SUFFICIENCY AND APPROXIMATE SUFFICIENCY*

By L. Le Cam
Unaversity of California, Berkeley

1. Introduction. The present paper is essentially an investigation of the rela-
tions between various definitions of sufficiency and approximate sufficiency.
Although some of the arguments described here may be applicable to sequential
experimentation, the paper is concerned only with the case where the observa-
tions are taken in one single step.

Our main theorem is a version of the Blackwell-Sherman-Stein theorem on the
comparison of experiments ([4], p. 328) in which a possibility of “sufficiency
within ¢’ has been introduced.

The study of definitions of sufficiency is marred by technical difficulties of a
measure theoretic nature, which may be judged rather irrelevant for ordinary
statistical purposes. To avoid these difficulties we have been led to generalize
the usual description of what is meant by an experiment, ignoring s-additivity
and other regularity conditions. The bulk of the paper is intended to show that
such a generalization is very convenient in many respects. Furthermore, there
is no essential difficulty in returning to the usual system after the main results
have been proved.

The introduction of the term ‘“sufficient statistic”’ is usually attributed to
R. A. Fisher who gave several definitions of the concept (see [10], p. 316 and [11],
713). For the present purposes, Fisher’s most relevant statement seems to be the
requirement ‘... that the statistic chosen should summarize the whole of the
relevant information supplied by the sample.” Such a requirement may be made
precise in various ways, some of which are loosely described below. Accurate
definitions will be found in the main body of the present paper. The following
three interpretations are the most common.

(A) The classical, or operational definition of sufficiency claims that a statistic
S is sufficient if given the value of S one can proceed to a post-experimental
randomization reproducing variables which have the same distributions as the
originally observable variables.

(B) The Bayesian interpretation. A statistic S is sufficient if for every a priori
distribution of the parameter the a posteriori distributions of the parameter given
S is the same as if the entire result of the experiment was given.

(C) The economic interpretation. A statistic S is sufficient if for every decision
problem and every decision procedure made available by the experiment there

Received 8 March 1961; revised 30 June 1964.

1 This paper was started while the author was a fellow of the Alfred P. Sloan Foundation
and terminated with the partial support of the U. S. Army Research Office (Durham), grant
DA-ARO(D)-31-124-G83. It is a revision of a Special Invited Paper given at the Washing-
ton, D. C. meeting of the Institute on 29 December 1959.

1419

[
)
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%J%
The Annals of Mathematical Statistics. BINORN

WWWw.jstor.org



1420 L. LE CAM

is a decision procedure depending on S only which has the same performance
characteristics.

The operational definition (A) is essentially a rewording of Neyman and Pear-
son’s interpretation of Fisher’s definition (see [17]). It has been generalized by
Halmos and Savage [12] to avoid certain technical measure theoretic difficulties.
Interpretation (B) may be found in Kolmogorov [14]. It is easily seen to be
equivalent to (A) except again for some technicalities.

Interpretation (C) which underlies the application of sufficiency to Wald’s
theory of statistical decision functions has been very explicitly described by
Bohnenblust, Shapley and Sherman in an unpublished Rand Memorandum. It
has been studied by Blackwell [2], [3], Sherman [18], Stein [19] and Boll [5]. The
Blackwell-Sherman-Stein theorem states the essential equivalence of (A) and
(C). Recently, it has been observed that there exists a definite connection be-
tween this theorem and the Choquet representation of points of convex sets by
integrals over the boundary of the set [8]. Through the work (still unpublished)
of Cartier, A. P. Meyer and V. Strassen, simple general proofs of both results are
now available.

The definitions (A) and (C) lend themselves to an interesting extension involv-
ing two experiments and the possibility that one of them be approximately suffi-
cient for the other. It will be shown that an approximate Blackwell-Sherman-
Stein theorem is still valid. Also, it will be shown that under very restrictive but
unavoidable conditions a small perturbation of a sufficient statistic leaves it
approximately sufficient.

To bypass the measure theoretic difficulties involved in the study of these
matters we shall first develop an adequate description of what is meant by an
experiment. This will be the object of Section 2. Section 3 describes randomized
maps in this framework. Section 4 gives our extension of the Blackwell-Sherman-
Stein theorem. Section 5 gives applications to the problems connected with
sufficiency itself. Section 6 indicates the relations between our description of
decision procedures and the more usual ones. Section 7 investigates perturbations
of sufficient statistics and the stability of statistical methods.

2. Experiments and related spaces. A distinctive feature of classical statistics
is that it concerns itself with mathematical structures called “‘experiments.”
These are essential to the definition of decision procedures and their risk func-
tions or performance characteristics. They are also essential to the preseriptions
for the selection of decision procedures. Classically an “‘experiment” is a triple
consisting of a set I of ““possible results of the experiment,” a o-field @ of “ob-
servable events” represented by subsets of & and a family ® = {Ps ; 6 ¢ O} of
probability measures on {, @}, Each 6 represents a possible theory about the
physical system under consideration.

We shall find it convenient to replace this system {X, @, ®} by a weaker strue-
ture consisting of a vector lattice with a unit, E, together with a family indexed
by O of positive normalized linear functionals on E.
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To facilitate a return to the usual structures we shall, in addition, retain the
set %, assuming that F is a vector lattice of bounded numerical functions on .
The elements of E represent the bounded observable random variables and the
values of the linear functionals are their expectations. The representability of
the lattice E by functions on X corresponds to a restriction on the generality of
E which will be described further on.

To be precise we shall use the following definition.

DeriNtTION 1. A single stage experiment & = {0, E, &, {Ps}} consists of a
set O, a set E of bounded numerical functions on a set € and a map 6§ — Py
which to each 6 ¢ © associates a numerical function Py defined on E. The system
is assumed to satisfy the following requirements.

(i) E is a vector lattice for the usual operations carried out point by point.

(ii) The function 7, identically equal to unity on %, is an element of E.

(iii) Each P, is a positive normalized linear functional on E.

(iv) E is complete for the norm [|f|| = sup {[f(z)|; = & }.

Explicitly, if f and g are elements of E and if o and 8 are real numbers, then
of + Bg is an element of E. Also the pointwise supremum f v g and the pointwise
infimum f A g are elements of E.

For f ¢ E the value of Py at f will be denoted fPs . The reader may wish to con-
sider this an abbreviation of the usual [ fdPs or [ f(x)Pe(dz).

That each P, is positive means that f = 0 implies fPy = 0. The word ‘“‘nor-
malized” means that f = I implies fPy = 1.

Positive normalized linear functionals will also be called expectations.

The completeness requirement (iv) is harmless and added here for convenience.
It implies that E is also an algebra of functions, so that in particular if f and ¢
are in F so is their pointwise product fg.

As example of an experiment consider the following: 9 is the interval [0, 1],
the set E is the set of continuous numerical functions defined on [0, 1] and © is
the set of all probability measures on the Borel sets of [0, 1]. To each 8 corresponds
the linear functional P, defined by fPy = [ f(x)8(dx).

If © was restricted to, say, measures which are absolutely continuous with
respect to Lebesgue measure, it would be rapidly clear that the space E is not too
convenient a space to handle. For instance, let B* be the set of functions f ¢ E
such that 0 < f < 1. These are the continuous test functions. To restrict oneself
to BY would mean that there would be sequences {f.} of tests which show all
intentions of wanting to converge to a bounded function g (in the sense that
[ |f» — g| dPs — O for instance) but g is not in E.

The usual passage from step functions, or continuous functions to measurable
functions has for avowed goal to give every Cauchy sequence some limit to which
it will converge. ‘

Unfortunately, the definition of integrals is very closely allied to passages to
the limit for sequences only. When the set {Ps ; 0 ¢ O} is large sequential limit
arguments are no longer adequate. They may be replaced by topological argu-
ments. To simplify proofs it is very convenient to replace B by a completion
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B* such that any arbitrary directed system {f,}, f, ¢ BT which is a Cauchy system
for each of the metrics [ |[f — g| dPs automatically possesses a limit in B

The elements of the completion may or may not be representable by point
functions. However, this is relatively immaterial. The possibility of such a com-
pletion and a crude avoidance of sets of measure zero are the main reasons
for the introduction of the above definition of experiment together with the
following elaborations.

Although one could complete E directly as indicated above, it appears to be
more convenient to use a devious procedure which is itself nothing much more
complicated than the “Dedekind cut” type of completion procedure.

Note first that, in the classical situation, when all the measures P, are ab-
solutely continuous with respect to a given finite measure p the space of u
integrable functions and the space of bounded measurable functions are very
useful entities. In general, one can introduce a space L and a space M which are
defined by the experiment & and which play for it the same role as the spaces of
equivalence classes of u integrable functions and the space of equivalence classes
of bounded measurable functions. The spaces L and M will now be described.

Let V be an otherwise unspecified vector lattice. By the interval [f, g] of V
will be meant the set [f, g] = {v;ve V,f < v < g}. A linear functional defined on
V is called order bounded if it transforms the intervals of V into bounded sub-
sets of the line.

The space of all order bounded linear functionals on V will be called the Riesz
dual of V and denoted V*.

A vector lattice is called order complete if every bounded subset S of V
possesses in V a supremum denoted sup S. The Riesz dual V* is always order
complete.

The supremum f v 0 of f and zero will be denoted f*. Similarly f~ = [(—f) v 0]
and |f| = f* + f~. Two elements f and g of V are called disjoint if |f| A |g| = 0.

Let V be an order complete vector lattice. A linear subspace F of V will be
called a band if there is another linear subspace G C V such that

(i) every f e F is disjoint from every g ¢ G,

(ii) every positive v & B can be written v = f + g with f =2 0, fe F and
g=0,9¢eG.

With these notations the spaces L and M of the experiment § may be defined
as follows.

DerINITION 2. Let & {0, E, X, {Ps}} be an experiment. Let E* be the Riesz
dual of the vector lattice E.

The space L defined by the experiment & is the smallest band of E* which con-
tains the set {P, ; 0 ¢ ©}.

The space L inherits the order of E*, the relation Q = 0 meaning f7Q = 0
for every f ¢ E. Since L is also a vector lattice the following definition is possible.

DeriNITION 3. The space M defined by the experiment & is the space of all
order bounded linear functionals on L.

Each element f ¢ E provides an element of M since the expression fu is linear
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in 4 and in f. However, two elements f; and f; of E may very well give the same
element of M. Thus it is convenient to introduce still another space E which is
the space of equivalence classes of elements of E, two elements f;, 7 = 1, 2
being identified if (f; — fo)u = O for every u & L. The space E is also a lattice
if f = 0 means that there is an f ¢ f such that f = 0in E.

The relations between the spaces E, L and M can be described as follows. Let
F and G be two vector lattices. A bilinear function (f, g) — {f, g) defined on
F X @ is called positive if (fT, g*) = 0 for every f¢ F and g ¢ G. One says that
this bilinear function pairs F and G if (f, g) = 0 for all g &€ G implies f = 0 and
{f, 9> = Oforall f ¢ F implies g = 0. In such a case the elements of # may be con-
sidered linear functionals on G and the elements of G may be considered linear
functionals on 7, so that F is linearly identifiable to a subset of @* and @ to a
subset F*.

We shall say that the positive bilinear function (f, ¢) — (f, g) places F and
@ in lattice duality if it pairs them and if the linear imbedding preserves the
lattice operation. Explicitly F and @ are in lattice duality if g = 0, g ¢ G implies

<lfly g> = 8sup {<f’ h); hé‘G, |h| = g}
and if f = 0, f ¢ F implies
(f, lgl) = sup {<h, g); he F, |h] < f}.

It is equivalent to say that two elements of F which are disjoint in 7 are also
disjoint when considered as elements of G* and similarly interchanging the roles
of F and G.

If F and @ are two vector lattices in lattice duality one can define several
topologies on them. One possibility is the weak topology w(F, G) defined by
G on F. This is by definition the weakest topology making the elements of G
continuous. Another possibility is as follows.

DEerINiTION 4. Let F and @ be in lattice duality. The structure of mean con-
vergence induced by G on F, denoted here B(F, @), is the structure of uniform
convergence on the intervals of @,

For instance, the structure 8(L, M) is simply the structure induced by the
norm, [|ul| = sup {fu; |f| < I, fe M}.

The structure 8(M, L) is such that f, — f if and only if |f, — flu — O for
every u ¢ L. Note that E, E and M can also be normed by the general formula
Ifll = inf {X:|f| = A}, but that the norm structure of M is usually strictly finer
than the mean structure. With these definitions one can prove the following

ProposiTioN 1. Let E, E, L and M be the lattices associated to an experiment
&.

(i) The natural tmbedding of E into M is an isomorphism of the linear, norm and
lattice structure of K. )

(ii) Let B = {f;fe E, |f| £ I} be the unit ball of E and let B be the unit ball of
M. Then B is dense in B for the topology B(M, L) and B can be identified to the
completion of B for B(M, L).
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ProposiTION 2. The spaces L and M are in lattice duality. Furthermore, if S
is a bounded subset of L its supremum in L coincides with its supremum in the
Riesz dual M™ of M. The intervals of L are compact for the weak topology w(L, M)
induced by M on L. The intervals of M are compact for the w(M, L) topology.

According to Proposition 2 the 8(M, L) continuous linear functionals on M
are precisely the elements of L, just as the 8(L, M) continuous linear functionals
on L are the elements of M.

The above Propositions 1 and 2 seem to be well known. They may be proved,
for instance, by showing that the elements of L are “order continuous” on M
and the elements of M are “order continuous” on L. A decomposition theorem
of the Hahn type gives then Proposition 2. Then Proposition 1 follows by ap-
plication of a theorem of Grothendieck ([6], p. 92). Another possibility is to
show that B is dense in B for the order topology which is stronger than
B(M, L).

The next proposition shows that the pointwise multiplication available in E
can be transferred to £ and then extended to M.

PropPOSITION 3. There is one and only one bilinear map (u, v)— w of M X M
into M such that

(i) Iu = ul = u,

(ii) vt = 0.

The multiplication so defined is commutative and B-continuous on the intervals of M.

The validity of this proposition does not depend on the fact that E was a
vector lattice of real functions. It can be proved under the sole assumption that
E and L are in lattice duality.

This procedure has the supplementary advantage of ignoring the set & itself.
It leads to the introduction of another set Z which could be used instead of .
In any case Z may be used as an assist in intuition. The following proposition
summarizes the situation. Consider the space M as an algebra for the multiplica-
tion of Proposition 3. A linear functional ¢ defined on M will be called multiplica-
tive if (uv)p = (up)(vp) for every pair (u, v) of elements of M.

ProposiTiON 4. Let Z be the space of all positive nonzero multiplicative linear
functionals on M with the topology w(M * M) induced by M. Let C(Z) be the space
of continuous numerical functions on Z, with the pointwise lattice operations and
the uniform norm.

Then Z is a compact Hausdorff space. The canonical map obtained by considering
the elements of M as functions on Z is an isomorphism of the linear lattice, al-
gebraic and Banach space structure of M onto C(Z).

The above propositions are easily deducible from the results of Kakutani [13].
The space Z introduced in Proposition 4 is often called the Gelfand-Kakutani-
Stone representation space.

We shall also use a version of the Radon-Nikodym theorem borrowed from
[9].

ProrositioN 5. Let L and M be the spaces defined by an experiment &. Consider
M as an algebra for the multiplication of Proposition 4. Let X and p be two elements
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of L such that 0 = u < . Then there is a smallest positive s ¢ M such that uy =
(us)\ for every u e M.

This s satisfies the inequality 0 < s < I and is called the density of u with
respect to A.

Finally, let us mention a result which will be of some interest later.

ProrosiTiON 6. Let S be an arbitrary set and let ®(S) be the space of bounded
numerical functions on S. Let u — u’ be a one-to-one positive linear map of M onto
a linear subspace Q of B(8). For every u = 0, p ¢ L, define wonQbyuy = up.
Then u' is a positive linear functional on Q, such that ' tends to zero for every
decreasingly directed set {u,} converging pointwise to zero on S.

3. Randomized maps and their generalizations. Let & and Y be two sets. Let
E (resp. F) be a vector lattice of bounded numerical functions on the set &
(resp. Y). We shall assume that the lattice and vector operations are the usual
operations defined pointwise and that E is complete for the uniform convergence
on X. Furthermore, it will be assumed that the function identically equal to
unity belongs to E. It will also be assumed that F satisfies the same require-
ments on Y.

An expectation u on F is a normalized. positive linear functional on F. Such
an expectation is called an expectation with finite support if there is a finite set
S=1{y;;7=12, -+, n} of elements of Y and a corresponding finite set of
numbers {p;;j = 1, 2, ---, n} such that fP = D, pif(y;) for every feF.

DEeFINITION 5. A special randomized map D from {X, E} to {Y, F} is a func-
tion z — D, defined on 9 whose values are expectations D, on F subject to the
following two requirements.

(1) For every f ¢ F the function fD defined by z — fD. is an element of E.

(2) For each z ¢ X the expectation D, has finite support on .

If there is a finite set S independent of x which contains the support of D,
for every x ¢ &, the special map D will be called “restricted.”

Consider now a situation where {, E} occurs in the definition of an experi-
ment & = {©, E, X, {Ps}}. Let L and M be the L and M spaces of &. If D is a
special randomized map the function which to a pair (f, A) ¢ ¥ X L associates
the number fD\ (equal to the integral with respect to A of the element fD of
E) is bilinear positive and normalized. That is,

(i) f/'DX" z 0,

(ii) JDX* = N7,
for J ¢ F identically equal to unity.

DerFiniTiON 6. Let & = {0, E, &, {Ps}} be an experiment and let {%y, F}
be a set carrying a vector lattice F of bounded numerical functions. Assume that
the function J identically equal to unity belongs to F.

A randomization from & to {V, F} is a bilinear positive normalized function
on the cartesian produet F X L of F by the L-space of &.

We have just noted that every special randomized map defines such a bilinear
form. Also two special randomized maps which induce the same bilinear form
may be considered equivalent as far as the theories and expectations Py avail-
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able under & are concerned. The justification for the jump from the special maps
to the general ones is simply that the bilinear forms defined by the special maps
are dense in the more general ones as stated in the following theorem.

The space L is a Banach space for its norm. Also the space F is a Banach space
for the uniform norm. In this capacity both F and L possess strong and weak
topologies. Consider in F X L rectangles A X B such that either (1) 4 is strongly
compact in F and B weakly compact in L or (2) A is weakly compact in F and
B is strongly compact in L. Let & be the family of all sets which are finite unions
of such rectangles.

TueoREM 1. Let & be an experiment and let {Y, F} be as in Definition 1. Let L
be the L-space of & and let I be the set of all normalized positive bilinear forms on
F X L. Let 9, be the subset of M corresponding to resiricted special randomized
maps.

Then N, ts dense tn N for the topology of uniform convergence on the elements of 3.

Proor. Let 7 = {v;;7 = 1,2, ---, m} be a finite subset of F. This will be
called a finite partition of unity if v; = O for every j and Y _;v; = J. Let K
be a strongly compact subset of F. For a given ¢ > 0 there exists a finite parti-
tion of unity = = {v;;7 = 1, 2, ---, m} such that on each one of the sets
S; = {y; vi(y) > 0} the oscillation of any element of K; does not exceed e. Let
D be a positive normalized bilinear form on F X L. Such a D can also be iden-
tified to a positive normalized linear map of F to the dual M of L. The image of
v; by the map D will be denoted v;D. Let K, be an interval of L. For every
¢; > 0 and every v;, Proposition 1 implies the existence of an element w; of
E such that 0 < «; < I and |v;D — 4[\| < ¢ for every A ¢ K, . Let u; be an
element of the class u%; . One can select u; such that 0 < u; < 1.

The equality X_; (v;D) = (2_ v;)D = JD = I implies for every k < m
and every \ ¢ K, the inequality

(2w — I\ = X e
1<k i<k

Define v1 = u;, and thenv, = Oby v; + va = I A (u; + u2) and so forth, so that
1)1+7)2+ e +7)k—1+vk =1 A |1)1+1)2+ e —I—vk_l—l-uklandvk % OLetting
n = D & this gives |u; — v;{[A\| < 7 for every 7 = 1, 2, -+, m. Finally, let
vo =1 — D 7v;. The family {v; ;5 = 0, 1,2, ---, m} is a partition of unity
in E and |y;D — vj{|]\| < 2nforj = 1,2, --- , mwhilew|]\| < nforevery Ae K, .

Forj=1,2, :--,mlet y; be apoint y; e S;. For 7 = 0, let y, be an arbitrary
point of . If f & Ky then ||f — > 71 f(y;)vill £ e Let u be the restricted special
map obtained by assigning to x ¢ X the measure u, which gives to y; a probability
equal to v;(x). In other terms p = >m 8,;0; where 6,, is the unit mass at y; .
The preceding inequalities imply

[fu — DN = 9llfll + 2€|[M| + 2ma.

Since ||f|| and [|A]] remain bounded on K; X K, , for any given & > 0 one may
choose € such that 2¢||]\| < «/2 and then % such that [2m + ||f||ln < @/2. Thus
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N, is dense in M, for the topology of uniform convergence on the products of
strong compacts of F by intervals of L.

The conclusion of the theorem can then be obtained by a standard argument
which uses the convexity and boundedness of 9, in the space ® of all continuous
bilinear forms on F X L.

For this purpose consider the space Z = F X L and let » be the measure which
assigns to each z ¢ Z a mass unity. Let ~ be the measure which assigns toz = (f,\)
the mass ||f]| ||\]l. Finally let A be the space of numerical functions ¢ defined on
Z and integrable for 7 with the norm [l¢| = [ |o(2)|r(dz). The space A is a
Banach space. To each ¢ ¢ A corresponds a linear functional on ® by the relation

o 8) = [ ol y)lasylo(da, dy.

Identify two elements of A if they induce the same linear functional on ®.
Since (g, 8)] = ||8ll lll the space & so obtained is also a Banach space for the
quotient norm. It is easily seen that & can be identified to the space of con-
tinuous linear functionals on ®*. Therefore, the closure of the bounded convex
set 9N, for the topology of uniform convergence in the strong compacts of &*
is also its closure for the topology of uniform convergence on the convex w(®*, &)
compact sets of ®*. Since in ®* the convex hull of a w(®*, ®) compact set is
also w(®*, ®) compact the result follows.

4. Approximate sufficiency. In this section the word experiment will refer to
a system & = {0, E, X, {Ps}} as described in Definition 1. To complete the
decision theoretic framework it is necessary to introduce a system {T, C} con-
sisting of a set T of possible decisions and of a vector lattice C of bounded func-
tions on 7. It will be assumed that C' contains the constant functions. We shall
assume given a real-valued loss function W defined on ® X 7. The value of
W at (6, t) will be denoted W75 . The function ¢ — W defined on T will be denoted
W . Finally ||W| will be used to represent

|W|| = sup {|Wi|;6¢0,teT}.

It will be assumed here that for each 6 the function Wy is an element of the
lattice C.

Such an assumption is too restrictive for an elaboration of a general decision
theory. However, there will be no real need to relax it here. Also we shall assume
that ||W]| is finite.

Special decision procedures for such a problem can be represented by functions
z — p, which to each z & X associate a probability measure p, having finite
support on T in such a way that for each u ¢ C' the integral [ w(t)p.(dt) be an
element of E when considered as a function of z. The risk of such a procedure
p is given by the integral

R0 = [ { [ wip. (dt)}Po(dx)-
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By analogy with the discussion of randomization given in the preceding sec-
tion we shall retain this definition for special decision procedures but call decision
procedure from & to {7, C} any arbitrary randomization from & to {T, C}.

To put it differently, we shall identify the set of decision procedures from & to
{T, C} with the set G of all positive normalized bilinear numerical functions on
the product C X L of C by the L space of the experiment &.

This identification achieves two distinct effects. One of these is that two
ordinary decision procedures which differ only on sets of measure zero are not
considered distinet. The other is that, for the topology of pointwise convergence
on C X L the set G is a compact convex Hausdorff space. If p £ G the risk of p
at the point 6 will again be denoted by abbreviation of the usual integral nota-
tion as WypPs .

The Blackwell-Sherman-Stein theorem is a theorem involving two experi-
ments and a comparison of the sets of risk functions available from them. To
facilitate this comparison the minimax theorem is convenient. A fairly general
simple form of the usual minimax theorem may be expressed as follows.

Let 7 be a Hausdorff topology on @. Let ® be the family of compact subsets of
O for  and let O, be the set of all probability measures which are Radon meas-
ures carried by an element of ®. Finally, let X be the space of all numerical fune-
tions defined on © whose restrictions to the elements of ® are continuous.
Topologize X by the topology of uniform convergence on the elements of ®.

DEeriniTION 7. Let D be a subset of &. The set is called subconvex if r; & D
for ¢ = 1, 2 and « €[0, 1] implies that there is an r3 ¢ D such that r; < ary +
(1 — a)rs. The characteristic envelope of a subset D of X is the function
u — x[D, u] defined on O, by

D, 4] = inf {f r(0)u(dd); 7 ¢ D}.

THEOREM 2. Let D; ;¢ = 1, 2 be two nonempty subconvex subsets of K. Assume
that x[D, u] is finite. Let D; be the closure in X of the set of functions we X for
which there is an r & D; such that r < w.

In order that for each v & Dy there be an v & Dy such that v < r it is necessary and
sufficient that

x[D2, u] = x[D1, 1l

for every pe O, .

Proor. This is of course an immediate consequence of the Hahn-Banach
theorem. If 7 & Dy is not in D, since D, is closed, there is a linear functional u
and numbers a, ¢ with ¢ > 0 such that [ »(6)u(d8) = « and [ r'(8)u(ds) =
a + e for every ' ¢ D, . It is easily verified that u is positive hence represent-
able by a Radon measure on a compact subset of ©.

The usual minimax theorem refers to the case where D; consists of a single
element which is constant on ©. Another application of this theorem is the
following. Suppose that D is subconvex and let B be the set of elements r of D
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such that f r(0)u(d8) = x(D, u) for some u ¢ O, . These are the Bayes solutions.
Suppose that (1) for each u there is a Bayes solution, (2) the set B is subconvex.
Then B O D. :

The topology = left arbitrary here is often taken to be the discrete topology.
In this case 0, is simply the set of probability measures with finite support on
©. This set will be denoted ® without further indication of the topology in-
volved.

For application to the present case, let D be the set of all risk functions
6 — WepPs for p ¢ G. Take for  any topology making these functions continuous,
for instance the discrete topology. The set D is convex and compact for pointwrse
convergence on ©. Therefore D s precisely the set of functions u e X such that
r £ u for some r ¢ D. Therefore, the minimax theorem holds for D, the admissible
procedures form a complete class and the closure in g of the class of Bayes pro-
cedures is a complete class.

DEerFINITION 8. Let & = {0, E, X, {Po}} andF = {0, F, Y, {Qs}} be two ex-
periments corresponding to the same parameter space ©. Let ¢ be a numerical
function ¢ = 0 defined on . The experiment & will be called e-deficient relative
to F if for every decision space {T, C, W} and every special procedure ¢ from § to
{T, C} there is a procedure p from & to {T, C} such that

[ WeoPusan) = [ WioQu ua) + W) [ @)utds)

for every probability measure u having finite support on ©.

When e is identically equal to zero Blackwell [2] says that § is “more informa-
tive” than &. If ¢ is constant one can, of course, eliminate the introduction of the
measures belonging to . The inequality is then WepPy < WioQs + €||W]| for
every 6 ¢ ©.

To state our next theorem, it will be convenient to introduce a more specific
class of decision spaces. Note first that if we are concerned only with the values
of the risk functions the choice of an element ¢ of the set T' is equivalent to the
choice of the loss function W* having value W; on 0. In addition, instead of loss
functions W having arbitrary bounds ||[W|| it is sufficient to consider functions
such that |[W| < 1.

Let 8 be the set of all functions from © to [—1, +1]. This set is a compact
Hausdorff space for the topology of pointwise convergence on ©. Let C be the
space of continuous numerical functions on 8 and let W be the function defined
on ® X 8 whose value at (6, ¢) is the value at 0 of the element ¢ of 8. According
to the foregoing argument, there is no loss of generality in restricting oneself
to decision spaces {T', C, W} where T is a subset of 8 and C' and W are, by abuse
of notation, the restrictions to T of the functions just defined.

Let D be the class of decision spaces {7, C, W} defined in this way but with
the added restriction that 7' is a convex compact subset of 8§ having finite linear
dimension.

A special procedure o from the experiment F to {8, C, W} is a map y — o,
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which associates to each y £ Y a probability measure ¢, having finite support
on 8. This map is assumed to be such that the integral yo, = [ v(t)o,(dt) be-
longs to F when considered as a function of y.

Such a procedure will be called nonrandomized if for each y the support of o,
is reduced to one point of 8. By abuse of notation the point in question will
again be denoted g, .

LeEMMA 1. Let u be a probability measure with finite support on ©. Let ¢ be a
special nonrandomized procedure from the experiment F to a space {T, C, W} of the
class D. Assume that T is the closed convex hull of the strict range S of the map
Yy — ay.

There 1s a (general) decision procedure p from & to {T, C, W} such that

f WopPo#(da) < f WOUQO#(do) + 8
if and only if there is a special randomization M from & to {, F} such that
[ (Woa)uPuuids) < [ WooQuu(do) + .

Proor. The proof is immediate in one direction since the combination oM
is a special decision procedure from & to {7, C, W}. In the other direction,
suppose that there is a decision procedure p; such that fWoplPou(d()) <
fWoan(de) + B. Then, since p has finite support, Theorem 1 implies the
existence of a special restricted procedure p such that

[ WeoPaw(an) < [ WooQeu(an) + 6.

Since p is restricted, there is a finite set {s; ;7 = 1,2 ---, n} of elements of T
and numerical functions u; ¢ E such that p assigns to z the measure ) _; u;(z)8, i
where, as usual, 6, denote the probability measure giving mass unity to s. The
u; form a partition of unity in E.

Let S be the closure of S. Each s ¢ T' is a convex combination of elements of
S. Thus replacing each s; by such a combination, if necessary, we can assume
that each s; is an element of 8. Such a modification does not affect the risk func-
tions since Wy is linear in ¢. This being done it is possible to replace each of the
sj € 8 by points ¢; belonging to S itself. This will change the risk functions by an
amount which can be made as small as one wishes by taking the ¢; close enough
to the s; . Therefore, we can assume that p itself has the form z — Y u;(2)8s;
with s; € S.

The set S itself was the strict range of the map y — ¢, . Therefore, for each
s; there is at least one y; € Y such that s; = o,; . Let M be the map which assigns
to z £ X the measure ) _; u;(2)8,; . This is a restricted special map from & to
{Y, F} and p = oM. This concludes the proof of the lemma.

TaEOREM 3. The following conditions are all equivalent.

(1) Thereis a randomized map M from & to {Y, F} such that || MPs — Q|| < €(8)
for every 6 ¢ ©.
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(2) & is e-deficient relative to F.

(8) For {T, C, W} e D let R(8) be the class of risk functions available under
& and let R(F] be the class of risk functions available under F. For every
{T, C, W} eD and every probability measure u with finite support on © the in-
equality

xR (8), 4] S XR(®), ul + W] [ e(o)u(do)

18 valid.

(4) For every {T, C, W} ¢ D, every probability u with finite support on © and
every spectal procedure o available under § there is a procedure p available under &
such that

[ WeoPauia) = [ Waouutds) + 7| [ o)u(an).

Note. If € is identically zero the equivalence of (1) and (2) in the above
theorem is essentially a form of the Blackwell-Sherman-Stein theorem.

Proor. It is clear that (1) implies (2), (3) and (4). Also, taking Theorem
2 into account (3) and (4) are equivalent. Thus it is sufficient to prove that (4)
implies (1). For this purpose let 9 be the set of all randomizations from & to
{y, F}. Let L be the L-space of the experiment &. For the topology of pointwise
convergence on F X L the space 9N is a compact convex Hausdorff space.

If {T, C, W} ¢ D a special procedure ¢ from § to {T, C, W} can be identified
to a procedure from & to {8, C, W}. Let = be the set of procedures obtainable
in this fashion. Then Z is a convex set. Since each W is linear on 8, for every
o £ 2 there is a nonrandomized procedure ¢, namely y — f toy(dt), which has
the same risk function as ¢ itself. More precisely Weo = Wi for each 6. Hence
o is also an element of =. Let f be the function defined on .M X = X O by
f(M, o, n) = [ (Wee)MPou(d6) — [ WeoQou(d8). According to Lemma 1 the
quantity B(e, x) = inf {f(M, o, u); M ¢9M} is not larger than fe(e)u(do).
Let 6(#) = Sup. B(Uy l‘)-

The function f is for fixed u, a bilinear function on 9 X 2. Furthermore, for
fixed p and o ¢ = the function f is continuous on 9. If 8’ > B(x), then for each
o e there is an M, ¢ 9 such that f(M,, o, p) < B'. Hence by Theorem 2
there is an M & 9N, independent of ¢ and such that f(M ¢, u) < B(u) for every
o ¢ 2. This element M of 9 depends on u only. Still assuming u fixed, let § be
a number & £ (0, 1). For each 0 £ © there is an element ¢, of F such that s < 1
and ¢o[MPy — Qo] = (1 — 8)||MPs — Q||. Let O, be the support of u and let
o be the procedure defined as follows. To y ¢ Yy the procedure o associates the
probability measure concentrated at the point o, of 8 such that ¢,(8) = @s(y) if
6 & ©pand o,(0) = 0if 9 £ O, . This is a procedure of the class =. Furthermore,
Wo is precisely equal to ¢s for 6 € @, . Therefore,

(1= 8) [ 1Py ~ Qllutan) = [ olMPs — Qilu(do)

= [ (0WaoDP — WaoQuju(do) = S, 0, ) < 6.
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Since 8 is arbitrary, it follows that [ || MPs — Qsl|u(d8) < B(u).

Consider now for each M & 91 the function 7, defined on ® by ryx(8) =
|MPy — Qo and let ® be the class ® = {ry ; M & M} of functions obtainable
in this manner on ®. The class ® is subconvex since, for a ¢ [0, 1] and for M; =
aM; + (1 — a)M, one can write

r3,(0) = [[MsPo — Qol| £ [la(M1Po — Qo)|| + [[(1 — ) (M2Ps — Q)|
= aru,(0) + (1 — a)ru,(0).
In addition, for each 6 ¢ © the function
M — [MPy — Qo = sup {le(MPs — Qo)|;0¢F, || = 1}

is lower semicontinuous on 9. Therefore, according to Theorem 2 again, there
isan M e 9 such that rx(0) < €(6) for each § ¢ © if and only if inf,, f ru(0)u(d0)
< [ e(8)u(d8) for every u e ©. Hence there is an M & 9N such that |[MPs — Q|
< «(0) for all 9if and only if B(x) < [ €(8)u(d0) for every u ¢ ©. This concludes
the proof of the theorem.

The randomizations from & to {Y, F} are, by definition, positive bilinear
normalized functions on F X L(&), where L(&) is the L-space of the experiment
&. Such functions can also be identified with positive linear maps from L(§)
to the Riesz dual F* of F. It is fairly obvious that nothing much is to be lost by
restricting the range of the map to L(F). This is the object of the following propo-
sition.

ProrosiTioN 7. Let & = {0©, E, X, {Po}} and = {©, F, Y, {Qs}} be two experi-
ments with respective L-spaces L(8) and L(F). The four equivalent statements of
Theorem 3 are also equivalent to the statement that there exists a positive linear
map M of L(&) into L(F) such that

(1] |Mu*|| = [[u™]| for every u e L(8),

[2] |[MPs — Q]| = €(6) for every 6 ¢ ©.

Proor. The space F* of all continuous linear functionals on F can be written
as a direct sum of L(F) and another space G C F* in such a way that the projec-
tions M and I = I — II of F* onto L(F) and G be positive projections of norm
unity. In addition every element of L(F) is disjoint from every element of G.

If M is an arbitrary randomization, the inequality [MPy — Qo =< €(8)
can be written |MPs — Qo] = [|TIMPs — Qo + ||T'MPs|| < €(6). In addition
[T'MPy|| = |MPs|| — |TIMPs|| = ||Psl] — ||TMPs|l. Let A be an arbitrary
positive element of L(F) such that ||A|| = 1. For every positive element p of
L(&) let My = IIMpu + [||u]| — ||TTMu|]]A. This map M extends linearly to the
whole of L(g). Furthermore M; maps L(&) into L(F) and | M:iPs — Q| =
|[IM Py — Qof + |[[Poll — |IMPy|| = €(6). This concludes the proof of the
proposition.

ProposiTION 8. Let & and § be two experiments indexed by ©. Let L(8) and
L(5) be their respective L-spaces. The following statements are equivalent.

(1) For every decision space {T, C, W} of the class D, every probability measure
u with finite support on O, every special procedure o available under § and every
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€ > 0 there is a procedure p (depending on T, u, o and €) available under & such that
[ WeoPouidn) < [ WoaQou(de) +

(2) There is a positive normalized linear map D from L(8) to L(F) such that
DPs = Qs for every Q ¢ ©.

(3) There is a positive linear map D from M(F) to M(8) such that 1D = 1
and such that (uD)Py = uQy for every we M(F) and 6 ¢ ©.

Proor. That (1) and (2) are equivalent follows from Proposition 7. Since
for any experiment & the space M (&) is the dual space of the Banach space
L(8), it is clear that (2) implies (3). Finally to show that (3) implies (2) it will
be sufficient to prove the following stronger result.

LemMA 2. Any positive linear map D from M (F) to M (&) having the properties
described in (3) is automatically the adjoint of a map from L(8) to L(F).

Proor. This is true if and only if D is continuous for the weak w(M, L)
topologies. Equivalently a D satisfying (3) will also satisfy (2) if and only if
for every positive A ¢ L(&) the functional D\ defined on M (F) by u — (uD)\ is
w[M(F), L(F)] continuous. This however is equivalent to the S[M(F), L(F)]
continuity of DX on the bounded sets of M (F). Thus it is sufficient to show that
if u, — 0 for B[M(F), L(F)] and |u,| = 1 then (w,D)\ — 0. However, u, — 0
implies |u,] — 0. Also |u,| — O implies that [|u,|D]Ps = |u,|Q¢ — 0. Therefore,
(wD)\ — 0 for every A Z 0 which is bounded above by a finite sum D_; Py, .
Since [u,| < I, this implies that |u,|DXx — 0 for every X = 0, A ¢ L(&). Hence the
result.

It will be shown further that this proposition contains all formerly available
versions of the Blackwell-Sherman-Stein theorem.

DeriniTioN 9. Let & and § be two experiments indexed by ©. The deficiency
of & relative to § is the number

(8, F) = infy supeco|| MPs — Qo]

where M ranges over all positive normalized linear maps from L(8&) to L(F).
We shall also use a deficiency (8, F; A) for the subset A of ®. This will be
simply

88, F; A] = infy supec||MPs — Q.

The number 8(8, F) + 6(F, &) = A(E, F) defines a pseudometric on the class
of experiments indexed by 0. If A(§, F) = 0, the two experiments & and F are
equivalent for decision purposes.

For certain purposes it is important to note the following. Let ® be the space
of probability measures with finite support on ©. Let B, = [Puu(df) and
Q. = [Qou(d6). Let {& = ©, E,x, P,} andlet § = {0, F, %, §,}. Then é(s, F) =
58, 5).

In addition, suppose that © has been topologized in such a way that both
maps § — Py and 6 — @y be continuous for the weak topologies w{L(8), M (&)}



1434 L. LE CAM

and w{L(F), M (F)}, respectively. If O, is a dense subset of ® then §[8, F; O] =
i[e, F; O] = §[g, FI.

Although the preceding propositions and arguments were carried out using
the full description {®, E, o, {Ps}} of an experiment, it is perfectly obvious that
the set & and the lattice E did not play any real part. The theorems are really
theorems about the L and M spaces and the families {Ps ; 6 ¢ ©} and {Q; ; § ¢ B}
of elements of the L-spaces.

In fact, if the spaces L(&) and M (&) are given, together with the family
{Pe} generating L(&) one can represent M (&) as the space C(Z) of continuous
functions on the Gelfand-Kakutani-Stone space Z of Proposition 4. The experi-
ments & = {0, E, X, {Ps}} and § = {0, C(Z), Z, {Ps}} are equivalent in the
sense that §(8, &) = §(§, &) = 0.

To terminate this section, let us mention briefly two applications of the preced-
ing propositions. The first is relative to problems involving a group of transforma-
tions. The notations needed for the description of invariance being rather cumber-
some we shall limit ourselves to a brief mention of a framework which is roughly
equivalent to the usual one.

Let & and § be two experiments indexed by ©. Let T (resp. V') be a positive
linear transformation of E (resp. F) into itself which leaves the constants in-
variant. Let S (resp. U) bea positive linear transformation of the L-space L(8&)
(resp. L(F)) with the following properties:

(a) 8 (resp. U) is a one-to-one transformation of the set {Ps : 6 ¢ @} (resp.
Qs ; 6 € ©) onto itself.

(b) For every Ps; and every u ¢ E one has uTSPs; = uPs . Also for every @
and every f ¢ F one has fTUQs = fQs .

(C) If SPo = Pol then UQo = Qol .

Let € be a nonnegative number ¢ ¢ [0, 2]. The set 9, of randomizations M
such that ||[MPs; — Q]| < eis a convex set which is compact for the topology of
pointwise convergence on F X L(§).

If S and V are related as assumed above and M ¢ 9. then VMS is also an
element of 9. The map M — VMS is linear and continuous on 91, . Hence,
according to the Markov-Kakutani fixed point theorem there is an M, ¢ 9N,
such that M, = VIM,S.

More generally, let A be an arbitrary set of indices. For each a ¢ 4 let
{Se, Ta, Uy, V.} be linear transformations satisfying the conditions (a),
(b) and (c¢) above. For each « let Ty be the transformation I',M = V.MS, of
9N into itself. If the family {T. ; @ € A} is abelian, or solvable, or more generally
if it admits almost invariant means, there is at least one invariant element M,
of 9, such that My = V,.M,S, for every a ¢ A.

Therefore, if the experiments & and F are “invariant” by the transformations
{Say Ta, Ua, Va} and the system admits almost invariant means, (&, F) = e
implies the existence of an “invariant’ randomization M such that |MPs — Q|| < €
for all 6.

In particular, when the family {Ps ; 0 ¢ ®} is total in L(&) and 8(&, §) = O,
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the equality M Py = Qo defines M/ uniquely so that any family {T, ; @ ¢ A} which
respects this equality is automatically reduced to the identity. Therefore,
8(8, ) = 0 and {Ps} is total in L(&) there is a unique M such that MP, = Q,
and M is invariant by all transformations leaving the system invariant.

The second application is the following. Most proofs of the minimax theorem
in sequential decision problems rely heavily on the assumption that at each
stage the experimenter has the possibility of either stopping observation or
selecting one out of a finite set of possible continuations. The restriction to finite
choice is rather awkward, since the experimenter may have, for instance to
select a particular dose of a drug, which would otherwise be treated as a con-
tinuous variable. It is clear that the usual arguments will apply almost word for
word provided that the selection of the continuation experiment be made in a
set which is compact for the pseudometric A(8, ) defined above. This extends
the domain of Wald’s analysis of the theory of decision functions to a much
larger field in which selection of “levels of treatments,” “position of independent
variables in regression” or similar choices can be dealt with in much the same
manner as the selection of a treatment or experiment in a finite set.

5. Sufficiency. The definition of deficiency given in the preceding section in-
volves two experiments & and & which are related only by the fact that they
have the same index set ©. The classical definitions of sufficiency refer to a much
more restricted situation in which the experiment & is in a certain sense a sub-
experiment of &. An alternative description is that & is a refinement of €.

As was already pointed out in the preceding sections, the sets £ and & or F
and Y are really irrelevant to our purposes, so that the definition of subexperi-
ment given below will involve only the L and M spaces and the family of func-
tionals indexed by ©.

Dermvition 10. Let § = {0, F, Y, {Qs}} be an experiment generating the
spaces L = L(F) and M = M(F). A subexperiment & of F consists of a w(M, L)
closed linear sublattice H of M containing the identity element I of M and of
the family {Ps ; 8 ¢ O} of restrictions to H of the elements Q; ; 6 ¢ © of L.

To say that 6(8, ) = 0 is then, according to Theorem 3 and Proposition 8,
to assert that there exists a positive linear map D of M into H such that ID = T
and (vD)Qs = vQs for every 6 £ © and v £ M.

ProrosrrioN 9. Let M, be a linear subspace of M and let D be a positive linear
map of M into My such that ID = I and (vD)Qy = vQp for every 6 e ® and v ¢ M.
Then there is a posttive linear projection II of M onto a subset H of M such that

(1) I = I and vIIQy = vQy for every v e M and 0 ¢ ©.

(2) T s the transpose of a projection of L into itself.

(3) The tmage H = MII of M is closed in M for the w(M, L) topology.

(4) The image H is a proper sublattice and subalgebra of M. Furthermore
(vIT)u = (vu)II for every ue H and ve M.

(5) The projection I1 is uniquely determined by H.

Proor. Let D be a map having the required property. Then, D* and D, =
(1/n) > #= D* also possess the same property. The sequence {D,} has at least
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one cluster point, say II, for the topology of pointwise convergence on M X L.
It is easily verified that DII = IID = II and that II is a projection.

The second statement which is a consequence of Lemma 2 implies Statement 3.

To show that H is an algebra it is sufficient to show that it is a lattice, since
the algebraic properties are consequences of the lattice ones (Proposition 3).
Let u be an element of H. The inequality ™ = v implies «*II = uIl = u. Hence
uw'll = (ull)* = u*. This can be written «'II = vt 4+ a witha = 0, a e M.
Since II is a projection, we have w'II = w*IIII = w*II 4 aIl. Therefore, all = 0.
This implies allQs = 0 for every 6, hence a@Qy = 0. Therefore, a = 0, and finally
Il = w*. The lattice properties follow.

For the last statement, let « ¢ H be an idempotent. That is, assume u ¢ H
and %’ = w. If v is an element of M one can write

v =ovu+ vl — u),
vII = (vI)u + (vII)(1 — u),

and also
oIl = (vu)II + [v(1 — )]

Note that 4 and 1 — u are disjoint and that |(uv)II| £ ||o||(vII) = ||v||u. There-
fore (vII)u and [v(1 — u)]I are disjoint. Similarly (uv)II and (¢II)(1 — u) are
disjoint. The equality (vII)u + (¢II)(1 — %) = (vu)II + [v(1 — %)]I implies
(vII)u = (vu)II. This proves the desired result for all v ¢ M and « ¢ H provided
u be idempotent. However, in H, finite linear combinations of idempotents are
dense. The result is therefore true for every u ¢ H. To show that II is unique,
suppose that II' has the same properties, for the same algebra H. Then vIlu@Q =
oITuQs = (vu)Qs for 6 £ ® and u e H. Thus [vII — vII'IQo = 0 for every ¢ ®
and finally II = II'. This concludes the proof of the proposition.

DeriniTION 11. Let § be an experiment. A closed subalgebra H of M (F) will
be called sufficient if there is a positive linear projection II of M (F) onto H
such that 1IT = 1 and (¢I1)Qs = vQ, for every 6 ¢ ® and v ¢ M(F).

Statement (4) of Proposition 9 shows that the “sufficient’” projection II always
has the characteristic property of “conditional expectations” that (vII)u =
(vu)II for u & H. Thus it is not necessary to require this as a supplementary
condition.

ProrosiTioN 10. Let 3C be the class of all sufficient closed subalgebras of M (F).
This class possesses a smallest element.

ProoF. Since the properties ITI = I and vQy = vIIQp are preserved by pointwise
passages to the limit on M X L, a simple application of Zorn’s lemma shows
that 3C possesses at least one minimal element.

Let H, and H, be two minimal elements corresponding to projections II; and
II,.
Let D = ILIL and let II be a cluster point of the sequence (1/n) Y i D"
Then IT is a projection of M = M (F) onto a subset H of M. Since DII = IID = II
we have ILILII = IILI; = I, hence H C H,. However, H is sufficient and
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H, minimal sufficient, hence H = H,sothat II = II, and consequently ITI,IT, = I, .
Similarly IL.II; = II;. Suppose now that » ¢ Hy does not belong to H;. This
implies » — vII; 5 0. Therefore, there is at least one 6 £ © such that (v — vII;)’Qs
> 0. Also [vII;(v — +II;)]Qs = O, so that v’Qs = (vII1)’Qs + (v — oII;)’Qs >
(vI1;)°Qp . Let v = oII; . The same argument gives (YI2)’Qs < ¥'Qo = (vI1,)’Qy .
Therefore, (vII1I1;)°Qs < (vII;)’Qs < v°Qs . However, vILII, = oI, = v, hence
(vIILIL)°Qs = v°Qs . This contradiction shows that v & H, implies v ¢ H; , hence
H, = H, since H, is minimal. This completes the proof of the proposition.

The following proposition shows that “pairwise sufficiency” is equivalent to
sufficiency.

Prorosition 11. Let H be a subset of M = M(F). In order that there exist a
positive projection II of M onto H such that ITI = I and (vII)u@Qs = (vu)Qe for
every 0 & O, every u e H and every v e M, it vs necessary and sufficient that H be a
w(M, L) closed subalgebra of M, containing the identity I and satisfying the con-
dition that

[Nl = supf[kN|; b e H, |b] < I3,

for every \ of the form N = a1Qs, — @sQo, With a; and as real and positive.

Note. The above proposition implies in particular that if H is a closed algebra
containing a sufficient algebra H; then H is sufficient.

Proor. The necessity of the conditions follows from Proposition 8. To prove
the sufficiency note that for each 6 ¢ ® there is a smallest idempotent s, of H
such that s,Qs = 1. Also for each 6 there are positive linear maps Cy of M into
H such that (1) ICy = I and (2) vCou = (vu)Co for v e M and u ¢ H and (3)
[vColuQs = vuQe for every v ¢ M and u ¢ H.

If II is a projection having the qualities claimed in the proposition, then
[vCslse = (vII)ss . Indeed we have (vII)uQs = (vu)@s = (vCs)uQs . This implies
[vIT — vCs|Qs = O, hence [vII — vCo]ss = 0. Let A4 be the operation v — vA4, =
[vCs]se . One of the consequences of the existence of II is that 44,85, = Ag,se, for
every pair (61, 6;) of elements of @. Indeed this equality is nothing more than
H891892 = H802801 .

We shall now show that the equality Ag,ss, = 44,8, implies the existence of II.
For this purpose, according to (4) of Theorem 3 one can assume that © is finite.
Let then ® = {6;;7 = 1,2, ---, k}. Further, let v1 = s5, and let v; = s, —
max[ss; ;¢ < jl. Let IT be the map defined by

k

oIl = ;(vAoj)'y]‘.

Since the v; are disjoint, II is a projection. Furthermore, oIIQs, = iy vCo;viQe;
= >k, vA0;vi80,Q0; = Dk Ao, viQe, = vA4,Qs; = vQs, . Hence the result.

To complete the proof of the proposition it remains to relate the equality
Ag;85, = Ag,se, to the property of the norm of A = aiQs, — a:Qs, . For this
purpose it is clearly possible to assume that @ consists precisely of the only two
elements 6, and 6. . Let then S = @y, -+ @, and let f; be the density of @, with
respect to S. The existence of these densities is the subject of Proposition 5.
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One can define as usual the element g = sign(eufi — asfe) of M. The norm ||A|
is equal to {gla:fy — asfo]}S. Let h e H, |k| < I be such that kA = h(aifi — asf)S
= [IMl.

Note that ¢ = I and that g(esfi — asfe) = |afi — aofs|. Therefore,
g(aifs — asfa) — h(agfi — asfe) = 0. The equality A\ = ||A|| implies [g(eufi —
asfs) — (gh)g(aufi — asf2)]S = 0, hence [ — gh][\| = 0. Equivalently |1 — gh| [)|
= 0. This shows that g must be |\| equivalent to k. The conclusion follows by a
classical argument.

If § is an experiment, let H be the minimal sufficient subalgebra of M (F).
We shall say that {©, H, {Q}} is the minimal equivalent form of &. In this
definition, the equivalence relation used is the relation which states that & and
F are equivalent if (8, ) + 8(F, §) = 0.

ProrosrTioN 12. Let & = {0, E, X, {Ps}} and § = {O, F, Y, {Qo}} be two experi-
ments and let & = {0, G, {Ps}} and § = {0, H, Qo} be their minimal equivalent
forms. The two experiments & and F are equivalent if and only if the correspondence
Py <> Qg extends to an isometry of the L-spaces of their minimal forms transforming
positive elements into positive elements.

Proor. Let L be the L-space of & and let L, be the L-space of §. The corre-
sponding M-spaces are M, = G and M, = H respectively. If & and § are equiva-
lent there is a randomization R from & to & such that RPy = @ and there is a
randomization 8 from & to & such that SQs = Py . Let D be the map RS from
L to L. Clearly D is positive and |[DA]| = [A|l. The adjoint map u — uD of
M, into M, is such that ID = I and (uD)Q = uQe for every 6. Let IT be a
projection which is a cluster point of the sequence (1/n) Y -y D*. Then DI =
I = IID. Thus the range of II is contained in the range of D. Further, this
range is w(M;, L;) closed and it is a sufficient subalgebra. It follows from the
minimality of M that the range of II is equal to M . Therefore, II is the identity
map of M, onto M . Since D and II are contractions on L, , this implies that D
itself is an isometry of L, onto itself. From this it follows that both contractions
R and S must be isometries.

If R were an isometry of L; onto a proper subspace of L, the adjoint map
u — uR from M, to M, would have a nonzero kernel. However, R = 0 implies
uRS = 0 so that RS could not be an isometry. It follows that R is an isometry
of L, onto L, and S is an isometry of L; onto L;.

Conversely, an isometry T of L, onto L; is necessarily of the form ThA =
A\ + » where A is linear and » = T0 ([1], p. 166). Since 70 = 0 by assumption,
the isometry T is linear and positive. Hence the result.

CoROLLARY. The two experiments & and § are equivalent if and only if the linear
spaces spanned by {Po ; 8 € ©} and by {Qs ; 0 £ O} are isometric.

This follows immediately from Propositions 8 and 12.

Consider two experiments & and & indexed by the same set ©® but otherwise
unrelated and suppose that the deficiency of & relative to & is equal to zero.
Since the spaces E, X and F, Y are not interconnected, one cannot say that &
is sufficient in the above described sense. However, it is possible to construct
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another experiment G which has both & and & as subexperiments and which has
& as sufficient subexperiment

For this purpose let § = {0, E, X, {Po}} and let F = {O, F, Y, {Qs}}. On the
cartesian product Y X & let G be the uniform closure of the vector space F @ E
constituted by the functions g which are finite sums ¢ = Y, fu;, fi¢ F and
u;j ¢ E. The space G is a vector lattice containing the unit function. Let R be a
randomization such that RPy = Q, for every 0 ©.If g = D fru;e F ® E let

g8 be defined by
98 = 2. fiRu;Pa.
J

Clearly, Sy is a positive normalized linear functional on F ® E, hence Sy
extends uniquely to G. Let G be the experiment ¢ = {0, G, Y X X, {Ss}}.

This experiment contains & as subexperiment by ignoring y and g contains
F as subexperiment by ignoring z. To show that & is sufficient for G consider the
map M which to A ¢ L(8) associates the linear functional M\ whose value at
g = S fujeF ® Eis gM\ = »_;f;Ru;\. For this map we have MPy = S;.
Since M is obviously positive and normalized the result follows. Thus one can
state the following proposition.

Proposition 13. Let & = {0, E, X, {Po}} and § = {O, F, Y, {Qs}} be two
experiments. The deficiency 6(8, ) of & with respect to F is equal to zero if and
only if there is a suitable combination § = {0, G, Y X X, {Se}} of the experiment
& and § which has & and § as marginal experiments and & as sufficient subexperi-
ment.

Returning to the case of a given experiment § = {0, F, Y, {Q}} with L- and
M-spaces L = L(F) and M = M(F), let H be a sufficient subalgebra of M and
let u be a probability measure with finite support on ©. Let C be a vector lattice
of bounded numerical functions on ©. Assume that the function unity is in C
and that C is uniformly complete. On the product F ® C formed by functions
which are finite sums g = Y f;v; with fj ¢ F and v; ¢ C, one can define a positive
normalized linear functional @ * g, by the formula

Qi = [ {31 Qubrs()} (a0).

Except for the rather irrelevant difficulties occurring from the fact that Q % u
is not ¢-additive, one may consider @ * u as a joint distribution of random
variables y and 6.

In this framework various statements of the sufficiency property of H become
available. One of the most common statements is that “given H the variable y
is independent of .”” Another statement is the Bayesian statement that ‘“given
H the variable 6 is independent of y.” Both statements are of course equivalent
to the symmetric statement “given H the variables y and 6 are independent.”

Statements of this nature can be made precise as follows. Consider the L-
and M-spaces of the experiment § = {@, F, Y, {Qs}}. According to Proposition
4 the space M can be identified to the space C(Z) of continuous numerical
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functions on the compact space Z of the Gelfand-Kakutani-Stone representation.
The space H can be identified to a closed subalgebra of C'(Z). More precisely,
there is a quotient space Z, of Z such that H can be identified to the elements
h of C(Z) of the form h = wu o ¢ where ¢ is the canonical map of Z onto Z,.
The space Z, is also a Stonian space.

Consider the space Z X 0. On Z let A be the smallest o-field which makes the
elements of C(Z) measurable and let ®& denote the o-field generated by H.
Finally let @ be the smallest o-field of subsets of ® such that all the functions
0 — uPy, ue C(Z) = M are measurable.

Let u be an arbitrary s-additive probability measure on €. Let @ * u be the
probability measure defined on 2 X € by the same formula as above, that is

oQwul = [ Quv(0) o),

it g = fv, fe M, v bounded and €-measurable. By abuse of notation, the o-field
of cylinder sets & X © on Z X O will still be denoted ¥. Similarly for ® and €.
Let ® v @ be the smallest o-field containing both & and €@ on Z X ©. ‘

The probability measure P = @ * p is a joint distribution of the variables z
and fon {Z X 0, A X e}. To say that given H (or equivalently given ®) the
variable 2 is independent of 6 is to say thatif A ¢ %, then P[4 | ® v €] = P[4 | ®]
a.s. The same condition can be stated in terms of conditional expectations as
follows: If uw e M then fE[u | ®lfy dP = fuf'y dP for every bounded & v @
measurable function f and every bounded ® measurable function y. However,
this equation can also be written

[ BluisiEy |6l ap = [ Bluf| ey ap.

This, in turn is equivalent to E[u | ®]E[f| ®] = E[uf| ®] a.s. P. From this it is
easily checked that the equalities

Eu|® v €] = Elu|® as. P,
Elv |9 = Ely|®] as. P,
Eluwy | ®] = E[u| ®lE[y | ®] as. P,

for u a bounded A measurable function and y a bounded @-measurable function
are in fact equivalent.

This argument is classical in the theory of Markov chains. The translation to
the case discussed here can be made by calling ® the “present,” U the ‘“‘past”
and € the “future.”

It remains to show that this conditional independence given ® is in fact
equivalent to the sufficiency property discussed above.

In one direction, assume that H is sufficient in the sense of Definition 11.
Then there is a projection II of M onto H such that (wv)II = (vII)u for every
we H and v e M. Further, (vI1)uQs = (vu)Qs for every e H and v ¢ M. This
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implies [ (vI1)uQyy(0)u(d8) = [(vu)Qev(8)u(dd) for every probability measure
u on C and every bounded €-measurable function y. Therefore “sufficiency”
implies the conditional independence of % and € given ® for every probability
measure u on C.

Conversely, if % and € are conditionally independent given & for every proba-
bility measure x having finite support on ®, Condition 4 of Theorem 3 is satisfied
with e = 0. Hence conditional independence of  and @ given & for all probability
measures with finite support implies sufficiency of H.

The reader should note that for general measures u on @ we have used the
assumption that for every u ¢ M the function § — uQs is C-measurable. When
the Q¢ are probability measures on a o-field ¥, it is tempting to assume instead
that uQs is C-measurable for every bounded ¥,-measurable function w. This
unfortunately is not enough to allow derivation of the conclusion reached here.

6. Representations. The usual definition of an experiment is that an experi-
ment is a system {X, @, {Ps}, 0 & O} consisting of a set X carrying a o-field A
and a family {Ps ; 8 ¢ ®} of s-additive probability measures on ¥. Let U be the
space of all bounded ¥-measurable functions on %. The replacement of the
system {, @, {Ps}, 6 ¢ ®} by the system {0, U, X, {Ps}} which is an “experi-
ment” in the sense of the present paper does not entail any profound modifi-
cations of the usual concept. The major difference occurs in that the o-additivity
of the probability measures defined on @, which is assumed in most classical
studies, has not even been mentioned, and much less used, in the present paper.

An alternative name for the s-additivity of the measures Py is that the linear
functionals they define on U are o-smooth on {0, X} in the sense that f,Py — 0
whenever the sequence {f.} of elements of U decreases pointwise to zero on .

A stronger property is the property of r-smoothness described as follows. If
E is a vector lattice of functions on &, a linear functional P; on E is called
7-smooth if f,Py — 0 for every decreasingly directed set {f,} of elements of E
which decreases pointwise to zero on .

Let &§ = {0, E, &, {Po}} and § = {0, F, Y, {Qs}} be two experiments indexed
by the same set ©. If §(&, F) = e = 0 thereisa positive linear map R from the
space L(&) to the space L(F) such that ||[RPy — Q|| < e. One may ask whether
such a map E can be used to generate joint s-additive measures on & X Y having
for marginals Py and Qs , respectively. One may also ask whether the randomi-
zation R can be achieved through a map z — p, which to each z £ & assigns a
probability measure on the o-field determined by F.

The present section gives partial answers to these questions. To proceed we
shall first introduce still another class of linear functionals.

Let E be a vector lattice of bounded numerical functions on a set %. Assume
I ¢ E. Let X be the space obtained by identifying the points of 9 which are not
separated by E. Let w[%, E] be the smallest uniform structure on & for which
all the elements of E are uniformly continuous.

DeriniTION 12. A linear functional P on E will be called tight on {X, E} if
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for every ¢ > 0 there is a compact subset K of & and a 8§ > 0 such that u ¢ E,
lu]l = 1 and |u(z)| < & for every z ¢ K implies |uP| < 8.

If a linear functional P is tight on {X, E} and if E, is a sublattice of E then P
is also tight on {%, E,}. Every tight functional is automatically o-smooth and
7-smooth.

Another property equivalent to tightness for positive functionals is the follow-
ing. Let & be the completion of the uniform space %. A positive linear functional
on E can be identified to a positive linear functional on the space C(&) of con-
tinuous functions on X. The statement that P is tight is equivalent to the state-
ment that & is measurable for P and such that P(X) = P(%), measurability
being taken in the sense of Lusin.

From the above remark it follows immediately that

ProposITION 14. An experiment & = {0, E, X, {Po}} 1s always equivalent to an
experiment & = {©, ', X', {Ps}} in which all the P are tight on {', E'}.

To achieve this it is enough to replace X by its completion for the smallest
uniform structure for which the elements of E are uniformly continuous.

If o-smoothness is the only property desired, one can use the following well-
known proposition, which will also be used later.

ProrosiTioN 15. Let X be a set and let E be a vector lattice of bounded numerical
functions on K. Assume that E contains the constant functions and that it is complete
for the uniform convergence on X. In order that every positive linear functional on
E be a-smooth it is necessary and sufficient that every element v ¢ E reach its supre-
mum sup{v(x), x £ X} at some point of X.

For obvious reasons we shall call a system {X, E} having this property a
Weierstrassian system.

When two experiments & and F are considered the possibility of constructing
joint distributions having appropriate marginals on Y X 9 will be in certain
cases a consequence of the following arguments.

DeriniTION 13. An experiment {®, E, X, {Ps}} will be called regular if for
each 0 £ © there is a sublattice £, of E such that:

(1) on every countably generated sublattice of E,, the linear functional is
{C, Eo} tight;

(2) the values of Py on the whole of E can be obtained from E, by the ex-
tension procedure of Daniell.

In this definition “sublattice” is intended to mean a vector lattice £, C E
such that if u ¢ Ey then |u| ¢ Ey. The importance of the Daniell extension pro-
cedure is that the extension obtainable this way is uniquely defined by the
linearity, positivity and s-smoothness properties.

Regular experiments occur very frequently. The following list is far from
exhaustive. &§ = {0, E, &, {Ps}} is regular in the following cases:

. (1) The set X is a complete metric space. There is in % a dense subset whose
cardinality does not exceed the first weakly inaccessible cardinal. The lattice £
is the space of all bounded continuous functions on & and the Pj are o-smooth.

(2) x is a K-analytic set and E is a sublattice of the space of bounded con-
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tinuous functions on X. The P, are o-smooth. (The topological space & is K-ana-
lytic if it is homeomorphic to the continuous image of a K,,; = N,U.Kn..,
where the K., are compact.) Borel sets and analytic sets of complete separable
metric spaces are K-analytic.

(3) xis a cartesian product I = X;{R; ;j £J} of real lines or locally compact
spaces R; for an arbitrary index set J. The space E is the space of bounded
measurable functions for the product o-field. The Py are o-smooth.

ProrosITiON 16. Let & = {0, E, X, {Ps}} and § = {0, E, Y, {Qs}} be two experi-
ments. Assume that there is a randomization R from & to F such that RPy = @
for every 0 ¢ ®. Furthermore, assume that each Py is o-smooth on {E, X}, that each
Qs s a-smooth on {F, Y} and that at least one of the two experiments & or & is regular.

Then for each 0 ¢ © there exists a probability measure Sy on the product & X U
of the o-fields determined on Y by F and on X by E such that

f F()u(z)Ss (dy, dx) = fRuP,

foreveryuc E and feF.

Proor. Let F ® E be the space of functions g which are finite sums of the
type g = D fu; with fe F and u; e E. Let P = Py and @ = Q5. The linear
functional g8 = D_;f;Ru;P is well defined and positive on F ® E. It will be
sufficient to show that S is s-smooth on F ® E, since this is equivalent to the
conclusion of the proposition.

If & is regular let E, be a lattice Ey C E such that P be tight on the countably
generated sublattices of E,. If & is not tight let By = E. Define F, similarly.
Since the extension by Daniell’s procedure from Fo ® E, to F ® E is uniquely
defined by the o-smoothness properties of P and @, it will be sufficient to show
that S is e-smooth on Fo X E,, that is, it will be sufficient to show that if g, =
> Fuoitin.i € Fo ® E, decreases pointwise to zero, then g,S — 0. For any particular
such sequence g, the families {f,;} and {u.,;} are countable. It is therefore
sufficient to prove the result for the case where both ¥ and E are countably
generated and such that either P is tight on {, E} or @ is tight on {Yy, F}.
Assuming this, let %y be the space obtained by identifying the points of % which
are not separated by E. Let &, be the compact metric space completion of 2,
for the smallest uniform structure which renders the elements of £ uniformly
continuous. Let Yo and Y; be defined similarly. Identify E to C(9;) and identify
F to C(Y1). The functional S defined above on F ® E becomes a positive func-
tional on C'(%Y1) ® C(%1). Thus, it extends to a positive functional on C[Y; X Xi).
Equivalently S is a Radon measure on ¢, X ;. The marginal of S on %, is P.
The marginal of S on Y; is Q. Since P is ¢-smooth on {E, X} and since ; is
metrisable, the P outer measure of 9 in 9; is unity. Similarly the @ outer
measure of Yo in Y, is unity. In terms of the Radon measure S this means that
both ;! X %o and Yo X X; have S outer measure unity in Y; X %1 . However,
since one of the two measures P or @ is tight on its set %, or Y, one of the two
sets Y1 X X or Yo X X1 is measurable in the sense of Lusin for S on Y; X X; .
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Therefore, the intersection Yo X Ko = [Y1 X Xo] N [Yo X %] still possesses S
outer measure unity in Y; X %;. Equivalently S is ¢-smooth on C[Y; X i
restricted to Yo X X .

This concludes the proof of the proposition.

Unfortunately it is not possible to remove the regularity condition entirely as
shown by the following example.

Let A be the Lebesgue measure in the interval [0, 1]. Let % be a subset of
[0, 1] and let %Y be its complement. Assume that both 9 and Y have outer measure
unity for A. Let E be the space of restrictions to & of the continuous numerical
functions defined on [0, 1] and let F be the space of restrictions to Y of the same
continuous functions. Index by some suitable set ® the probability measures us
on [0, 1] which are absolutely continuous with respect to A. For each s let Py be
defined by uPs = fu(:v)uo(dx) for ue E and let @, be defined by vQy =
Jv(y)ue(dy) for v e F.

Clearly the two experiments § = {©, E, X, {Ps}} and § = {©, F, Y, {Qs}}
are completely equivalent. To an f ¢ F corresponds fR ¢ E, the function fR being
the restriction to & of the extension by continuity of f to [0, 1]. It is obvious that
RPy; = @ and that the linear functionals Py and @, are not only s-smooth but
even 7-smooth on their respective spaces. Further, both E and F are separable.
However, there is no probability measure S on Y X & such that fRuPy, =
[f(y)u(x)8s(dy, dz). Indeed, for such a measure we would have [u*(¢)us(dt) =
[ (y)Qu(dy) = [w’(x)Ps(dx) = [u(y)u(zx)Ss(dy, dz). Therefore flu(y) —
y()[*Ss(dy, dx) = 0for every u & C[0, 1]. Therefore, in the unit square, Sy , would
be a probability measure concentrated on the diagonal, but the intersection of
the diagonal with Y X & is empty. In the present case the map R is unique. It is
therefore impossible to obtain joint distributions with suitable marginals.

The foregoing Proposition 16 applies in particular to the case where the two
experiments & and ¥ under consideration are such that the deficiency of & relative
to & is zero. In this case we have shown that a joint experiment g can be con-
structed in such a way that G contains both & and F as subexperiments, the
experiment & being sufficient for G. This statement of “‘sufficiency” is not entirely
equivalent to the usual one since we did not even assume o-additivity of the
P 9 and Qo .

In the particular case where one of the two experiments & or ¥ is regular and
where the other has o-smooth functionals the above proposition shows that one
can construct on the sets Y X % themselves (instead to the Gelfand-Kakutani-
Stone spaces) joint distributions S which are s-additive measures and such
that & be in our definition sufficient for ¢ = {0, F ® E, Y X X, {Se}}.

Unfortunately, even in this case ‘“‘conditional expectations given z”” may not
be representable by point functions unless further restrictions are imposed as
we shall now indicate.

Consider now a system {, 9, Py, 0 £ ©} where U is a o-field of subsets of X
and where {Ps; 6 ¢ ®} is a family of s-additive probability measures on .
Let U be the space of all bounded 9/-measurable numerical functions defined on
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%. Let O be the space of bounded functions f such that for each 6 & © there is a
gs £ U satisfying the relation [|f — go| dPs = 0. The system & = {©, 0, &, {Ps}}
and the system & = {0, 0, X, {Ps}} with P, extended to U or O as usual satisfy
our definition of an experiment. The functions belonging to ¥ are precisely those
which are bounded and integrable in the sense of Daniell for every Py, 6 ¢ ©.
Let L be the L-space of 8. This space L = L(8&) is isomorphic to the L(&) space
of &. Indeed, f ¢ O if and only if for each A = 0, \ £ L there is a g £ 0 such that
fIf — gl d\ = 0. Thus every element of L extends to 0 in a natural way and
the restriction map from L(&) to L is a surjective map which preserves the norm.

Let V (resp. V) be the space of equivalence classes of elements of U, (resp. 0),
for the equivalence relation f = g if [|f — g| dPs = O for every 6.

The M-space of & is also the M-space of &, since M is the dual of L. It follows
that V < V < M. Later on, in this section, we shall give examples where V is
properly contained in ¥ and ¥ is properly contained in M. Also we shall give
examples where V # ¥ = M. For the present, note that whenever all the P,
are all absolutely continuous with respect to a fixed o-finite measure, then
V=V=M.

To simplify further statements we shall use the following terminology.

Derinrrion 14. The experiment {@, U, X, {Ps}} is Z-finite if there exists a set
J (of arbitrary cardinality) and a family {v;, jeJ} of idempotents of O such
that

(D) v, = 0,if 7 £ k.

(2) If f is a bounded numerical function on & such that fv; e O for every 7,
then f ¢ .

(8) For each j there is a finite measure A; such that all the restrictions for the
Py to the algebra {vp; v € D} are absolutely continuous with respect to A; .

It is immediate that if {©, O, X, {Ps}} is S-finite then V = M.

To go further, we shall need the following theorem proved in the separable
case by von Neumann [21] and in the general case by D. Maharam [16]. A
simpler proof is due to Tulcea [20].

THEOREM 4. Let {X, U, P} be a probability space. Let O be the space of bounded
measurable functions which are P-equivalent to ¥-measurable functions. Let V = V
be the space of equivalence classes of elements of 0.

There exists a positive linear selection map S from V into O such that

(1) (Sv) ev for everyveV.

(2) 8 is an isomorphism of the linear, lattice, algebraic and Banach space struc-
ture of V onto the subspace SV of 0.

Consider now the L- and M-spaces of an arbitrary experiment. Since L is a
complete lattice, there exists a family {)\;} indexed by a set J of suitable car-
dinality such that

(1) )\jé‘L, A= 0 and ”}\,” = 1.

(2) If j # k then \; and A are disjoint.

(8) If u = 0, ue L then u is the sum p = D jes w7 of its components on the
bands generated by the A; .
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The family {u;} of components of u is summable for the norm and for the
order structure of L. Also u; = 0 except for a countable subset of J.

Corresponding to the family {\; ; j eJ} there is a family {v; ; j eJ} of idem-
potents of M such that y\; = 1 and such that y;u = 0 for every u disjoint from
A; . This family is also such that y;v: = 0 for j # k.

A double family {A;, v; ; j €J} having the above properties will be called a
biorthogonal decomposition of (L, M).

Recall also that (M, L) is the structure of uniform convergence on the in-
tervals of L and that (M, L) is the structure of uniform convergence on the
w(L, M) compact subsets of L.

TuEOREM 5. Let {X, U, {Ps}; 0 ¢ O} be a set carrying a o-field ¥ and a family of
o-additive probability measures {Ps ; 6 ¢ O}. Let & = {O, T, X, {Ps}} be the ex-
periment where O s the space of bounded functions which are for each 6 £ ® equiva-
lent for Py to an Y-measurable function. Let V be the space of equivalence classes of
0 and let L and M be the L- and M-spaces defined by &.

The following conditions are all equivalent.

(1) M=T.

(2) The unit ball of V is complete for (M, L).

(3) The unit ball of V is complete for B(M, L).

(4) If {f.,} is an increasingly directed subset of the unit ball of O there is a g €0
such that fgd)\ = sup, ff, d\ for every N = 0, A e L.

(5) There is an idempotent u & O whose class 1s the identity of V and a positive
linear isomorphism S of the linear, algebraic, lattice and Banach space structure of
V into the space {uv; v & O} such that Sv € v for every v e V.

(6) The experiment & is Z-finite.

Proor. The statements (1), (2) and (3) are all equivalent to the statement
that the unit ball of V is w(M, L) closed in M. Further, it is easily seen that (4)
implies the w(M, L) compactness of the unit ball of ¥ and is in fact equivalent
to this compactness. Thus (1), (2), (3) and (4) are equivalent.

To prove that (1) implies (5) let us introduce some notation. Let {A;, v; ;
jeJ} be a biorthogonal decomposition of (L, M). For every subset A of J let
va = sup {v;;jeA}. Clearly y4\; = 1forje A and yu\; = Oforjz A.

Let V4 be the algebra {y.v; v ¢ M}. Let u4 be an idempotent of the space of
bounded functions on & such that [ u, d\; = 1 for every j ¢ A. Furthermore,
let V4 be the space of bounded functions f such that usf = f and such that for
each j ¢ A there is an -measurable g; for which [ |f — g;| d\; = 0.

The space V4 can be identified to the space of equivalence classes of elements
of V4 , two elements f and g being called equivalent if [ |f — g| d\; = O for every
j & A. Indeed, the L-space of the experiment {4, V4, &, {N\;}} is isomorphic to the
band generated by {N\;; je A} in L.

A triple {A, u4, Sa} consisting of a set A < J, an idempotent u, satisfying
the conditions [ u4 d\; = 1 for j ¢ A and a positive isomorphism S, of the
linear, lattice algebraic and Banach structure of V, into U, will be called a
selection if Suvevforallve V.
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According to Theorem 4 if A is countable, then for every u, there is a selection
{A, ua, Sa}. Let us say that the selection {A, w4, Si} precedes {B, uz, Sz} if
A < Band us C up and uaSp(vsv) = Sa(yvav) for every v e M.

Let $ be a nonempty totally ordered class of selections. Let 7 = U A and
v = sup va and u = sup us. Also forve M, v = 0 let S(yv) = sup Si(vav).
All these suprema are taken as {A, 44 , S4} runs through 8. It is clear that y = v .
Also u is an idempotent and [ ud\; = 1 for every j & T. The map v — S(yv)
extends linearly to the whole of V. Furthermore, the map so defined is ob-
viously a positive linear map which preserves the lattice structure.

To show that {T, u, S} is a selection it is sufficient to show that for » positive
S(vv) has for equivalence class in Vr the element v, However, if {4, us, Sa}
precedes {B, uz , Sp} in 8 we have S (vav) = ua[Sp(vsv)]. Taking a supremum
over B gives Sa(vav) = ua[S(yv)]. Therefore, S(yv) is equivalent to Ss(vv)
for all the A; ; 7 & A. It follows that S(yv) is an element of Vs . Let w be the
equivalence class of S(yv) in V. Then |w — vs|\; = 0 for je A < B. This
implies jw — yw|A; = O for every j e 4, hence w = v = v as claimed.

According to Zorn’s lemma the selections {A, us, S4} possess at least one
maximal element, say {T, u, S}. Suppose that T is a proper subset of J and let &
be an element of J which is not in 7.

Let u be an idempotent of O such that [ w,d\ = 1 and [ w d\; = 0 for
jeT. Any idempotent of the class 1 — v, will have this property. The map
v — (1 — w)S(ym) gives another selection for V. Further, there is a selec-
tion {k, u , S”} according to Theorem 4. Let 7 = T U {k} and

v = max [, w(1 — w)]

and 8’ (yrv) = (1 — u)S(ys) + wS” (vi). The system {T”, u’, 8’} is a selec-
tion of Vo and {7, u, S} strictly precedes {7, w', S'}. Therefore, T must be
equal to J, and consequently (1) implies (5).

To show that (5) implies (6) let {\;, v; ; j €J} be a biorthogonal decomposi-
tion of (L, M) and let S be a selection map of M into a space {uv; v € O}, where
u is an idempotent equivalent to unity.

Let v; = Svy;. Then v, = 0 for j 5 k and [ v;d\; = 1 while [v;du = 0
for every u disjoint from \;. Suppose that f is a bounded function such that
fo; e O then f = Y, fv; is also in . Thus & is =-finite. Finally, it is almost ob-
vious that (6) implies (1), so that the proof of the theorem is complete.

CoroLLARY. Let & = {©, 0, &, {Ps}} be a S-finite experiment and let {T, C, W}
be a decision space. If p is a decision procedure from & to {T, C, W}, that is, if p
is a positive bilinear normalized function on C X L(&) there is a map x — p,
which assigns to each x & X a positive normalized linear functional p, on C in such
a way that ypA = [ (vp.) d\ for every v € C and \ ¢ L.

If in addition the system {T, C} is Weierstrassian, then each p. is the integral
with respect to a probability measure on the o-field generated by C on T'.

The Weierstrassian property of {7, C} is often available in practice. If T is a
compact or “pseudocompact’ topological space and C is the space of continuous
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functions on T, then {T, C'} is Weierstrassian. Also, if T a set carrying a o-field ®
which is countably generated, the system { T, ®} is isomorphic to a system consist-
ing of a Borel subset 7" of a Polish space together with its o-field of Borel sets if and
only if there is a uniformly complete, uniformly separable lattice C of bounded
functions on T such that (1) I £ C, (2) ®is the o-field generated by C, (3) {T, C}
is Weierstrassian.

When the experiment & is not =-finite the positive part of the unit ball of
V is properly contained in the positive part of the unit ball of M. Thus there exist
increasingly directed families {¢,} of “test functions,” ¢, e, 0 < ¢, = 1 such
that there is no test function ¢ for which f ¢ dPy = sup, f @, AP for every 6.

The situation is of course not improved if we limit ourselves to elements of U
instead of 0. Since U is dense in U the same difficulty will appear.

The foregoing corollary indicates that for =-finite experiments all the various
definitions of sufficiency become essentially equivalent provided one is allowed
to use the functions of U instead of those of V. It is fairly clear that the restric-
tion to U instead of 0 is, in most cases, a matter of mathematical convenience.
In all situations where many different o-fields will be involved, for instance in
sequential situations, strictly measurable functions are easier to handle than
functions which are equivalent to measurable ones. However, in some very
simple situations the use of 0 has some advantages and the restriction to U can-
not be easily justified on practical grounds.

An example can be constructed using the ordinary Brownian motion process.

Let © be a set of pairs 6 = (o, v) where ¢ is an arbitrary positive number and
where v ranges through a certain set of continuous functions having square
integrable derivatives # on the interval [0, 1]. Let X = {X,; te[0, 1]} be a
stochastic process with independent normal increments having expectation zero
and variances E|Xun — Xi* = h, for b > 0.

Let & = C[0, 1] be the space of continuous functions defined on [0, 1]. Let A
be the o-field induced by the coordinate functions  — z(¢). This is the Borel
field of the complete separable metric space C[0, 1]. For z ¢ & let W, (x) be defined
by

Wa2) = X |(o(k +1)/2") — ab/2'F5 b = 0,1, -+, 2" — 1.

Let W(z) = lim sup,-« Wa(z) and let %, be the set {z: W (z) = o}. For8 = (o,v)
let Py be the distribution on C[0, 1] of the process » + ¢X. Note that W is a
Borel measurable function on X and that Po[W(z) = o] = 1 for every 8 = (o, v).

Let f be a bounded function defined on [0, «]. Let g(z) = f[W(x)]. Any such
function g belongs to the space O of functions which are bounded and Pe-in-
tegrable for each 6 since Po[f[W (z)] = f(¢)] = 1. However, if we require in addi-
tion that g be Y-measurable, the set B = {o: f(¢) < b} must have an inverse
image by W which is in 9. Since W is a map of & onto [0, «] it follows that B
must be a Borel set. Therefore, f must be a Borel function.

For any Borel subset A of & the function § — Ps(A) is a Borel function of
0 = (o, v) if v is considered as element of the Hilbert space where the norm is
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defined by |[v]|> = [ [5(¢)|* dt. Let f be an indicator which is a function of W
only. Suppose that there is a function g defined on X and 2[-measurable such that
[ 1fIW(2)] — g(x)|Pe(dz) = O for every 6 ¢ ©.

Let o be a number such that f(¢) = 1. Then, for § = (o, v) one must have
Po{z: g(x) = 1} = 1. Consider the set A = {z:g(z) = 1}. The set of values of
6 for which Ps(A) = 1 is a Borel set. Since Ps(A) = 1 implies Py (A) = 1 for
any pair (6, 8') with 6 = (o, v) and 6’ = (o, v'), it follows that the set of values
of o such that Ps(A) = 1 is also a Borel set. Thus, the set {¢: f(¢) = 1} must
also be a Borel set.

In this case the class U of bounded -measurable functions and the class of
bounded functions which are equivalent to bounded -measurable functions for
all 6, simultaneously, is a very small subset of the class O of bounded integrable
functions. Also V is a proper subset of V.

The experiment {®, 0, %, {Ps}} is obviously =-finite. The experiment
{©, U, X, {Ps}} cannot be Z-finite.

This gives an example where V < ¥V = M and where V is a proper subset of
V. For an example where V is a proper subset of ¥ and V is a proper subset of
M it is enough to take on the Borel subsets of the line the family of all probability
measures which are either discrete or absolutely continuous with respect to the
Lebesgue measure on the line. In this case the space M is built up of two com-
ponents, one corresponding to the bounded Borel functions on the line and the
other to the space of all bounded functions on the line. The integrals of the latter
functions with respect to the absolutely continuous measures are taken to be
zero.

The relations between the definition of sufficiency used here and the classical
definition of Halmos and Savage [12] can be made more explicit by considering
three increasingly restrictive definitions.

Let {©, U, %, {Ps}} be an experiment where the measures @y are s-smooth on
the set U of all bounded -measurable functions on a set X carrying a o-field 9.
Let U, be the set of all bounded measurable functions with respect to a sub-o-field
®cC A Let V, V, M, Vy, V,, and M; be the corresponding spaces. The follow-
ing properties are increasingly restrictive.

(S1) For every f e there is a g ¢ M, which is equivalent to the conditional
expectation of f given ®, whatever may be 6 ¢ ©.

(82) For every f e there is a g ¢ 0; which is equivalent to the conditional
expectation of f given ®, whatever may be 0 ¢ 6.

(8;3) For every f e there is a g € U; which is equivalent to the conditional
expectation of f given ®, whatever may be 6 ¢ ©.

It is clear that (S;) and (S:) are equivalent whenever the experiment
{©, O, X, {Qe}} is o-finite. Even without this restriction (S;) implies that for
discrete probability measures u on ® or for measures such that the map § — @,
be Bochner integrable the a posteriori distribution of 6 given U depends on ®
only. In fact (S;) is equivalent to this. Under general conditions (S;) is strictly
weaker than (S;) and (S;) is strictly weaker than (S;).
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Both (S;) and (S;) have the unfortunate feature that a sub-o-field ®; of ®
may satisfy them while ® itself does not (see [7]). This is of course not possible
for (S;).

When the experiment {0, U, &, {Q,}} itself is =-finite, all three properties are
equivalent.

7. Stability of statistical concepts. The present investigation arose from
studies concerning the asymptotic properties of various statistical procedures. A
general type of question occurring in such studies will now be described in a
simple framework. Applications to asymptotic problems require more elaborate
definitions and notations. For this reason they will be described elsewhere.

In many statistical problems, the family {Q, ; 0 ¢ ©®} of expectations under
consideration is, or should be, suggested by the construction of an appropriate
model of the physical phenomenon under investigation. In this case, it may
happen that while a model constructed according to a theory 6 suggests an
expectation Py the phenomenon under observation would be much better repre-
sented by another expectation @ .

A similar situation occurs if a model leads to a very adequatefamily
{Qs, 6 € ®} which is too cumbersome for satisfactory handling. The statistician
will then be tempted to replace the complicated family {Qs ; 6 ¢ ®} by a simpler
family {Ps ; 8 ¢ ©}. Such replacements are made without much justification in
many “asymptotic” arguments. A particular type of replacement is studied in
detail in [15].

The use of a family {Ps ; 6 ¢ O} instead of {Qs ; 6 ¢ ©} entails inaccuracies of
two kinds. The selection of an optimal or nearly optimal procedure may be
affected. Also, for a given procedure, the evaluation of its performance charac-
teristics may be affected.

Under such circumstances it seems sensible to abide by a “‘stability principle”
which can be stated as follows.

“Differences between the families {Py ; 6 ¢ ®} and {Qy ; 0 £ O} which are ex-
tremely unlikely to be detectable by observation should not grossly affect the selection
of optimal or nearly opttmal procedures.”

Because of the specialized nature of the problems usually treated in textbooks,
this principle of stability has not received the attention it deserves, although the
trends toward or away from the use of certain methods often reflect considera-
tions of this nature.

To be able to state more precisely what is meant here by stability we shall need
several definitions. First, recall that a one-stage statistical problem consists of
an experiment § = {0, E, X, {Po}}, a decision space D = {T, C, W} and a set
D of decision procedures from & to {T, C, W}.

The decision procedures are positive bilinear normalized functions on the
product C X L of C by the L-space of & A decision function or procedure is
therefore the same general kind of object as a function from & to 7', even though
the relation may be somewhat recondite here.

A method is a function whose domain is a certain class of triples {&, D, D}.
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For each {8, D, D} the value of the function is an element of D.

In addition to methods, it is also convenient to use “principles” such as the
“invariance principle” or the “sufficiency principle.” We shall call “principle”
any class of quadruples {&, D, D, Do} where Dy is a subset of . For instance, the
“sufficiency principle’”’ states that in any problem one may restrict oneself to
the subset Dy C D consisting of the procedures which depend only on the minimal
sufficient statistic.

With the above definition of a method it is possible to give several different
meanings to the concept of stability of a method, the general idea being roughly
that a method is stable if it is continuous for suitable topologies on its domain
and range. Different choices of topologies will give different definitions of sta-
bility.

Because we do not know how to relate experiments referring to different index
sets © of “theories,” we shall be forced to restrict ourselves here to classes of
problems having the same index set . For reasons of simplicity we shall limit
ourselves to one particular choice of topologies given by very specific metrics.

Specificially, consider a set of decision problems of the type {®, E, X, {P4},
T, C, W, ®}. Assume that all the problems of the set have the same index set ©
and the same domain space {7, C, W} and that D is the set of all (generalized)
decision procedures. Assume also that |[W| =< 1.

Under these conditions, a method is simply a function m defined on the set §
of experiments of the form § = {0, E, &, { Ps}} occurring in the specified class of
problems and taking values such that m (&) is an element of the set D(&) of
decision procedures available under &.

If p and o are two decisions, relative to the same experiment or not, let d(p, o)
be the supremum

d(P’ O') = Supe IR(07 p) - R(oy O')I

of the difference of their risk functions. For two experiments & and & let A(§, F)
be the pseudodistance A(8, F) = max {5(&, F), 8(F, &)}, maximum of their
relative deficiencies.

DEeriNITION 15. A method m is stable on 8 if for every ¢ > 0 thereisany > 0
such that A(&, F) < 5 implies d[m(8), m(F)] < e.

This is simply uniform continuity for the pseudometrics A and d. One could
also use one-sided definitions at a point & ¢ 8. This gives at least two nonequiva-
lent definitions.

Another more interesting possibility is the one which occurs when the ex-
periments & and § have not only the same set of indices ® but also the same
sample space  with the same lattice E. Let & = {0, E, X, {Ps}} and let
F = {0, E, X, {Q}}. If pis a special procedure associating to x £ X the proba-
bility measure p, on {T', C}, it can be used whether & or & is the underlying ex-
periment. For a set § of experiments which differ only by their families of ex-
pectations one can define a universal L-space and a universal M -space generated
by the set of all expectations occurring in 8. In this case we shall define the
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generalized decision procedures as positive bilinear normalized functions on the
product C X L of C by this universal L-space.

Two questions which often arise are the following. Let m be a statistical
method which selects for the experiment & a procedure p. Suppose that p is
applied to F instead of &. Is the risk of p on F very different from what it is on
&? Is the risk of p on & very different from the risk of the procedure ¢ = m(F)
selected by m for F?

The first of these questions has been dealt with in the literature under the
label of “robustness” of the procedure p without reference to the method by
which it is obtained. For the second question, let R(6, p, F) be the risk function
of p on &.

DeriniTiON 16. A method m is stable by substitution if for every e > 0 there
isan > Osuch that A(§, ) < n implies supy |[R[0, m(8), F] — R[8, m(F), F]| < e
and supy |R[0, m(F), &8 — R[9, m(8), &]| < e

It is clear that one could also use one-sided definitions.

Similar definitions can be given for ‘“principles’ replacing the distances between
risk functions by the Hausdorff distances of the sets of risk functions the ‘“‘prin-
ciples” select. -

It is eastly seen that the “principle of sufficiency” is stable and stable by sub-
stitution. In fact this “principle” satisfies a Lipschitz condition.

It is sometimes convenient to use instead of the above supremum distances,
average distances relative to an a priors distribution u on @.

In this case the average distance between experiments & and ¥ can be de-
fined as the maximum of the two numbers inf, [ [[RPs — Qolu(d6) and
infg [ |[Ps — SQs||u(d6) where R ranges through the randomizations from &
to F and S ranges through the randomizations from F to &. Similarly one would
then replace a supremum such as supy [R(6, p, &) — R(6, o, )| by the integral
IIR(G, P 8) - R(O, g, ‘J)I/L(dO)

Call Bayes principle (with respect to u) the function which to {&, D} asso-
ciates the subset Dy of © formed by the procedures p which minimize the average
risk [ R(6, p)u(d6).

On a class of deciston problems where the Bayes procedures exist, the Bayes prin-
ciple 1s automatically stable and stable by substitution for the average distances just
defined.

By way of contrast many of the usual statistical methods, such as the method
of maximum likelihood, the method of moments, etc., are throughly unstable.
For purposes of illustration we shall show here that the method of maximum likeli-
hood is unstable. This method can be described as follows. Let & = {0, E, &, { Py} }
be an experiment where the P, are absolutely continuous with respect to a given
o-finite, s-additive measure u. Choose densities f(6, -) = (dPs/du). Let 6 be a
function defined on & and such that f[f(z), z] = sups f(6, ). Finally select a
t ¢ T such that W[d(x), {] be minimum.

It is obvious that the choice of the densities f(6, - ) does not in any way affect
the experiment, but that it may affect 4. For instance, suppose that Py is the
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normal distribution having expectation zero and variance unity on the line
X. Let ® = (— o, + o). The densities

£(6, ) = 1/2x" exp [—3(z — 6)7]

and the densities
0, 2) = f(6,2) ifz = —9,

=2 ifx = —,

are equivalent. However, in one case 8(z) = z. In another case 6(z) = —=.

It is possible in this example to rule out such trivial modifications by requiring
that the densities form a separable process in the sense of Doob. However, for
every ¢ > 0 there are continuous modifications f* of the densities f such that
||PF — P4|| < eand such that §(z) = —= for the densities f*.

It should be emphasized again that the above concepts of stability refer to
“methods” and not to individual decision functions. The difference can be made
more explicit by analogy with the so-called invariance principle. The most com-
mon justifications of the invariance principle rely on the desirability of obtaining
results which do not depend on an irrelevant.choice of coordinates. This however
can only be a justification for invariance of the “method.” The transposition to
individual decision functions is not at all justifiable on the same grounds. For
example, the method of maximum likelihood is invariant under all permutations
of the index set ® and under all measurable permutations of the set 9. The
classical method of moments is invariant under permutations of ® but not under
permutations of & even though it may occasionally happen that the individual
decision functions it selects are invariant under large groups of transformations.

Finally, we have stated above that the principle of sufficiency is stable.
This does not mean that a small perturbation of a sufficient statistic is also almost
sufficient. .

To be precise, let & = {0, E, &, {Ps}} be an experiment where the Py are
o-smooth. Let S be a sufficient statistic for §. Assume that S takes its values in
some metric space, such as the line or a Euclidean space.

It has been implicitly assumed in some statistical papers that if T', is a sequence
of statistics which converges uniformly to S, then the deficiency of T, relative to
S will tend to zero. If this were true many of the complicated arguments of [15]
would be totally unnecessary. These arguments can be greatly simplified but,
unfortunately, they cannot be entirely omitted since it is very easy to con-
struct examples where the Py have uniformly bounded densities on the interval
[0, 1], where the observation z itself is the minimal sufficient statistic but where
any truncated decimal expansion of z is hopelessly inefficient.

The only results actually available on the perturbations of sufficient statistics
are variations and elaboration of the following. Let {Z, T'} be a set carrying a
uniformly complete vector lattice of bounded functions I' with identity I & I
Let & = {O, E, X, {Po}} be an experiment. A statistic S from & to {Z, I'} will be
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by definition a function # — S(z) from % to Z such that for each v & I the fune-
tion v € S defined by (v o S)(z) = v[S(z)] is an element of E.

Any such statistic defines a subexperiment of &5 of & obtainable by replacing
in & the space E by the space Ej of functions of the form y o S, v ¢ I'.

To simplify the notation, the deficiency of &s with respect to &zona set A — @
(see Definition 9) will be denoted §[S, T'; A].

Also we shall say that a directed set {S,} of statistics coverges in probability
to Sif [ |yoS, — v o8| dPs converges to zero for every 6 ¢ 0.

Prorosrrion 17. Let Qo be the expectation defined on T by vQy = (v o S)Py.
Let @ be the family of sets A C © such that {Q ; 6 € A} be relatively compact for
the norm topology in the L-space generated by the family {Qs ; 6 ¢ O}.

If 8, converges to S in probability, then the deficiencies §[S, , S; A] converge to
zero for every A ¢ ®.

Proor. Let L be the L-space generated by the family {Q,} on I'. For every
ael and pue L let asp be the linear functional defined by v(aeu) = (ya)pu.
If B = {Qs;0¢& A} is relatively compact on L, then for every ¢ > 0 there is a
finite subset {6;; j = 1, 2, ---, k} of A and a corresponding finite set
{aj;7 =1,2, .-+, k} C T with the following property:

Let u = D ; Qo; . For every 6 ¢ A there is at least one a; such that

Q0 — ajon| < e

Select such an «; for each 6 ¢ A and call it ap. Let R = Y Py; . Let Ry and
Rj be the linear functionals defined on E by vRy = v[ag o S]R and vRj = [ay o S,]R.
For the family {Ry ; 8 ¢ A} the statistic S is sufficient. Similarly S, is sufficient
for {R5 ; 0 ¢ A}. Since S, converges in probability to S for e > 0 there is an N
such that » = N implies |@po 8 — a0 S,|R < e for every 0 ¢ A. This implies
IRy — Ri|| < e

Consider now a special procedure p from & to a compact finite dimensional
decision space {7, C, W}. Assume the p depends on S only. Since S, is sufficient
for { R} there isa procedure o, dependingon S, only such that Wyo,R) < WipRj <
WopRy + €|W|| = WopPy + 2¢|W||. Also Weo,Ps < Woa,Ro + €| W|. Finally
Woo,Py < WepPy + 4¢||W||. Hence the result.

Modifications of this result, and applications to asymptotic problems which
require a more elaborate framework will be described elsewhere.

REFERENCES

[1] Banacs, S. (1932). Théorie des opérations linéaires. Monografje Matematyczne, Warsaw.

[2] BrackwELL, D. (1951). Comparison of experiments. Proc. Second Berkeley Symp. Math.
Statist. Probab. Univ. of California Press, Berkeley and Los Angeles.

[3] BLackwELL, D. (1953). Equivalent comparisons of experiment. Ann. Math. Statist. 24
265-272.

[4] BLackweLL, D. and Girsuick, M. A. (1954). The Theory of Games and Statistical
Decisions. New York, John Wiley and Sons.

[5] Borr, C. (1955). Comparison of Experiments in the Infinite Case. Unpublished Ph.D.
thesis. Stanford University.

[6] BourBaki, N. (1955). Espaces vectoriels topologiques. Hermann, Paris.



SUFFICIENCY AND APPROXIMATE SUFFICIENCY 1455

[7] BURKHOLDER, D. L. (1961). Sufficiency in the undominated case. Ann. Math. Statist. 32.
1191-1200.
[8] CHoQUET, G. (1956). Existence et unicité des representations integrales au moyen des
points extrémaux dans les cones convexes. Sem Bourbak: 139 (mimeographed).
[9] DieupOoNNE, J. (1944). Sur le théoréme de Lebesgue-Nikodym II. Bull. Soc. Math.
France. 72 193-239.
[10] FisuER, R. A. (1922). On the mathematical foundations of theoretical statistics. Philos.
Trans. Roy. Soc. London. Ser. A. 222 309-368.
[11] FisHER, R. A. (1925). Theory of statistical estimation. Proc. Cambridge Philos. Soc. 22
700-725.
[12] Haumos, P. and Savaer, L. J. (1949). Application of the Radon-Nikodym theorem to
the theory of sufficient statistics. Ann. Math. Statist. 20 225-241.
[13] Kaxurani, S. (1941). Concrete representations of abstract M-spaces (A characteriza-
tion of the space of continuous functions). Ann. of Math. (2) 42 994-1024.
[14] Kormogorov, A. N. (1942). Sur I’estimation statistique des parametres de la loi de
Gauss. Izv. Akad. Nauk SSSR Ser. Mat. 6 3-32.
[15] Le CaMm, L. (1960). Locally asymptotically normal families of distributions. Univ. of
California Publ. in Statist. 3 37-98.
[16] MamArRAM, D. (1958). On a theorem of von Neumann. Proc. Amer. Math. Soc. 9. 987-994.
[17] NEYMAN, J. and PEARrson, E. 8. (1936). Sufficient statistics and uniformly most power-
ful tests of statistical hypotheses. Statistical Research Memoirs. 1 113-137.
Cambridge University Press, Cambridge.
[18] SHERMAN, S. (1951). On a theorem of Hardy, Littlewood, Polya, and Blackwell. Proc.
Nat. Acad. Sci., USA. 37 826-831.
[19] STEIN, C. (1951). Notes on the Comparison of Experiments. University of Chicago,
(mimeographed). )
[20] IonEscu Turcea, A. and IoNEscu Turcea, C. (1961). On the lifting property I. J.
Math. Anal. Appl. 3 537-546.
[21] voNn NEUMANN, J. (1931). Algebraische Reprisentanten der Funktionen bis auf eine
Menge vom Masse Null. J. Reine Angew. Math. 1656 109-115.



