ON A MEASURE OF TEST EFFICIENCY PROPOSED BY R. R. BAHADUR!

By Leon J. GLESER

Columbia Unaversity

1. Introduction. In [4] R. R. Bahadur has shown ‘“that the study (as random
variables) of the levels attained when two alternative tests of the same hy-
pothesis are applied to given data affords a method of comparing the perfor-
mances of the tests in large samples.” This method of comparison produces as an
end result a measure of asymptotic relative performance which in this paper is
called the ‘“Bahadur efficiency.”

Both Bahadur [4] and this author [9] have pointed out that the Bahadur
efficiency is in general only an approximate measure of asymptotic relative per-
formance. In Section 2 we introduce the Bahadur efficiency by giving sufficient
conditions for the measure to be exact. These conditions are generalizations of
the conditions given by Bahadur ([4], p. 282).

In Section 3 we show that the conditions required to compute the Bahadur
efficiency are much less restrictive than the discussion in [4] might indicate. A
very general set of sufficient conditionsis given, and the heuristic justification
given in [4] by Bahadur for his method is sketched to show the modifications in
argument required by this generalization.

In Section 4 a set of sufficient conditions easily applied in practice (but more
restrictive than the conditions of Section 3) are given. These conditions are
similar to those defining a “standard sequence” in [4], but are relaxed to allow
general rates of convergence L(n) rather than the more restrictive rate L(n) = n
assumed in [4]. An example of test comparison when L(n) = (log n)? is discussed.
Finally, we illustrate the ‘“approximate” character of Bahadur efficiency by
finding the Bahadur efficiency of two equivalent tests.

2. A special case of test comparison. For the duration of this paper it is
understood that by the general problem of asymptotic test comparison we mean
the following: We are given a set of probability measures {Pg}, 6 ¢ ©, defined
over an arbitrary space S of points s. For @y C @, H is defined to be the hypothesis
that §£Qy . To test H we have two sequences of test statistics {7$"} and {7},
n = 1,2, ---; we wish to compare the performances of the (asymptotically)
optimal tests based on {T$"}, ¢ = 1, 2, as n — o in the hope that some idea of
the relative performance of these tests for any value of n may be gained.

Bearing this general context in mind, consider now a special case of our
problem.
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AssumpTioN 2.1.  For ¢ = 1, 2, there exist continuous cumulative distribution
functions F$” (z) such that for each 6y & Qo ,

(2.1) Po{TP < o} = FP(z), allz.

AssumprioN 2.2. For ¢ = 1, 2, there exist continuous, strictly increasing
functions L (z) mapping (0, «) into (0, «), L(z) — « as ¢ — o, and
there exist functions 2:(8), 0 < h;(8) < o, defined on @ — @, such that for
each 0 eQ — Q,

(2.2) plima, M /LP(n) = hi(8)
where
(2.3) M = —21log[l — F& (T

Since M$” is a continuous monotone transformation of T, then for any test

of H based on T$ there exists an equivalent (possibly randomized) test of H
based on M, 5 = 1, 2, all n. Thus, comparison of {7}, ¢ = 1, 2, is the same
as comparison of {M$}, 4 = 1, 2.

By Assumption 2.1 and the probability integral transformation,

(2.4) Po{M > x} = exp(—3})

for all ¢, 0 £, and n. On the other hand, a direct consequence of Assumption
2.2 is that plim M$” = « all 4, all & Q2 — Q. It follows that for large n, large
values of M are significant for rejecting H. From (2.2) we see that optimal
rejection regions for H should be of the form:

(2.5) M = chi(0)L® (n), 0<c<l,

when 7 is large. The reason for this last remark is that regions of the form (2.5)
provide for the fastest convergence to 0 of the type-one probability of error
while still allowing the power of the test to converge to 1 at the alternative
0eQ — Q, ¢ = 1, 2. Since the rejection regions (2.5) hold the power near 1 for
n large, the tests based on these regions have asymptotically equivalent per-
formance if the type-one probabilities of error are equal; that is if (from (2.4)):

exp — 3{ch(0)LP (n)} = exp — Hcha(0)L? (n)}
or equivalently,
(2.6) R(0)LP (n) = ha(0)LP (n).

If LO(n)/L® (n) converges to 0 (») as n — =, then it is apparent that
almost any measure of efficiency would indicate that the test based on (TSP is
less (more) efficient than the test based on (TP}, 1f LP(n) /L®(n) converges
tob, 0 < b < «, then from (2.2) we can assume LP) = L®() = L(z)
without any loss of generality. Since a sequence of tests having power converging
to 1 has power converging to 1 for any subsequence, our goal should be to find a

subsequence of the tests based on {7}, say {T?w}, such that

L(n)/L(n") = [m(6)]/[ha(6)] = ¥12(6).
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Such a subsequence {n’(n)} is called an “asymptotically equivalent subsequence
of sa;rnple sizes” for {T"} as compared to the sequence {n} of sample sizes for
(TP}

Since L(z) is continuous and strictly monotone, there exists a function L’(z)
from (0, ») to (0, ») such that L’ (L(x)) = z, all 2. Thus the asymptotlcally
equivalent subsequence of sample sizes n'(n) is: 4

(2.7) n'(n) = L'(¥53(6)L(n)).

(If n'(n) is not an integer, it is understood that n'(n) expresses a randomized
sample size, where randomization is between the greatest integer less than n’(n)
and the least integer greater than n'(n). Since ¥, 5(8) > 0 and L(n) — « as
n — o, such (randomized) subsequences also have power converging to 1.)
From (2.7) and the preceding discussion we conclude that ¥, .(8) is a legitimate
measure of asymptotic relative efficiency for the tests based on { “)} t=1,2,
at the alternatives 0 £ Q@ — Q.

Note that whereas the measure of efficiency defined by Hodges and Lehmann
[10] is found by holding the type-one probabilities of error fixed and equal and
adjusting the type-two probabilities of error, this measure of efficiency holds the
type-two errors fixed and equal (approximately) and adjusts the type-one
erTors.

Assumptions 2.1 and 2.2 are generalizations of the assumptions defining a
“standard sequence in the strict sense” in [4], p. 282. As Bahadur remarks,
determination of such exact efficiencies is in general as difficult as the determi-
nation of the exact efficiencies defined in [5], [10], or [12]. We are thus led to
look for a short-cut, easily computed approximation to the efficiency ¥q,2(9).
As Bahadur shows, such an approximation can be defined and computed even
when Assumptions 2.1 and 2.2 do not hold. This approximation is what we have
called the Bahadur efficiency.

3. The Bahadur efficiency. To apply Bahadur’s method we only require that:
ASSUMPTION 3.1. There exist continuous cumulative distribution funections
FP(x), i = 1, 2, such that for each § ¢ @,

(3.1) limw Po{T < 2} = FO(z), alla.

Assumprion 3.2. There exists a continuous, strictly increasing function L(z)
from (0, « ) to (0, » ), L(x) — « asx — «, and functions 4,(0),0 < h;(§) < o,
defined on @ — @, 7 = 1, 2, such that

(3.2) plim K /L(n) = hy(8), alloeQ — Q,
where
(3.3) K = —21log[l — F(T)).

Norte. As in Section 2, we can restrict attention to the case where K<° and
K converge at the same rate L(n). Also as in Section 2, comparison of {K$"},
i = 1, 2, is equivalent to comparison of {T5"}, ¢ = 1, 2.
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Repeating the argument in Section 2 and estimating Po{K$” = 2z} by its
limit (i.e., by P{x} = 2} = exp(—%z)) as n — =, we can again conclude that
(3.4) e12(0) = [Pa(0)]/[h2(0)], 602 — D,

is an (approximate) measure of asymptotic relative efficiency at 8 ¢ @ — Q for
{KP} and {KP}, and that n'(n) = L'(L(n)ers(8)) is the (approximate)
asymptotically equivalent sample size for test sequence 2 as compared to a
sample size of n for test sequence 1 when n is large.

The error in the approximation comes from the fact that in general

(3.5) Poo{KP = a} # Po{KP = )

for every 6y € 2 . Thus the type-one probabilities of error for the tests based on
K" and K& may be of different orders of magnitude for large n even though

limpy,e Po{ K = 2} = limpe Py (K = 2} = exp(—1iz).

If, however,

(3 .6 ) linln-wc

Py (K = yL(n)}
Po (K =

forall e, all0 < vy < w,all&Q — Q, then by the arguments of Section
2 it should be apparent that ¢; 2(8) is an exact measure of efficiency. Of course,
if Pp,{T < 2} = FP() for all n, all 8 & o , ¢ = 1, 2) then Assumptions 2.1
and 2.2 are satisfied, (3.6) holds trivially, and in fact we have ¢;5(0) = ¥;4(0)
forall6eQ — Q.

Even in the cases where ¢1,2(8) is not exact, it is still possible to find relation-
ships between ¢ » and the characteristics of the tests based on {K{’}, s = 1, 2.
First, as we have noted before, the choice of sample size n'(n) for a given
0eQ — Q makes the power of the (asymptotically) optimal tests based on
K" and K approximately equal at that given 0. If

(3.7) lim,w KS7/L(n) = hi(0) as.

forall 0eQ — @, ¢ = 1, 2, then we can establish an even stronger connection
between ¢, 2 and the sample sizes needed to give equivalent power for the elements
of sequences 1 and 2.

TuEOREM 3.1. For i = 1,2, and any v > 0, let N7 (v, s) be the smallest m such
that K$?(s) > vallm = m (NT = o if no such m exists) and let N7 (v, s) be the
smallest n such that K (s) = v (N: = o if no such n exists). Under the con-
vention that « /o = 1, Condition (3.7) tmplies that

(3.8) lim,e L(N3 )/L(NT) = limy.w L(N3)/L(NT) = ¢15(6) a.s.

al every 0 e Q2 — Q.

Proor. The proof is a trivial extension of the proof given for L(n) = = in
[4], pp. 279-280. Simply replace n by L(n) in (15), and replace N; and N{ by
L(N7) and L(NY) in (16). Q.E.D.
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Note. Bahadur [4] has conjectured that Theorem 3.1 might hold under con-
dition (3.2) provided that we only demanded convergence in probability in
(3.8). However, if @ = {0, 1}, Q, = {0}, S = [0, 1], C is the Cantor set, Py(s)
is the uniform distribution on 8, and P;(s) places mass 1 on C, then let

KP(G) =n , seC
= —2log s, szC,
and
KP(s) =0 , seCNI,
=n , seC—1,
= —2log s, szC,

where I; = [0, %], I, = [0, 1], I, = [0, %], I, = [}, 2], Is = [%, 1] ete. Under Q
the distributions of K and K are x3, while under @ — Q we have that
K®/n — 1 as., plim K/n = 1, but L(N3 (v, s)) = N3(v, s) = « all v, all
s & C, and thus plim,,« L(N3)/L(NT) = plimy.e N3/N7 = © % 1 = ¢14(1).
(I am indebted to Dr. P. Bickel, whose suggestions led to the above example.)
The necessary and sufficient conditions under which Bahadur’s conjecture holds
are somewhat involved and will not be given here.

As a final explanation of the Bahadur efficiency, Bahadur shows that ¢, ; has
a relation to the power functions of the tests based on {73"} and {Tf[”} as
follows. Consider any number y,0 < y < . Define 8,(v | 6) to be Po{ K SIS v}.
Although for 6 & it is not necessarily true that v = —2 log a implies
Bn(v | 0) = a (i.e. the test is of size «) we can still compare the power functions
of tests defined by the rejection regions {K$” > 4} as if they were the power
functions of approximate size exp(—2vy) (Bahadur argues that such tests are
often used in practice).

Taking note of this approximation, let for each n

(3.9) 8u(1,218) = SUpreco,) B (v | 8) — B (v [ 0)].

It is easily seen from the definition of 8, that 0 < 6, =< 1. Let us say that {Tff) }
dominates {Tf,l)} (written 7P > TP) at 0 Q — Qo if:

(3.10) liMpaw 3(1, 2] 6) = 0.

REMARK. In particular, 78 > 7Lt 1 — B8P (v [6) =1 — B (v | 6) for all
n and all y e (0, «).

THEOREM 3.2. [4, Appendix 1].

OIFT? > TP at0eQ — Q, then o12(0) < 1.

(ii) If ¢10(0) < 1, then T > TP at 6.

Proor. The proof follows as in [4] replacing n by L(n) where appropriate.

.E.D.
QAs a consequence of Theorem 3.2, 1, < 1 if and only if TP > T and
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T8 % TP, It also follows that ;. = 1 if each sequence dominates the other
or if neither dominates. The latter eventuality is possible, and thus domination
is only a partial ordering of sequences {7'%"}.

4. Applications and examples. Under the following conditions we can simplify
the computation of the Bahadur efficiency:

AssumpTioN 4.1. For the F”(z) defined in Assumption 3.1, ¢ = 1, 2, there
exist a ¢; > 0 and an a; > 0 such that

(4.1) —21log(1 — F(z)) = az"(1 + o(1)), z— .

Assumprion 4.2. There exist continuous, strictly increasing functions b (2)
mapping (0, «) into (0, »), b*’(z) — « as & — «, and functions c;(6),
0 < ci(f) < «,defined on @ — Q, 7 = 1, 2, such that

plim 75 /b)) = ¢(6), allfeQ — Q.

Assumprion 4.3. (0% (2))" = (b®(z))".
From these assumptions it is easily shown (as in [4], p. 272) that Assumption
3.2 of Section 2 is met with

(4.2) hi(0) = aici(0),
and
(4.3) L(z) = [b®(2)]™

That these conditions relax those given in [4] for a “standard sequence’ can be
seen by noting that in [4], & = & = 2 and b® = p® = n}.

To apply Assumptions 4.1, 4.2, and 4.3, the most difficult problem will usually
be to verify Assumption 4.1. It is shown in [4] that the standard normal distri-
bution 91(0, 1) and the chi distribution x; for any k satisfy (4.1) with ¢t = 2
and ¢ = 1. Some theorems useful in verifying that other cumulative distributions
satisfy (4.1) are given in [9].

In general, most tests of hypothesis conform to the requirements in [4]. If a
sequence of test statistics does not meet these requirements, quite often it is
possible to find a monotone transformation for the statistics such that the
transformed statistics meet the requirements. If, for example, 7, satisfies
Assumptions 3.1, 4.1, 4.2, and 4.3 with L(z) = =z, but satisfies (4.1) with ¢ = 4,
then 7% satisfies Bahadur’s requirements. Another example (where the original
T, may not even satisfy Assumptions 3.1 and 3.2) is the likelihood ratio statistic.
A discussion of this last example may be found in [9].

However, there are many cases (e.g., in discussion of random walks, in tests
based on order statistics) where Bahadur’s conditions cannot be met, and yet
where the generalization of these conditions given in this section apply. One such
case is the following example of the comparison of tests based on ‘‘systematic
statistics” [11] drawn from a normal distribution with unknown mean and known

variance.
Consider a random sample z;, - - - Z, , from a normal distribution with known
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variance ¢° (without loss of generality we let ¢ = 1), but of unknown mean 6.
It is desired to test the hypothesis H: 6 = 6, against alternatives 6 > 6, . However,
instead of receiving the variables z;, - -+ z,, we are allowed only to know the m
largest and the m smallest values from the sample. We can select m, but at a
cost which is monotone increasing in m. This situation might oceur, for example,
in studies of river levels where only records of extreme floods and droughts have
been kept and where the effort to find the mth largest value z™ and the mth
smallest value z¢m increases with m. Since 1(z™ + z(m) is an unbiased and
consistent estimator of 6, we might be interested in tests of the form: Reject H if
T > K, where TS = (21log n)* (2™ + zm — 26,) and K is a fixed constant.
We can then ask what is the relative performance of 75 and 7% for n large.
As is shown in [8], p. 375,

(44) m = 2(21log n)X (6 — 6) + V(n, m)

where V(n, m) is a random variable whose limiting distribution as n — « is
the difference of two independent random variables each with distribution
p(v;m) = exp {—mv — ¢ '}/T(m), — o < v =< . From this fact it immediately
follows that plim 7% /(log n)} = 2(2)*(6 — 6,), and that for 6 = 6,

_opmy s w o g o D@m) T ™
1 F (x) = lim Poo{Tn > x} = Pz(m) A (1 + p)zm dp'

It can easily be shown that there exist constants C{™ and C{™ such that
CMe™ =1 — F™(x) £ C{™e™. Thus the test sequences {79} satisfy
Assumptions 3.1, 4.1, 4.2, and 4.3 for all finite m with ™ (2) = (log x)*, Am = M,
tw = 1, and ca() = 2(2)}(6 — 6,). Hence L(z) = (log =)' and hn(6) =
2(2)'m(6 — 6). The efficiency of {75’} with respect to {75’} is thus ¢;,; = ©/7.
It would be of interest to know how the Hodges and Lehmann [10] or Pitman
[12] efficiencies for this problem compare with the above result. Unfortunately
the computation of the Hodges-Lehmann efficiency is a major problem in analy-
sis, and it is not certain whether the Pitman efficiency can be extended to this
case. One efficiency that can be computed is the relative efficiency of the sta-
tistics (2™ 4+ Zwm) as estimates of the true 6. The ratio of the variance of
1(2” + 2() and the variance of (2 4 z;,) is, in the limit as n — o, equal to
=1 /1

23/ s

=3

(see [8], p. 377).

We can both compare the Bahadur and Hodges-Lehmann efficiencies and
illustrate the nonexactness of the Bahadur efficiency by the following example:
Consider a random sample z; , - - 2, from a normal distribution with unknown
mean x and unknown variance o*. We wish to test the hypothesis H: 6 = 0,
where 0 = u/o. Let & = 2 i1 ai/n, Sa = D imy (x: — &n)'/n — 1, then it is
well known that the likelihood ratio statistic is A = [1 + (n/(n — 1))(&%/82)]"}
and a monotone function of X is the statistic 75" = nia/S% . Let T = —21log \.
Then 75" and T are equivalent test statistics. On the other hand, under H
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the limiting distributions of both 7'S” and 7'S® are those of a chi-squared random
variable with two degrees of freedom. Such a limiting distribution satisfies
Assumption 4.1 with ¢; = 1, a; = 1, ¢ = 1, 2. Further plim 7/n = ¢ and
plim 7 /n = log (1 + 6°). Since Assumptions 4.2 and 4.3 are satisfied, then
L(z) = z, (8) = 6, ha(8) = log (1 + 6°), and ¢12(8) = 6*/log (1 + 6°).
As [0] — =, ¢15(8) — . But since 75" and 7' are equivalent test statistics,
any exact efficiency for these tests must equal one forall§ ¢ Q@ — Q.

Bahadur has conjectured that in general as 6 ¢ @ — Qo tends to some 6, ¢ Q,
the Bahadur efficiency becomes exact. The above example supports that con-
jecture (since lim ¢1,, = 1 as [§] — 0). Under certain regularity conditions and
for L(z) = x, he shows in [4] that lim ¢;(8) as § — 6 is Pitman’s efficiency
evaluated at 6. This theorem should be easily extendible to the case where
L(z) = z', some ¢t > 0. For general L(z) it is not obvious how this extension is
to be accomplished.

The relatively simple application of the Bahadur method, its intuitive appeal
as an approximate extension of the exact efficiency defined in Section 2, and its
formal relation to the power functions of the tests compared (viz. Section 3)
justify the use of the Bahadur efficiency in practice as a reasonable first step in
the comparison of tests of a given hypothesis. The last example in Section 4 indi-
cates that care must be exercised in using this method, but this warning in no
way mitigates the usefulness of the procedure.
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