SUFFICIENT STATISTICS IN THE CASE OF INDEPENDENT
RANDOM VARIABLES!

By L. BrownN

Cornell University

1. Introduction. In many statistical situations the information obtained from
the observation of n-independent identically distributed real random variables
Xi, -+, X, can be condensed into one ‘‘sufficient statistic’’, ¢(x1, -+, z.). In
a well known sense the statistic ¢ contains as much information about the distri-
bution of Xy, - -+, X, as do the observations x;, - - -, z, themselves [1].

The Neyman factorization theorem [6], [9] gives one characterization of the
situations in which a sufficient statistic can be employed. Suppose the distribu-
tion of each X; is a priori known to be one of the distributions in the set
{Ps(-): 0 e ®} where each Po(x) has density ps(x) with respect to a fixed o
finite measure u. Neyman’s theorem tells how the densities {ps(-)} must be
related to each other through any statistic which is sufficient for the problem.

A more definitive characterization valid under certain additional assumptions
of the densities pe(-) in terms of the sufficient statistic is given by Koopman
[7], and Darmois [3]. A further related result was proved by Dynkin [4]. This
characterization states exactly what the functional form of the possible densities
must be—specifically, that each density must be a member of a certain ex-
ponential family of densities (sometimes called a Koopman-Darmois family).
This family is determined by the sufficient statistic.

The assumptions in the theorems of [3] and [7] include significant limitations
on the form of the densities and on the form of the sufficient statistics. Dynkin
[4] states a theorem in which a very minimal assumption is made on the form
of the sufficient statistic, but the form of the densities involved is significantly
restricted.

In the first main theorem of this paper—Theorem 2.1—a different approach
is used. Almost the entire burden of the assumptions is on the form of the sta-
tistics involved. The second main theorem—Theorems 8.1 and 8.1'—makes one
assumption on the form of ¢ which is generally satisfied. The remainder of its
hypotheses are very weak. The conclusion is of a local nature, as opposed to the
global nature of the conclusion of Theorem 2.1. These results are a fairly com-
plete characterization of the situation when the conclusion is valid that each
density is a member of a.certain exponential family of densities.

Only the case of a real sufficient statistic is considered in detail in this paper.
Some analogous results are clearly true for n-dimensional or even more general
sufficient statistics. I hope to pursue these questions in a later paper.
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Section 2 of this paper contains definitions and a statement of the first main
theorem—Theorem 2.1.

Section 3 contains examples which clarify the nature and importance of the
assumptions in Theorem 2.1 and Theorem 8.1. Example 3.3 is of particular in-
terest. First, it shows the falsity of a fairly natural conjecture. Second, it shows
that a result of Dynkin [4] is false as stated. A possible corrected version of
Dynkin’s theorem is given at the end of Section 3.

The next three sections contain the proof of Theorem 2.1. Section 4 contains
a point-set-topological result. The result of Section 5 is partly measure theoretic
and partly topological. In Section 6 these results are used to complete the proof
of Theorem 2.1.

The next section of the paper is devoted to corollaries and remarks which
weaken the hypotheses of Theorem 2.1 regarding p and ¢.

The second main theorem of this paper which applies to the case when the
sufficient statistic is some type of mean is stated in Section 8. Its proof, which is
sketched in that section, relies heavily on the methods of proof used in proving
Theorem 2.1, -

2. Definitions and statement of the main theorem. Let {p(z, 6): 0 ¢ ®} be
a family of probability densities with respect to Lebesgue measure, denoted by
u, on the interval I = (a,b), — o < a <b < «, of the real line, £".

Let X1, X2, .-+, X, be n independent random variables each having the
density p(-, 8) for some 0 & ©. Then [6], [9], the statistic ¢(x1, - -, 2,) is suf-
fictent for 6 (or for {p}) on the basis of X, :--, X, if and only if there exist
functions » and w such that for all 6 ¢®

(21) I:Il p(l‘z ) 0) = 7)((131 y T xﬂ)w(d’(xl y Tt x’n)y 0)

for almost all 2y, +++, 2, in I" = I X I X --- X I. We shall use the term
sufficient (for {p}) when a factorization of the type 2.1 is satisfied even though the
functions p(z, ) may not be probability densities.

q: I X ©® — E'is said to be an n-parameter exponential family of functions if
there exist real valued functions C, ., T';, and h such that for all § ¢ ©

o(z, 8) = C(6)h(x) exp {z; Qmm-(x)}
a.e. (y,)

We state an assumption which we shall frequently refer to.
AssumptioN 2.1. Each density p(z, 8) is equivalent to Lebesgue measure on
I, e.g. For each 6§ and A C I,

f p(z, 8) de = 0 if and only if f dz = 0.
A A

When Assumption 2.1 is satisfied the Neyman factorization can be rewritten
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in the form

n

(22) T p(a, 0) = (II p(a, eo)) w(@a, -, ), 0)

=1

a.e. (un),

where 6 is any fixed parameter in ©. This result is due to Bahadur [1]. (I will
sometimes refer to (2.2) (or (2.3) below) as the N-B factorization.) In this
case it is convenient to rewrite (2.2) as

(23) Tl (o, 9) = w((z, -+ 20), 0) a.c. (u),
where
(24) r(x, 0) = Z)(w, 0)/})(9?, 00)-

As a consequence of Assumption 2.1, r is well defined.

Let u,(8) denote the Lebesgue measure of the set 8 < E™ If ¢: I" — E' is
measurable, z e I", B ¢ E' is Borel measurable (i.e. B¢ ®) and A ¢ I is measur-
able, define

My(z, B, A) = p{z:xz e A, ¢(x, 2) € B}.

In words My(z, B, A) is the cross sectional measure at z ¢ I"" of the subset
{(z,2):xe A} N ¢ (B) of I. The subscript ¢ will usually be omitted.

It is now possible to state the first main theorem of this paper.

TueoreM 2.1. Let ¢(x1, -« -, x.) be sufficient for {p(x, 8): 0 ¢ O} on the basis
of n independent observations, n = 2. Suppose that for each 6, p(-, 0) satisfies
Assumption 1. Suppose also that there exisis a set A < I with u(A) > 0 such
that w(B) = 0 implies M (2, B, A) = 0 for all z e I"™ and such that (-, -, &)
is continuous on A X I for each £ & I". Then {p(-, 0)} is a one-parameter ex-
ponential family.

The following lemma is given so that the reader may better understand the
condition imposed on ¢ by the hypotheses of Theorem 2.1. The hypotheses of the
lemma, are frequently satisfied in statistical problems. In a sense, Theorem 8.1
generalizes this lemma.

LemMa 2.1. Suppose ¢(x1, -+, Tp) = m(x) or ¢(xr, <+, Tw) =
> n i w(x:) where Y(-) is continuous and in the first case positive on I. Suppose
there exists a measurable set A C I, u(A) > 0 on which ¢ is absolutely continuous
and ' (z) > 0 for all z ¢ A. Then the hypotheses of Theorem 2.1 are satisfied.

Proor. u(B) = 0 implies u{z: z ¢ A, ¥(z) ¢ B} = 0. The remainder of the
proof is trivial.

3. Examples, and comments on a paper of Dynkin. These examples are de-
signed to illustrate the nature of the hypotheses included in Theorem 2.1 and to
show why these hypotheses are included in the statement of the theorem.

The first example illustrates the need for Assumption 2.1.
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ExampiE 3.1. Let ® = E? and let

p(z, (0,b)) = C(a,b)e’, 1=z=2
(3.1) = C(a,b)f%’, 4=<z=5
=0, otherwise

where 8 is a fixed positive constant 8 % 1. The statistic zz. is sufficient for {p}
on the basis of two independent observations X; and X since

(32) p(xl, (a7 b))p(x2) (a’ b)) = 02(0’) b)h(xly x2)w(x1x2’ (a) b))

where
w(y, (a, b)) =3, 1<sy=<4
(3.3) =8%, 4=y=10
=6, 16 <y =< 25;

h(z1,22) = 1 12252 or 452 =5,
and1 £ 2, £2 or 422, 55,
=0 otherwise.

In spite of the fact that there is a real sufficient statistic for 6, it is easy to see
that the conclusion of Theorem 1 is not valid. {p} is, in fact, a two parameter
exponential family, rather than a one-parameter family. This does not provide a
counterexample to Theorem 1 since each p does not satisfy Assumption 2.1.
The facts that each p is positive on two disjoint intervals and that {p} is a two
parameter family are related. See Corollary 7.2.

The necessity for some assumption concerning the continuity of ¢ is shown
by a similar example.

ExampLE 3.2. Let © = E° and let

P(x, (a7 b)) = C(“; b)xb; l=szx=s2
(3.4) =C(a,b)f(z+2), 2=5z=3
= 0, otherwise

where C is chosen so that p is a probability density. Let ¢ (1, z2) = ¥ (x1)¢¥(2)
where

Y(z) =2 1sz=2
(3.5) =z 4+ 2 2=z <
=z otherwise.

Then ¢ is sufficient for {p} on the basis of two independent observations X; and
X because of the factorization

(36) p(xl(a’ b))p(x27 (a7 b)) = C(a1 b)h(xl ) 1[2)(.0(([)(1[1 ) xZ), (a: b)):
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where w is defined by (3.3) and & is appropriately chosen.

In this example {p} is not a one-dimensional exponential family but it satisfies
Assumption 2.1 and has a real sufficient statistic. This example does not provide
a counterexample to Theorem 2.1 since ¢ is not continuous.

In the following example all the assumptions of Theorem 1 are satisfied except
that ¢ does not satisfy the assumption that u(B) = 0 implies M(y, B, A) = 0.
This example also provides a counterexample to Theorem 2 of [4].

ExamrLe 33. Let S = {3}l = 1,2,--- ;k =1,83,5,---,2] — 1be a count-
able set of real numbers satisfying the following conditions:

(8) Smm < s, for m/2" < k/2%;
(b) 0 < 8,1 < 1;
(38.7) (c) S is dense in the interval [0, 1];

(d) Sky,01 " Sko,le = Smy,ng"Smo,ng implies (kl ) ll) = (ml ) nl) or (kl ) ll) =
(m2 s ’ﬂz).

Let ¢(z) be the usual Cantor function defined on [0, 1] ([5], p. 83). c¢(z) takes
the values &/2° with & odd, &k < 2° — 1 almost everywhere in [0, 1], say on the
set C C [0, 1]. Let d be the unique real continuous function defined on [0, 1]
satisfying d(z) = s, if ¢(z) = k/2%. (3.7) (a), (b), and (c) guarantee that d
exists.

Let ¢(z1, @2) = d(@1) d(x2). If 21 & C and 2 € C then using (3.7) (d), ¢(x1)
and c(x:) are determined uniquely (up to transposition of z; with z,) by the
value d(x1) d(z2). Thus there exists a function w such that

(3.8) c(x1)c(x2) = w(¢(21, T2)) onC X Cforack.
Also
(3.9) da(xl) da(xz) = ¢a(il?1 , xg).

These two equations show that ¢ is sufficient for the family & of densities on
[0, 1] consisting of all K;(a)c®(x) and of all Ki(a) d*(x). As a consequence of
(3.7) (d), F cannot be written as a one-parameter family of densities. This ex-
ample is not a counterexample to Theorem 1 for it can be shown that there does
not exist an A with u(A4) > 0 such that for any B, u(B) = 0 implies
My(y, B, A4) =0.

Example 3.3 provides a counterexample to Theorem 2 of [4]. (Actually, in
order to satisfy all the hypotheses of [4], ¢(21 , 22) should be chosen as d(x;) d(x2)
on C X C and as (21, z2) or some statistic which is equivalent to (1, z2),
if 21, 22 2C X C.) In order to correct Theorem 2 of [4] it is enough (using the
notation of [4]) to assume that the densities in the family = are continuously
differentiable in A, rather than ‘“piece-wise smooth” in A. This condition is suf-
ficient to insure that the statement in the next to last sentence of the proof of

Theorem 2 of [4] is correct.
The following theorem—Theorem A—which combines a corrected version of
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Theorem 2 and Theorem 3 of [3] is given for comparison with Theorem 2.1 of
this paper.

A statistic ¢ defined on a topological measure space G is called t¢rivial if there
exists an open subspace G C @ such that ¢ is equivalent to the identity statistic
on G: that is, such that there exists a measurable function w for which

(3.10) z = w(¢o(z)) for almost all z ¢ G.

TarorEM A. Let {p(z, 0)} be a family of probability densities on an interval I
such that for each 8, p(x, 6) is continuous on I, is bounded away from 0 on I, and is
continuously differentiable on I. Suppose there s a non-trivial, sufficient statistic ¢
for 6 on the basis of n independent observations. Then {p} is a p-parameter expo-
nential family where n > p.

Proor or THEOREM A. The hypotheses of Theorem A are sufficient to make
valid the conclusion of the next to last sentence of the proof of Theorem 2 in [4],
and hence to make valid the conclusion of that theorem. Then using the notation
of [3] the rank p of the family  is less than n and { [ [i= re(2:,6)},k = 1,2, -+ -p
is a sufficient statistic if the 7;(-, 6') are linearly independent and not constant.
Then, using Theorem 3 of [4], {p} is a P parameter exponential family. This
completes the proof of Theorem A.

By taking cross-sections, as is done in the proof of Theorem 2.1 (see 6.7), it
can often be concluded from an examination of ¢ that p is in fact a specific value
considerably less than n — 1.

4. Proof of Theorem 2.1—Part 1. The hypotheses of the Theorem 4.1 of this
section are chosen so that this theorem can be easily applied in the proof of
Theorem 2.1. Theorem 4.2, which follows easily from Theorem 4.1 has a more
natural set of hypotheses. Theorem 4.2 should be compared to Theorem A and
to Theorem 2.1, for it has the same conclusion as these two theorems, but a
slightly different set of hypotheses.

TaEOREM 4.1. Let A C I be a set of points such that for some pmnt sayx’ € A
there exists a sequence {z:} with z;€ A, = 1,2, -+ -, and lim z; = «'. Suppose for
each 0 £ ©,7(-, 0) is a continuous function from I = (a, b) into E™* (the one point
compactzﬁcatwn of E), and, for each 8 & ©,r(-, 0) satisfies Assumption 1. Suppose
there exists a continuous function ¢: A X I — E1 and a function w such that

(4'1) 7'(1?1 ) 0)7’(1’2 ’ 0) = w(¢(xl ) x2), 0)

for all (z1, x) e A X I and all 0 ¢ O . Then there exists an interval K C I such
that K N A s not empty and such that for a fixed value 0, € ©, there exist functions
C and Q such that

(4.2) r(z, 8) = C(8){r(z, 6)}°?

forallze K N A and all 6 ¢ ©.
Proor. Several preliminary results are needed. These will be stated and

proved as lemmas.
Throughout this proof the hypotheses of Theorem 4.1 are assumed to be
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satisfied; and 6’ ¢ @ will denote any fixed parameter such that r(-, ") is not a
constant on all of I. (If no such value of 6 exists then r(z, 8) = C(6) for all =
and 6, and the conclusion of the theorem is valid.)

Lemma 4.1. Suppose (-, 6') is constant on some interval J < I. Then either
&(z, y) s constant for y J, or there exists an interval K < I such that 2’ ¢ K and
r(z,0) = C(0) forxe KN A and all 6 ¢ O.

Proor. Suppose (-, §') is constant on an open interval J but ¢(z’, ) is not
constant for y £J. Since ¢ is continuous there is an open interval

(4.3) D c {z:3yed, ¢z, y) = 2}.

There exists an ¢ > 0 (not depending on §”) such that |z — 2’| < ¢, 2 € A, implies
there exists a y ¢J such that ¢(z, y) € D. (If this were not true, ¢ would not be
continuous at any point z’, y such that yeJ, ¢(z’, y) e D.) Thus there is a
y €J such that

(44) r(z, 6)r(y, 0) = w(d(z, y), 8) = r(@, O)r(y, o).

Hence r(z, §') = r(a, 0') for all z ¢ A such that [z — 2| < e. Let K = {z:
| — 2| < €}. Then r(z, 8) = C(8) for x ¢ K N A. This completes the proof of
the lemma.

It is only necessary for the remainder of the proof to deal with the case where
7(+, 6’) constant on an interval J implies #(z’, -) is constant on J; for if this
condition is not satisfied then according to Lemma 4.1 the conclusion of Theorem
4.1 is valid. In the following lemmas we make that assumption.

LemMa 4.2. Suppose r( -, 6') constant on the interval J < I implies ¢(z’, -) is
constant on J. Let L C I be an interval (not necessarily open) of posttive length.
Suppose x; is an extreme value of r( -, 0') on L (i.e. z; 18 a minimum or maximum
of 7 on L). Then either ¢(x', x1) is an extreme value of $(&, +) on L, or there exists
an interval K < I such that 2’ ¢ K and r(z, 0) = C(0) for all z e K N A and all
00,

Proor. Suppose ¢(z’, 1) is not an extreme value of ¢ on L and suppose
7(-, 6') assumes its minimum on L at x; . Then there exists an open interval D
satisfying (4.3), and satisfying ¢(z’, 1) € D. Using continuity there is an ¢ > 0
such that | — 2| < ¢, 2 ¢ A implies there exists a y eJ such that ¢(z, y) =
é(z, z1), and implies that ¢(z, ;) ¢ D. For such an

(45) r(z, 0)r(y, 0) = w(d(x, y), 0') = infyep (¢, 0') = r(z’, 0')r(x1, 0).
According to (4.5),
(4.6) r(y, ') = inf{r(z, 6'): ¢(z, 2) € D}.

Since 21 ¢ {z: ¢(z, 2) e D}, r(y, 8') = r(21, 6'). By assumption, r(z,, ) <
r(y, §'). Hence r(y, ') = r(z1, 6'). Then, using (4.5), r(z, 6') = r(2’,6). Thus
there is an open K, 2’ ¢ K, such that 2 ¢ K N A implies r(z, §) = C(9).

The procedure if 7(z, §") is a maximum is entirely analagous. This completes
the proof of Lemma, 4.2.

Lemma 4.3. For any interval J C I assume (-, 6") constant onJ implies ¢(z’, - )
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constant on J and r(x;, 6') an extreme value of r(-, 6') on J implies ¢(z’, 1) an
extreme value of ¢(x', -) onJ. Then r(y1, 6') = r(y2, 8") (3f and) only if for any
re A7 ¢'(x,7 yl) = ¢(x’r y2)'

Proor. Suppose (1, 6') = r(yz, 0') but ¢(z’, y1) # (2, y2). Assume
Y1 < Y2 . Let

S = {x: ¢(.’13’, x) = ¢(ZIJ’, y1)7 re I};
Sy = {.’II: ¢(x,7 .’17) = ¢(.’13’, y2)) er}’

Si and 8. are closed disjoint sets. Let ¥ be a point such that y; < y < ¥, and
yeSiUS,. Let

(4.7)

48) ys = sup{z:ze S, x < y},
ys = inf{z:x e S2, z > y}.

Then y;e 81, yse S:. The function ¢(z’, ) assumes its extreme values on
[ys , ¥a] at ys and ys . Hence y; and y, must be the extreme values of (-, §") on
[ys , ya). Hence r(y, ') = r(ys, 0') = v(ys, 0") for ally € [ys , y4]; in contradiction
to the hypotheses of the lemma. This completes the proof of the lemma.

For the remainder of the proof of the theorem, the special hypotheses of
Lemma 4.3 are assumed true; for if they are not true Lemmas 4.1 and 4.2 show
the conclusion of the theorem to be valid.

Suppose there are parameters 6', 6" ¢ ® such that there does not exist a real
C and k and an interval K for which r(z, 6”) = C(6')r*(z, §') forze 4 N K;
i.e., that {r(-, 0): 6 £ ®} is not of the form (4.2) on A N K. Thenon A X I

r(z, 0”) r(z2, 0”) _ w(g(z1,2,),60”) _ . VI
(4.9) o) P ) = S ) @) a(¢(21, 12); 6, 07, k).

From these facts it is easily checked that for any k, the function r(z, 6" )/7*(z, 6)
satisfies the hypotheses of Lemma 4.3 (including the hypotheses of Theorem 4.1).
There must exist a &, 2; , 2, such that r(z1,6') # r(x,, 6’) (and hence (', z;) =
(2, x2)) but r(z1, 0”)/r*(x1, 6') = (a2, 6”)/7%(zs, 6'). It follows that & in
(4.9) is not a 1-1 function, but this contradicts Lemma 4.3. This completes the
proof of Theorem 4.1.

The next theorem may be of some independent interest, as it is another theorem
belonging to the same class of theorems as Theorem 2.1.

THEOREM 4.2. Suppose for each 0, p(z, 6) is a continuous function from I =
(a, b) into B (the point compactification of E), and for each 6, p(x, 6) satisfies
Assumption 1. Suppose there exists a real-valued function ¢ which is continuous as
a function from I" into E* and which is sufficient for 6 on the basis of n-independent
observations X1, Xa, +++, Xn, n = 2. Assume the Neyman-Bahadur factorization
(2.2) holds everywhere in I, i.e. ~

(4.10) 1I=Il p(ai,0) = <g p(z;, 00)) w(p(@y, <+, 2a))

for (z1,:--,z,) eI
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Then {p} is a one-parameter exponential family of densities.
Note: It is not necessary in Theorem 4.2 to assume that the functions p(z, 6)

are probability densities.
Proor. Let r(z, ) = p(x, 0)/p(z, 6) for some fixed 6o ¢ ©. As remarked

previously H?=1 r(2:,0) = o(d(z1, 22, **,Ta), 0). Ifn>2fixys, -, Yné€ .
Then

(21, 0)"'(2:2 ) 9) w(¢(xl y X253 Ys, ", yn), 0)/1:]:3 (Y, 0)

(4.11)
5)(4;(221 ) 222), 0)

It is easy to finish checking that {r} satisfies the hypotheses of Theorem 4.1
where A C I can be any set. In particular, Theorem 4.1 then states that every
z ¢ I has a neighborhood such that {r} is an exponential family on that neighbor-
hood. It is easily checked that this can be true only if {r} is an exponential
family on I. Since p(z, 0) = p(z, 8o)r(z, 9), {p} is also an exponential family.
This completes the proof of Theorem 4.2.

5. Proof of Theorem 2.1—Part 2. The important result of this section, so
far as the proof of Theorem 2.1 is concerned, is that for each 6, r is a continuous
function from I into E**. This result is contained in Theorem 5.1.

Luvma 5.1. Let ¢: I X I — E* be continuous. Let A be a measurable subset of
I = (a,b) such that for each fized y e [c, d](—» < a <c¢ <d < b < o), and
any subset B & £, (the measurable subsets of E') u(B) = 0implies M(y, B,A) = 0.
Then for any fized B e £, M (-, B, A) is continuous as a function on [c, d].

Proor. Each of the following assertions will be proved as they are stated.

(1) B an open interval, and A a closed set implies M (-, B, A) is continuous:
Let B = (a,b), By = (ax, bx) withax N a and b, /b (strictly decreasing and
increasing to). Then M (y, By, 4) /* M(y, B, A) for each y ¢ [c, d]. Using the
uniform continuity of ¢ on A X [, d], for every given yo & [c, d] and € > O there
exists a neighborhood N; of yo such that y, z & Ni imply

(5.1) M(y, Bi,A) < M(2, By, A) + ¢ < M(z, B, A) + é.

Let yx — o such that A = limy.e M(y., B, A) = lim inf,,,, M (y, B, A). Then

y e N, implies M (y, By, 4) = M + ¢ so that

(5.2) M(yo, B, A) = liMise M (%0, Bi, A) £\ = lim inf,,,, M(y, B, 4).
Using an analogous procedure,

(5.3) M(yo, B, A) = lim supy.y, M (y, B, 4),

(5.3) and (5.2) together establish the truth of Assertion 1.

(2) If B is open and A is closed, M is lower semi-continuous, ls.c., (i.e.,
satisfies (5.2)). If B is closed and 4 is closed, M is upper semi-continuous,
ws.c., (satisfies (5.3)).

If B is open, it is the union of a countable number of disjoint open intervals
B, B = Ui, B . Using Assertion 1, M(-, Ui, B, A) is continuous. For any
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fixed y e [c, d], M(y, -, A) is an absolutely continuous set function on (£, u)
by the hypothesis of the lemma. Hence M (y, Ui, ,4) > M (y, B,A) asn— =,
and M(y, UfB:, A) is an increasing sequence (in n). Thus M (y, B, 4) is the
pointwise limit of an increasing sequence of continuous functions, Whlch implies
it is Ls.c. If B is a closed set, M (y, B, A) = u(4A) — M(y, B°, A) where B° =
E' — B. B°is open, so that M (y, B°, A) is ls.c., and M (y, B, 4) is u.s.c.

(8) M(y, -, A) is locally uniformly (in y) absolutely continuous as a set
function on (£, u): Suppose this is not so. Then there exists an ¢ > 0, a de-
creasing sequence of nested sets v, , and a sequence y; such that M (y;,v:, 4) > ¢
but u(v;) — 0. Since Lebesgue measure is regular we may assume the v, are
closed nested sets without any loss of generality. Since [c, d] is a closed interval
the sequence y; has an accumulation point, say yo € [¢, d]. Using (2), M (yo, N 7.,
A) = lim supy;.yo M(yi, vi, A) = € > 0. Since u(My;) = 0, this contradlcts
the hypothesis of the lemma, proving (3).

(4) If Bis an open set or a closed set and A is a closed set, then M (-, B, A)
is continuous: If B is open B = Ui~y . M(y, Ui=i8:, A) — M(y, B, A) uni-
formly in y since u(Ui—pi18:) — 0 and M(y, Ur—niiBi, A) = M(y, B, A) —
M(y, UizBi, A) is uniformly (in y) absolutely continuous according to (3),
M(y, Ui=iB:, A) is continuous, hence so also is M(y, B, A). If B is closed
M(y,B,A) = u(J) — M(y, B°, A), so that M(y, B, A) is continuous.

(5) For any B e £ and closed 4, M(-, B, A) is continuous: There exists a
B’ C B such that u(B — B’) = 0 and B' = Us-b, where the b, are nested-
increasing closed sets. Reasoning as in (4), M (-, B’, A) is continuous, and using
the hypotheses of the theorem M (y, B — B’, A) = 0 for all y ¢ [¢, d]. Hence
M(-, B, A) is continuous.

(6) Finally, any measurable A can be written as A D Uj_i0) where the o are
nested-increasing closed sets and u(4 — Uraor) = 0. Hence M (y, B, Uraon) —
M(y, B, A) uniformly in y. Thus M (y, B, A) is continuous. This completes the
proof of Lemma 4.1,

I am indebted to H. Kesten for supplying parts (1) and (2) of the proof of
this lemma and for further discussions concerning it.

TuaroreEM 5.1. Suppose the hypotheses of Theorem 2.1 are satisfied, and n = 2.
(In particular, let A C I be such that u(A) > 0and u(B) = 0implies My(y, B, A)
= 0 for all yeI). Then for each 0, r(-, 8) has a continuous version (i.e.; there
exists a function r’ such that r’ is continuous and r'(+) = r(-, 0) a.e.).

(The theorem is also true for all » > 2. This can easily be shown from the
case n = 2 by the argument at (6.4).)

Proor. If the theorem is not true then there exists a 6’ ¢ ® and a point z, & T
such that

(54) p1 = ess lim infoz 7(2, 0') % ess lim Sups..or(z, 6') = p;.
Let ‘
Dk={$20'k§x<0'k+l}k=---—2,—1,0,1,2,---,

(5.5)
1<o < p/pr.
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For some k, say k', u(r *(Dyr) N A) > 0. Using (5.5)
(5.6) M,y (y, B, A) = My.5(y, 0 (B), A)

for almost all y e I. Let B’ = {2: poo® < 2 < poo” ™}, where p1 < ps < 2.
Then usmg (5 6) and the inequality from (5.7), p; may be chosen so that
pio* T < peo® . Using (5.4)

ess lim inf,,., M,.,(z, B', A) = 0,
ess im Supyzo M., (z, B, A) = u(Dyr N 4) > 0.

(5.7) together with (5.6) contradicts Lemma 5.1. This completes the proof of
the theorem.

(5.7)

6. Proof of Theorem 2.1—Part 3. In this section the results of the previous
two sections are combined in order to complete the proof of Theorem 2.1.

Throughout this section we shall assume that the hypotheses of Theorem 2.1
are satisfied. As in Theorem 4.2, it suffices to prove this theorem for the case
n = 2, and to deal with the functions r. Throughout this section unless otherwise
noted it is assumed that n = 2. This assumptlon will be removed at the end of
the proof.

Using Theorem 5.1, it is no loss of generality to assume that each r(-, 6) is a
continuous function on 7, and we shall do so throughout this section.

The line of proof is to establish that the Neyman-Bahadur factorization
(see (2.2)) is an equality everywhere on A X I (for an appropriate A and w).
Then Theorem 4.1 can be applied and the proof of Theorem 2.1 can be com-
pleted. Several lemmas tending in this direction will be stated and proved.

Let S C I be the set guaranteed by the hypotheses of the theorem, i.e. u(B)

= 0 implies M4(y, B, 8) = 0 for all y ¢ I. Let T be a countable set of points
such that 7' is dense in I, i.e. T = I. Choose T such that for each y ¢ T the
N-B factorization ((2.3) or (6.2)) is valid for almost all z ¢ I. For any measurable
set E let E* denote the set of points of E which are points of density of E
([7], p. 285-95).

For any y ¢ T, define U, by

U, = {z:ze 8, ¢(z, y) e [6(5%, v)I}.

The facts that x(8") = u(8) and u{e(z, 8} = w{é(z, 8)} imply u(U,) =
w(S). Let A = NyerUy. Then u(A) = u(8) > 0. A satisfies the assumptions
of Theorem 2.1 in place of S. Note that 4 = A°.

LeMMA 6.1. There exists a continuous function w such that

(6.1) r(z, 0)r(y, 0) = w(o(z, y), 0) forall (z,y)e A X I and all 0.
Proor. By hypotheses

(6.2) r(z, 0)r(y, 0) = w(é(z, y), 0) ae.ond X T.

For each 0, and ¢ € ¢(4, T), let w({, ) = w(¢, 6) if there exists (xo, yo) e A X T
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such that é(zo, 1) = ¢ and equality holds in (6.1) for that (xo, yo). If there
does not exist such a value (2o, yo) € A X T, then choose any (2o, 4) €4 X T
such that ¢(xo, y) = ¢ and define w(§, 8) = r(z0, 0)r(yo, 6). Note that for
each 0 £ 0, w(f, ) = w(t, 0) for almost all ¢ £ ¢(4, T).

Consider (21, 1) ¢ A X T and any fixed value 6’ £ ©. Let (20, yo) e d X T
be a point such that (6.1) is an equality and ¢(zo, yo) = ¢(x1, y1). If X, is
any neighborhood of 2, ¢(z; , ¥:) is a point of density of the set ¢(X: N 4, v.),
i =0, 1, Since (6.2) and thus (6.1) is an equality at ¢(z, yo) for almost all 2 and
since r is continuous at x, then for every e > 0, ¢(xo, yo) = ¢(1, ¥1) is a point
of density of the set {{: [w(¢) — r(x0, 6)r(yo, )] < ¢ = Z.. Let W.=
&(X1 N A, y1) N Z,. From the construction of A u(W.) > 0 which in turn
implies u{x: ¢(x, y1) e We, ze A} > 0. Thus there must be points in every
neighborhood X; of z; such that

(6~3) IT((L', ol)r(yl ) 0/) - 7’({1}0, Ol)r(yo ’ ol)l <e

Since (6.3) holds for every ¢ > 0, r(z1, 6')r(y1, o) = r(zo, 6')r(yo,6) and
(6.1) is valid at (21, y1). Thus for every 6 ¢ ©® and (z,y) e A X T, (6.1) is an
equality.

Let ¢ — &, Cied(A X T) where (z:,y:) e A X T such that (z:, y:) —
(2, y) and ¢(z:, ys) = §i-limise w(P(@i, Yi), 0) = liminw (2, O)r(yi, 0) =
r(z, 0)r(y, 0). Hence lime.g, w(§, 0) exists, fedp(4d X T). If foze(4d X T),
define w({o, 0) by w(fo, 8) = limg,.¢, w($3, 0).

Since 4 X T D A X I, w is now defined on all of (4 X I). Furthermore,
according to the previous paragraph, «(-, 6) is a continuous function, and
r(z, 0)r(y, 8) = w(¢(z, y), 0) forallz, ye A X I and all § £ ©. This completes

the proof of Lemma 6.1.
Theorem 4.1 can now be applied to establish the existence of an interval K

such that K N A is non-empty and such that r(z, ) = C(8){r(=, 60)}°? for
all z ¢ K N A. The following lemma uses this hypotheses.
LemMA 6.2. Suppose &’ ¢ K N A, and the equation

(6.4) r(z, 8) = C(6){r(=, 00)}°®

is valid for all xe K N A and all 6 € ©. Then (6.4) s valid for all x ¢ I and all

6e®.
Proor. Let N be a neighborhood of z' such that yeN implies M(y,

#(KNA,z'), KN A) > 0. The existence of such an interval is guaranteed by
Lemma 5.1. For any 6 ¢ © and any y ¢ N there exist points z:, z2¢ K N 4 such

that ¢(z1, y) = é(x2, «’). Using (6.1)

(6.5) r(y, 0)r(zy, 0) = r(z’, 0)r(x,, 0).

Using (6.4) and (6.5)

(6.6) r(y,6) = COI(, 60)r(za, 0)/r(ar, 60)]° = C(O){r(y, )} *”
which is the desired equation on N.
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Now, suppose N’ = (¢, d') is a maximal interval containing N on which
(6.4) is valid. Let N” be a neighborhood of ¢ (or d) such that M (y, ¢(K N 4,
¢),KNA)> 0 (or M(y,d(K NA,d), KNA) > 0). Proceed as in the pre-
ceding paragraph to show that (6.4) is valid on N U N”. Therefore N’ = I.
This completes the proof of the lemma.

The proof of Theorem 2.1 can now be easily completed. Suppose n = 2.

Then there exists ys, ¥4, - -+, Yn € I" " such that for every 6 ¢ O,
(6 7) r(xl ’ 0)7‘((1)2 ) 0) = w(¢’(x1 y X253 Ys, "y yn), 0)/I=I3 T(yi ) 0)

= o((1, x2), )

for almost all ¢y, z2 eI X I.
Using the results of Sections 4 and 5 and the preceding results of this section
r(z, 8) = C(0){r(x, 6)}°®. Hence,

(68) p(x} 0) = C(G)I’(ﬂ’f', 00) exP{Q(G) lnr(:c, 00)};
which is the desired factorization. This completes the proof of Theorem 2.1.

7. Corollaries to the theorem. In this section several corollaries are stated
which weaken in some fashion the hypotheses of Theorem 2.1. The corollaries
given here by no means exhaust the possibilities for results of the general type
of Theorem 2.1 which have weaker hypotheses than that theorem. They should
be sufficient, however, to guide the reader in search of other possible corollaries
to Theorem 2.1. These corollaries also serve to amplify understanding of the
situation when the presence of sufficient statistics implies the densities are of
exponential type.

The proofs of these corollaries mainly consist of minor revisions in the proof
of Theorem 2.1. These revisions will only be sketched, rather than given in full.

CoroLLARY 7.1. Let {p(z, 0): 0 £ ®} be a family of probability distributions
on an interval I, which satisfy Assumption 2.1 on I. Suppose there exists a set
A < I such that u(A) > 0, and there exists a conttnuous function ¢: A X I — E
(where A 1is given the topology inherited from I) and a function w such that for
some 6y € O,

(7.1) p(a1, 0)p(zz, 0) = p(a1, 00)p(22, O0)ew(d(a1, 22), 0)  ae. (w(4d X 1))

(i.e. ¢ s sufficient for p on A X I). Suppose u(B) = 0 implies M (2, B, A) = 0
for all z € I. Then {p(=, 8)} is a one-parameter exponential family.

Proor. The reader may check that the proof of Theorem 2.1 uses only the
hypotheses of this corollary, rather than the somewhat stronger (though more
natural) hypotheses of Theorem 2.1.

Corollary 7.1 can also be applied in the case n > 2 if, for instance, ¢ is
sufficient for [ p(z:, 0) on A X I X 8, 8 C I"™%, pa—s(S) > 0, for an ap-
propriate set A. For then as in the proof of Theorem 2.1 (6.7) there is a 7 & S
such that ¢(-, -, =) is sufficient on A X I for p(z:, 6)p(x2, 0).
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It may be that the hypotheses of Theorem 2.1 (or Corollary 7.1) do not hold
(in the case n = 2) for all of I X I, but do hold on I; X I; where the I, are
intervals. (Sometimes it is also desirable that I = UI[I; denotes the closure of
I].) Many corollaries of Theorem 2.1 can be derived which deal with this type
of situation. Only a few of the simplest of such results will be given in Corollary
7.2. To simplify matters, with no great loss of generality, only the case n = 2
will be treated.

COROLLARY 7.2. Let I}, , k = 1,2, - - -, m be a set of disjoint intervals. Let {p(z, 0)}
be a family of probability densities on UL , and let ¢(x1, x2) be sufficient for 6 on
the basis of 1, 2 . The following results are true:

(1) If m < o, and the hypotheses of Theorem 2.1 are valid on I, X I k =
1,2, ---, m, then {p} is (at most) a (2m — 1)-parameler exponential family.

(2) In addition to the special hypotheses of (1) if I = UI,, if p(-, 6) s con-
tinuous and if 0 < p(-, 8) < oo for each 6 then p is (at most) an m-parameter
exponential family. ,

(3) If m < « and if there exists a set A C I for some k = 1,2, ---, m such
that u(A) > 0; ¢ is continuous on A X I for each k; and u(B) = 0 implies
M(z,B, A) = 0 for all z ¢ UI, (not necessarily UI), then {p} is (at most) an m
parameter exponential family.

(4) If in addition to the special hypotheses of (3) I = UL, p(-, 0) is continuous,
and 0 < p(-, 0) < » for each 0 then {p} is a 1-parameter expo'nentml Sfamaly.

(5) Suppose m < « and the special hypotheses of (3) are satisfied. If in addi-
tion forall k = 2,3, ---,

. k—1
(72) w[oca, 10 (Usa, 1) ] >0
then {p} is a one parameter exponential famaly.
Proor.

(1) On each interval I, p(z, 8) = C(0)p(x, 6) {r(z, 60)}°?, zel;. If
for example, the statistic ¢ is trivial (see (3.10)) in every neighborhood of
I; X I;,j 5 1, then the C(0) and Q(8) may be chosen arbitrarily (a total of
2m choices) on each I, except that the condition fp(x, 6) dz = 1 must be
fulfilled. This leaves 2m — 1 free parameter choices. It is then easily checked
that {p} is (at most) a 2m — 1 parameter exponential family. (It is not necessary
for this result that UT, = I.) ,

(2) The condition of continuity (and UI, = I) imposes m — 1 additional
restrictions on the choice of parameters in 1 when 0 < p(z, ) < o« at the end-
points of the intervals I, (which can easily be ascertained from ¢ on I X I).
This leaves (at most) an m-parameter exponentlal family.

(3) Although the proof of Theorem 2.1 is not constructed spemﬁcally for the
situation in this corollary, it is not hard to check that in this situation, -

(7.3) ) k r(z, 8) = C(k, 0)(r(x, 0))0(”) z e I
The constants C'(-, 8) can be arbitrarily chosen, except that fp(x, 0) de =
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This leaves (m — 1)-parameter choices, which together with the choice of
Q(0) make {p} an m-parameter exponential family.

(4) The proof of this is just like the proof of (2). ,

(5) The condition (7.2) implies that on each interval I} , {p} is a 1-parameter
exponential family. (7.2) also implies that the choice of C(8) and Q(8) for the
interval I; determines the choice for I, , then for I3, and so on inductively. The
choice of C(6) in turn must be dictated by the condition [ p(z, ) dz = 0.
Hence {p} is a 1-parameter exponential family. This completes the proof of the
corollary.

It should be noted before concluding these considerations that even if ¢(z, y)
does not satisfy any of the preceding hypotheses, a transformation of the range
of ¢; and/or of its domain, I, may yield a new problem in which ¢ does satisfy
the desired hypotheses. To be more precise there may exist appropriate func-
tions «, 8 such that § = a(¢(8(x), 8(y))) is continuous as a function of B(z),
B(y). If o and B are appropriately chosen—a one to one and 8 almost 1-1 and
measure preserving are sufficient conditions—then ¢ sufficient for {p(z, )} implies
¢ sufficient for {#(B, 6)} (in the Neyman-Bahadur factorization). If 8 is almost
1-1 then 8" exists a.e., and {#(8, )} is an exponertial family satisfying (6.4)
if and only if {p(z, 8)} is a one-parameter exponential family.

8. An important special case: ¢(y, -+ , Zn) = 2 im (). This section
will begin with an example of perhaps the most useful transformation of the
type discussed at the end of Section 7. Suppose ¢(z1, -+, Zn) = D ies ¥(2:)
as is often the case in many statistical problems. It will be shown using a change
of variables that there is always a problem equivalent in the sense of the preced-
ing section in which y¥(z) is monotone non-decreasing. This transformation is
the first step in the proof of a “local” theorem regarding sufficient statistics of
the type ¢ = D ¢ in which continuity of ¥ is not hypothesized.

For z £ I (assume I is bounded) let

(8.1) t(x) = wit: tel, Y(§) < Y(x)} + wié: Eel, (&) = Y(x),& = x}.
Let
(8.2) Py =¥t W), 0 =1 (y),0)

(where r is defined as before by (2.4)). It is necessary to prove

Levma 8.1. If ¢ = D ¢ is sufficient for p on the basis of n independent observa-
tions, then ¥ and ¥ are well defined by (8.2) and (8.1) almost everywhere u(I"),
¥ s sufficient for {F}, and {F} is a one-parameter family satisfying (6.4) if and only
if the family {r} is also.

Proor. The only problem with the definition of ¢ ocecurs if #(x:) = #(w2)
but ¢(z1) # ¥(x2). Consider the collection of equivalence classes &(x) =
{£: 8(8) = t(x)}. If ¥(&) is not a point, then there is an interval ¢ of positive
length (not necessarily open) such that ¥(&) C 7 and z £ & implies ¢¥(z) .
Hence {&: ¢(8) is not a point} is countable. This establishes that (8.2) defines
¥ uniquely except perhaps for a countable set of points (which will be discon-
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tinuities of ¥). For each 6 there exists a z ¢ I" ™ such that
(8.3) r(z, 0) = (1/k)o(X + ¥(), 6), a.e. u(1)

where k& = [[ier(zi, 6), A = D io¢¥(z). It may even be assumed that a
version of r(-, 6) has been chosen such that (8.3) is valid everywhere. Then

(8.4) #y, 9) = r(t7'(y), ) = (1/k)o(X + ¥( (), 6)

is uniquely defined except perhaps for a countable number of points.
It can easily be checked that the transformation ¢ is measure preserving in the
sense that for any Borel set B, u(¢ *(B)) = u(¢({(B))). It follows that

11 #z:,0) = ILr(t7(22), 6)
= (2 ¥t (@), 8) = (2 §(2:), 0), a.e.

So > ¢ is sufficient for {7}. Similarly {7} is a one parameter exponential family
if and only if {r} is. This completes the proof of the lemma.

It should be clear that in the preceding considerations we have nowhere used
the fact that I is an interval, only that it is bounded. If I is unbounded, a slightly
different definition of ¢ may be used to y1eld a transformation with the desired
properties.

It is clear from Corollary 7.2 that it cannot be expected for general ¢ that r
is a one parameter exponential family on all of I. However under very weak
conditions it can be asserted that r is locally a one-parameter exponential family.
The following theorem contains this result.

The hypotheses of Theorem 8.1 may seem at first a bit strange. The difficulty
is that Theorem 8.1 is stated without the assumption that ¥(z) be monotone
non-decreasing. As was shown in the first part of this section there is no loss of
generality in assuming that ¢(z) is monotone. Theorem 8.1" consists of the state-
ment of Theorem 8.1 specialized to the case where () is monotone. The first
step of the proof of Theorem 8.1 is to show by using the transformation ¢ (8.1)
that the conditions of Theorem 8.1 imply there exists an equivalent problem
satisfying the conditions of Theorem 8.1".

TueoreMm 8.1. Let {p(x, 0)} be a family of probability densities on a measurable
subset J of E' satisfying Assumption 2.1 on J. Suppose ¢(x1, +++, Tn)=
S oriw(ws) s sufficient for {p}. Suppose there is a subset A C J with u(A) > 0
such that for any B C $(A), u(B) = 0 implies u(¥ " (B)) = 0. Let x, e J be any
point such that for all € > 0:

(8.6) plp Mo zev), 0 < ¥(z) — ¥(m) < ¢} > 0

and

(8.5)

ply Mz z e p(J), 0 < Y(xo) — ¥(z) < P(z) < ¢} >

Then there exists a netghborhood Q of ¥(xo) such that p is a one parameter exponential

family on ¢7(Q N Y(J)).
A simpler (though at first glance less general) statement of the preceding is
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Tarorem 8.1'. Let {p(z, 0)} be a family of probability densities on an interval
I c B, satisfying Assumption 2.1 on I. Suppose ¢(x1, -+, &) = 2 ¥(a:) s
sufficient for {p} where ¥ is monotone non-decreasing. Suppose ¥'(z) > 0 on a
set of positive measure A C I. Let'xy be a point such that ¥ is continuous at x; .
‘Then there exists a neighborhood K of xo such that {p} is a one-parameter exponential
family on K, having the form (8.10).

Proor. By transforming the real line according to #(z) = z/(1 + |z|) we

may assume that the setJ is bounded. Then the transformation ¢ of (8.1) can be
used. It is easily checked usmg Lemma 8.1 that the point z, of Theorem 8.1
becomes an 2o of Theorem 8.1, and sindilarly the set A [or rather. ap(n//_l(A))]
transforms into an interval A a,pproprlate for the hypotheses of Theorem 8.1’
The conclusion of Theorem 8.1" is slightly stronger than the transformation by
t of the conclusion of Theorem 8.1. (It may be stronger at points z such that
p(¥(¥(2))) > 0.)
' The hypotheses of Theorem 8.1" will be assumed throughout the remainder of
this proof except where otherwise noted. It will also be assumed that n = 2,
which is no loss of generality. The proof of Theorem 8.1" follows approximately
the outline of the proof of Theorem 2.1 with only a few major differences. Where
it is possible, the proof of this theorem will consist of references to the proof of
Theorem 2.1. ‘

The first step in the proof of Theorem 8.1 is an analog to Theorem 5.1; namely
that for each @ there is a version of r(x, ) which is continuous at any continuity
point of ¢. To show this, let y;,, 72 = 1, 2, ---, be any sequence in I such that
1y; — Yo where ¢ is continuous at y, . Let ¢ be a continuous function defined on
I such that o(y:) = ¢(y:)1=0,1,2, --- .

Using Lemma, 5.1, for any B,

limi_,w Mz‘p (yi y B, A) = lim,~_m sz(yi , B, A)
= MEU(yO ’ 37 A) = MEVP(yO ) B’ A)'

Hence M(-, B, A) is continuous at y,. Using the procedure of the proof of
Theorem 5.1 it is then easy to show that r is continuous at y, .

We now turn to the analog of Lemma 6.1. It will be shown there exist versions
of w, r, and ¥ such that the N-B factorization is an equality on A" X J, where
A’ and J are suitably chosen. The first main change from Lemma 6.1 lies in the
choice of A and 7'. In this case let A = {z: 2 ¢ 8% ¢(z) € {¥(S*)}’} where S is
any set with u(8) > 0 such that B < S. u(B) = 0 implies u(¢ " (B)) = 0. In
particular, S can always be a set of the form S = {z:e < ¢'(z) < 1/¢} for some
e > 0. Let T be the set of continuity points of ¥ such that y ¢ T implies the
N-B factorization is valid for almost all z £ I. The proof that

(88) T(IL‘, 0)T(y7 6) = w(d’(x} Y), 0)7 (, y) eA XT, 00

is almost word for word the same as the proof of the analagous fact in Lemma 6.1.
Let zo, 4o £ A X T (as defined in the preceding paragraph). Since A* = A and

(8.7)
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T* = T, for any neighborhood Z of x , %o,
B={¢:3(z,y)eZ N (A XT):¢(z) + ¥(y) = ¢}

contains an open interval of positive length about the point ¢ (zo , ¥0) ([5], p. 68).
If Z is chosen small enough, ¢ & B implies |w(¢, 6,) — w(¢(20, %), )] < e
Hence w( -, 8) is continuous at {o = ¢(zo, Yo).

Again using [5], p. 68 there exists a non-empty set A’ © A and an interval
J C I such that (4")* = A’(u(4") > 0) and such that ¢(4’,J) < K where K
is a closed interval contained in the interior of ¢(4 X T'). w is uniformly con-
tinuous on ¢(A4’, J), hence if 21, y1 & (4" X J), limMgageey 4 (S, 0) exists. If ¢
is chosen so as to be continuous from the left (or right) it is then easily checked
using the previous two paragraphs that lim,..- r(y, ) always exists; and if
is also chosen to be continuous from the left (or right) the N-B factorization
(8.8) is valid everywhere in 4" X J. This analog of Lemma 6.1 is satisfactory
for the proof of Theorem 8.1".

It is a somewhat tedious matter to alter the statement and proof of Theorem
4.1 to fit the conditions of the theorem at hand. I will not do this in detail here.

The continuity conditions of ¥ and  on A" and J and validity of the N-B
factorization on A’ X J which have been previously established are sufficient
to prove analogs of Lemmas 4.1, 4.2, and 4.3, and from there to establish that
there exists a sufficiently small open set O such that 0 N A" = ¢,

(8.9) r(z, 8) = c(0)[r(x, 60)]°?, ae. ONA

Since M (z, B, A") is continuous at any continuity point of ¢, the method of
Lemma 6.2 applied in a sufficiently small neighborhood N of z proves that r is
an exponential family on that neighborhood. It must, in fact, be true that in
such a neighborhood

(8.10) r(z, 0) = c(8)e?*, a.e. (V).

This completes the proof of Theorems 8.1 and 8.1".

In particular, when ¢ is monotone non-decreasing there will be a sequence of
disjoint open intervals I; such that {p} where restricted to any given I, is a
one-parameter exponential family. Corollaries analagous to Corollary 7.2, 1-5,
are possible. For instance, suppose

(8.11) w{¢ N (¢(;, I)) N (I; X 1)} > 0
and p{o (¢(L;, 1;)) N (I; X It)} > 0.

Then {p} is a one-parameter exponential family on I; U I; .

The considerations of the preceding paragraph appropriately transformed by
£ of course also apply if the hypotheses of Theorem 8.1 are satisfied.

Recall from Example 3.3 that some hypotheses such as that concerning the
subset 4 in Theorem 8.1 is necessary. It can thus be seen that when ¢ = > ¢
is sufficient Theorem 8.1 and its corollaries give a nearly complete characteriza-
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tion of the situation when it is possible to conclude that the densities are locally
exponential families.
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