ensures that the proof of Lemma 3 outlined in Section 2 goes through in the
present case; the less drastic second condition of assumption (c¢), if satisfied,
would ensure the measurability of g, by means of Fubini’s theorem instead.)
It is thus seen that the propositions of Section 1 hold in the present case.

It seems that assumptions such as (b) play a central role in various asymptotic
studies, and general sufficient conditions for the validity of such assumptions
have been given by LeCam (1960). As may be seen from the paper just cited, it
is not necessary to suppose that z'” = (2, ---, 2,) where for each 6 the ;
have a common sample space and are independently and identically distributed
therein, the common distribution being independent of n. It may be added that
even if this last is the case under consideration, the regularity conditions (ii)—(iv)
of Section 1 can be replaced by others which also ensure that assumption (b)
is satisfied.
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