A k-SAMPLE MODEL IN ORDER STATISTICS'

By W. J. CoNovER
Kansas State University

1. Introduction and summary. Presented here is a new k-sample model in order
statisties, in which £ random samples of equal size are first ordered within them-
selves in the usual manner, and are then ordered among themselves by considering
the size of the maximum value in each sample. The distribution functions and
several probabilities relevant to the model are derived.

Consider k random samples of size n (Xu, Xa, -+, Xu), (Xi2, X2, -+,
X)), oy (Xw, X, -+, Xme), where the X, are independent and identically
distributed according to the absolutely continuous distribution function F(zx).
Arrange each sample in decreasing order, and let Z;, be the greatest random vari-

able in the sample (Xi,, Xor, -+ -, Xur), let Z,, be the second greatest random
variable in the same sample, and so on. The k samples, after ordering, are then
(le ) Z2l y T an), (Z12 y Z22 y T Zn2); Tty (Zlk ) Z2k y T, an)~ FOI'ITI the

set 8 = {Zu, Z12, -+, Zu}, so that the elements of S are the greatest random
variables in each of the k samples. Order the random variables in S, and let Y,
denote the greatest, Y1, the second greatest, and so on to Yy . Then for each
point in the sample space, Z), corresponds to some Yi;. Define Y;; as the ¢th
ranked random variable from the same sample as the Z;, mentioned above. In
other words, for each point in the sample space where Z,, corresponds to Y7,
the sample (Z1,, Zsr, -+ , Zn.) will be denoted by (Yy;, Yy, -+, Y,;). Since
Zw> Zop > o+ > Zn, it follows that Yi; > Yo > -+ > V,;. Y;is called the
1th order statistic in the jth sample. The number 7 is called the rank of Y ; within
the sample, and the number j is called the rank of the sample.

The above model is useful in flood frequency analysis, when it is desired to
combine flood records at several independent stations in an attempt to study
rare floods. Also the above model can be applied in the following situation.
A large number (nk) of displays have been entered in a science fair, at which &
prizes are to be awarded. The judge feels it is impractical to consider all nk
displays at once, and so he randomly divides the displays into k groups of n
elements in each group. He then judges each group separately, ordering the n
displays in each group according to excellence. When each group has thus been
ordered, he then considers the k best displays, one from each group, and awards
the 1st prize, 2nd prize, -- -, kth prize to these k displays according to their
relative excellence. Y; represents the display that was sth best in its group
where the best display in that group won jth prize.
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The distribution function of Y;; is found in Section 2. A method of comparing
Y;; with X, an additional random variable with the same distribution function
F(z), is given by the equation for P(X > Y;), derived in Section 3. Section 4
contains P(Y;;, > Y,,;,) where Y, ;, and Y,,;, are two ordered random variables
from the same array of nk random variables. The results of Section 4 permit the
comparison of any two of the ordered random variables. The comparison of
Y1 with Y, is related to the probability of Y;x exceeding max; Y, ; which was
considered by Cohn, Mosteller, Pratt, and Tatsuoka (1960).

In Section 5 the expected value of Y; is discussed. The fairness of the above
method of awarding prizes is examined in Section 6.

2. The distribution function of Y;; . The following results are well known in
order statistics, and can be found in Fisz (1963), Sarhan and Greenberg (1962),
and Wilks (1962). Let Z; represent the sth order statistic in the single sample,
and let Fiy(z) = P(Z; < z). Assume 4; < ¢;. Then Z;, > Z,, and, for absolutely
continuous F(z),

(2.1) Fi(z) = 2m2 WIF @)1 — F(2)]"

(2.2) Fi(z) = P(Z, < z) = F"(z)

(23) Pz < Z; <z 4+dz) = i(})[1 — F)) ' F(z)]" " dF(x)
Plu<Z, <u+duv<Zy<v+ dv)

(2.4) =/ — DG — 4 — Din — &)l — F(w)]*™

AR (u) — F)]* 7 F )" dF(u) dF(v) if » <u
=0 if v=2u

Pu<zi<u-+duyv<Z; <v-+ dv)

(25) = [nl/(i—2)(n— )NF(u) — F@)[F(0)]"* dF (u) dF(v) if v <u

=0 if »=wu.

It is easy to show that the joint distribution function of Z; and Z; for ¢« > 1is
given by

(26) Gi(t,z) =PZi1<t,Z;<z)=[FQ)"; if t==z
= Xm0 IF@ITF@) — F(@)]™;
if z <t
LeEmMA 1. The distribution of Y1, ts given by
(27)  Fy(x) = P(Yy; < z) = 205 (OIF(@)] ™1 — F'(2))"
and the probability element is given by
(28) P(z < Yy; <z + dz) = j()IL — F*())[F"(x)) 'nlF ()" dF ().

Proor. Consider again the set S consisting of Zy , Z12, -+, Zu . The set S
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then can be regarded as a sample of size k, where the unranked element in S
has the distribution funection F"(z).

The set S is ordered the same way a sample is usually ordered and the random
variable Y;; corresponds to the random variable with rank j from a sample of size
k. The distribution function of ¥3; and the probability element associated with
Y,; can then be obtained from (2.1) and (2.3) respectively. Instead of sample
size n, we now use k, the rank is now j instead of 7, and the population distribu-
tion function is now F"(z) instead of F(z). Substitution of these values into (2.1)
and (2.3) results directly in (2.7) and (2.8).

Lemma 2. Let j be a positive integer and k be a real number such that k = j
Assume that a = 0 and n > 0. Then

(29) [3i(Hn(l = w") W dw = T (=17 WY
ol — 1 = )Xk — )]
2 B = e ()

where (k); represents the product k(k — 1) --- (k — 7 4+ 1).
Proor. To arrive at the first summation, the expansion

(1 - wn)j_l = 0 (]—1)(w”)j—l_a(_1)j_l_a) (7 = 1, 27 3) o )
is substituted into the 1ntegrand of (2.9).
[35(Im — wh) P  dw

= ZiSi() (=) i du

= ISR~ n/al(G — 1 — a) o™/ (nk — na)ls”

= 2RIk (—1)TT@) T al(G — 1 = a)li(k — a)),
G=12---;n>0)

This proves the first part of the lemma.
The second summation is obtained by using induction. For j = 1,

[6 knw™ dw = (@™, (n>0,k 2z 1)

is easily seen to be true. Assuming the relation to be true for j, and integrating by
parts, we have for (j + 1),

[5G+ D(H)n(l —w ™) DR gy

= [(k)j+2(1 — w")'nw™ /j1(nk — nj))e"

+ 3 (R) s’ (1 — w7 i (nk — )] dw
QA — ai@* + [iiGn — ") T dw
(A — am)i(a) 7 + 25 ) — a)*(e™) "
i) —a)¥ @), (> 0,kzj+1).
This is the desired relation.
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THEOREM 1. The distribution function of Y; is given by
Fij(z) = P(Yy5 < z) = 2205 (W1 — P @) F (=)™
(210) 4 2% 2005 X5 i (m(n) (2 (R (— 1)
(F@ITP = [F@)™ )/ (nk — na + 1 — n + B)

where the triple summation in (2.10) is zero for ¢ = 1.

Proor. The case of ¢+ = 1 has already been proved in Lemma 1. For ¢ > 1,
consider again the k samples and also the ordered set S, consisting of Y33, Yy,
-+, Yy . Let Yy, be the random variable representing an unspecified element of
S. Then Y, is the k sample order statistic with rank ¢, from the same unspecified
sample as Y, .

The distribution function of Y;,, for unspecified r, is the same as that for Z;,
given by (2.2), so that

(2.11) Pt <Yy, <t-+dt) = alF()]" " dF(1).

Similarly, the joint distribution function of Y3, and Y, for unspecified r, and
1 > 1, is given by (2.6), from which it follows that

(212) P <Y, <t+d, Y, <z
= Gt 4 dt, ) — Gi(t, z) = (9/0t)Gi(t, x) dt.

It is important to recall that the rank of the group containing Y, depends only
on Yy, , and is indpendent of whatever values the other random variables in the
sample may assume. Mathematically stated,

(213) P(r=j|t <Y, <t+d, Y, <2)=Plr=j7|t<Yy, <t-+d).
Since P(A | B) = P(AB)/P(B), each side of (2.13) can be re written to become
Pr=7t<Y,<t+d, Y, <2)/Pt<Yy, <t+4dt 7Y, <2z)
=Plr=j,t<Y, <t+dt)/Pt <Yy, <t-+ dit)
which is equivalent to
(214) P <Yy<t4+d, Y <z)/PU< Yy, <t+dt Y, <z
=Pt<Yy<t+ dt)/P(t <Yy <t+dt)

where j represents a specified value of the unspecified subseript . Substituting
(2.8), (2.11) and (2.12) into (2.14), and rearranging terms we obtain

(215) P(t< Yy <t+d, Yy <)
= j(HIL — FOVIF ()1 (8/0)Gilt, =) dt.
To find the marginal distribution function of Y;, (2.15) is integrated over all
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values of . Then, using (2.6), we have
P(Y; <z) = [Zoi5HI — FOVTIF' ()] (8/00)Gi(t, x) dt,
(i>1)
(2.16) = [ZaiHI — Fr OV F (O nlF ()" dF (1)
+ [2iHn — FroYIFEo1
20 (WIF @) "m[F(t) — F(x)"" dF(t).

Since the second integral in (2.16) is being multiplied by the factor m:, the
integral disappears when m = 0. Therefore one of the values of the index m can
be eliminated. By changing the order of operations and rearranging terms,
(2.16) can be written as

P(Y; <z) = fiwj('f)nll — F" OV P OF PO dF (1)
(2.17) 2o [2iGmG)F @ E (O = Fr ()™
~[F(t) — F(x)]" 7 dF (¢).

Since F(— » ) = 0, Lemma 2 can be used to evaluate the first integral in (2.17)
by letting w = F(¢) and a = F(z). Then the first integral in (2.17) becomes

(2.18) 2255 (L = F (@) F" ()]
Using the expansions
[l — F () = 2id CHIF (@) (—1)
and

[F(t) — F@)]"" = 2255 ("sHIF@FIF (@)™ P (=1)"7,
the second integral in (2.17) becomes
i 2t 2opme GGmm) () (M) (= 1)
(2.19) AR @) P IIF (O aF ()
= 21 2k 2550 j(HmG) () (g (=1)T e
(F@))"7 = [F@)]™ ")/ (nk — n — na + 8 + 1).
(2.18) and (2.19) combine to give (2.10), and the proof is complete.

3. P(X > Y,;). In an effort to keep the proof to the following theorem as
simple as possible, two lemmas will be introduced at this point.

LemMA 3. Let j be a positive integer and let k be a real number such that k = j.
Then

(3.1) i) 25 1= (k = a)] =
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and
(3.2) S (=) (alG = 1 = )ik — )] = 1/(k);.
Also, for E + (1/n) = 7, n > 0,
(3.3) I (=1)"T"%al( — 1 — a)l(nk — na + 1))
= (1/n)[1/(k + (1/n)),l.
Proor. Let a = 1 in Lemma 2. Then the first summation in (2.9) becomes the
left side of (3.1), and the second summation in (2.9) becomes unity, completing

(3.1). A rearrangement of terms in (3.1) leads to (3.2).
If n is factored from the denominator, and if the substitution

(3.4) K =k+ (1/n)
is used, the left side of (3.3) can be written as
(3.5) (1/n) 232 (1) 7/alG — 1 — a) (k' — a)].

The use of (3.2) and then (3.4) in (3.5) results in
(1/n)(1/(kK"); = (1/m)[1/(k + (1/n))),

which completes the proof of Lemma 3.
LemMA 4. For positive integer j, real number k = j, n > 0, and a = 0,

(3.6) [1255 ()1 — )@ ™ da = 1 —[(k);/(k + (1/n));l.
Proor. Integrating both sums in (2.9) with respect to a gives
(3.7) [§ 255 ()1 = a)*(a") " da
= [i2550 (k) (1)@ ™ /al(j — 1 — a)!(k — a)] da.

The left side of (3.7) is seen to be the left side of (3.6). Term by term integra-
tion by parts applied to the right side of (3.7) results in

(38) (k); 2l [(=1)7"al(j — 1 — a)l(k — )]
— n(k); 2525 [(=1)77al(j — 1 — a)l(nk — na + 1)].

The first and second summations in (3.8) can be simplified by using (3.2)
and (3.3), respectively, which gives the right side of (3.6) and completes the

proof.
THEOREM 2. The probability of an additional random variable X, with the dis-

tribution function F(x), exceeding Y i; is given by
(39) P(X>VYy =1—11— ((¢ = 1/m)k)/(k + (1/n)).

ProoF. The distribution function of X is F(z), and the distribution function
of Y;;is given by (2.10). Then

P(X > Yy) = |Z. Fi(x) dF (2)
(310) = [2 22i% (W)L — F"(x)] [F"(z)]"* dF (z)
+ (2. XA XA T iGmG) (I (EH (=)
-([F(x)]"“‘” — [F@)]™™)/(nk — na + 1 — n + B) dF(z).
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The first integral in (3.10) is given by Lemma 4. Since the second integral
disappears for ¢ = 1, we have

(3.11) P(X > Yy) =1 = [(k);/(k + (1/n))3].

Integrating term by term and rearranging terms the second integral of (3.10)
becomes

(312) j(5) Zi5 [ (=1)T"/(nk — na + 1)]
2 mmim(n) 2055 [(") (=)™ P/ (n— B)].
The use of (3.1) where m = j,n = k, and 8 = a, reduces (3.12) to
(e — 1)i(5) 25 (H(—=1)"7"/(nk — na + 1)

which using (3.3) reduces to
(3.13) (i — 1)(k)i/n(k + (1/n)); .

The substitution of (3.11) and (3.13) into (3.10) for the first and second
integrals respectively, gives (3.9) and Theorem 2 is proved.

The following is an immediate result of Theorem 2.
COROLLARY.

(314) P(Yi+1,i <X < Yﬁ) = (l/n)P(X < Yli); (/L =1, n))

where Y, 1,; 18 defined as — «.

Therefore the probability of an additional random value falling between two
adjacent members of the same sample is independent of the ranks of those mem-
bers within the sample.

4. P(Y;, > Y,,j,).Since Y, ; and Y, ;, are ordered random variables, they can-
not be considered independent. For example, if j; = j; , the two random variables
come from the same sample, and we can say with probability 1 that ¥,,;, < Y,;
if and only if 7o < 7, . If j; # j», assume without loss of generality that 7; < j; .
Then Y, ;, and Y,,;, have not been directly compared with each other, but have
been compared with a third random variable namely Y3, . It is then known that
Y., and Y,,;, are both less than Yy;, .

TueEOREM 3. When comparing sample values from the same collection of nk values,
forj1 < jaand i, # 1,

(41) P(Yan > Yap) = 1 — GG G
2W (= 1)/ (= 1 = )] (= 1)/ (TR ().

Proor. Consider again the set S, consisting of Y11, Y2, -+, Yi . Let Yin
and Y., be two unspecified elements of S. Then Y;,,, and Y, are the elements
of rank 7; and 7; from the same unspecified samples as Y3,, and Y}, , respectively.

Since the samples are independent before they are ranked, Yi,, and Y., are
mutually independent. With the aid of (2.11), this implies
42) Plw <Yy, <w+dw,y <Yy, <y + dy)

=Pw< Yy <w+dw)P(y < Yy, <y + dy)

= n'[F(w)]""[F(y)I"" dF (w) dF (y).
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For the same reason, we have in the case where 72 > 1, using (2.5) and (2.12),
Plw<Yy <w+t+dw,t <Yy, <t4+dt,y <Yy, <y+dy Vi, <t)
=Pw <Yy <w-4dwt< Yy, <t-+dt)
(43) P(y - Y172 <y + dy7 Yizrz < t)
(nY/(a — 2)Un — @) DIF(w) — FOI"F(O)]" dF (w) dF(t)
(8/0y)@i(y, ) dy; if ¢ <w
=0; if t=zw
To find the joint probability element of Y; and Yi;, , for specified values j;
and js, the same argument introduced in the proof of Lemma 1 will be used. The
set S can be regarded as an ordered sample of size k, with elements Yy, , Yy,
-+, Yu , having ranks, 1,2, --- | k, respectively, and the distribution funection
of the unspecified element of S is F"(x). The joint probability element of ¥;; and
Yi1j, can be obtained from (2.4). Instead of sample size n we now use k. The
ranks are now j; instead of 7;, and j, instead of 4. The population distribution

function is now F"(z) instead of F(z). Substitution of these values into (2.4),
and using variables w and y instead of u and v, gives the following equation.

Plw <Yy <wHdwy <Yy <y+dy)
(4.4) = k(G — DG — 1 — D)k — f) DI — F™(w)]}*™
(FM(w) — Fr(y)TF )l F ()" ()" dF (w) dF (y).

At this point it is necessary to recall that the sample rank depends only on the
greatest element of the sample, and is independent of whatever values the other
elements of the sample may assume. Mathematically stated, this becomes

Prn=g,re=J|w <Yy, <w-+ dw,
(4.5) <Yy, <t4+dty < Y, <y+dy, Yip, <t)
=Pn=5,n=%lw<Y, <w+dwy <Yy, <y+dy).
But since P(A | B) = P(AB)/P(B) both sides of (4.5) can be rewritten as
P(Tl =.7.1;7‘2 =j2)w < Yl"l < w+dw,t< Yilrl
<t+ dt; y< erz <y + dy’ Yizrz < t)
Pw < Y, <w+dw,t < Yy, <t+ dt,
(4.6) y< Yy, <y-+dy, Yi,r, < t)
_Pn=g,m=5%,w<Yi, <w+dwy < ¥y, <y+dy)
Plw < Y, < w4+ dw,y < Y, < y + dy)

which is equivalent to
Plw< Yin <<w+tdw,t <Yy <t+di,y < Yy, <y+dy, Yiin <)
Plw<Yy, <w+tdwt< Y, <t+di,y< Vi, <y+dy, Vi, <t)
=P(w< Ylil < w+dw7y< Yliz < Z/+dy)
Plw< Yy, <w+dwy< Yy, <y+dy)

(4.7)
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Substituting (4.2), (4.3), and (4.4) into (4.7), and rearranging terms, gives us
Plw <Yy <w4dw,t <Yy;<t+d,y <Yy <y+dy Yi,, <t)
= {kinl[l — F*(w)"F"(w) — F* )"/ G — DG — j1 — 1)!

(4.8) (k — )10 — 2)Un — W) I )] 2 F(w) — F(§)]"
(FO(8/9y) Gy (y, 1) dy dF (w) dF (t);  if ¢ < w
= 0; if t=2w

where G;,(y, t) is obtained from (2.6), for 72 > 1, and
Gi(y, t) = F'(y); y <=t
= F*(1); t < y.

The remainder of this proof consists of applying elementary principles of
integral calculus to the expression given in (4.8) to arrive at the desired proba-
bility given in (4.1). First, the random variable Y}, is removed by integrating
(4.8) over all values of y from ¢ to w. Then, the random variable Y1, is removed
by integrating over all values of w from ¢ to . Finally, the random variables
Y., and Y,;, are removed by integrating over all values of ¢ from — e« to 4 .
The results are simplified using the identities of the previous section, until (4.1)
is obtained. The details are arithmetic in nature and are omitted.

COROLLARY.

(4.9) P(Yy, > Yij,) = 1 = [(k — j1)i—ir/ (K — j1 + 1 = (1/n))j,-5].
Proor. Substitution of 72 = 1, %, = 2 into (4.1) gives
P(Ys, > Vi) = 1 — [(524)/ (550

which is equivalent to (4.9).

Cohn, Mosteller, Pratt and Tatsuoka (1960) found the probability of Y ex-
ceeding max; Y; in the general case where the k samples were drawn from differ-
ent populations, and in the special case where the k samples were drawn from the
same population.

COROLLARY.

(4.10) P(Yi, > Yijn) = (n—1)iy/(nk —njs +n — 1)
Proor. Substitution of 4, = 4,4, = 1,7, = j1 + 1in (4.1) gives
P(Yi, > Yign) =1 — (B (k=) X2 n(n — D (=D
(n—1—a)nk—mj1+n—1— a)l
=1— (D) —1)E—2)! L5 (-1)T7al(d — 2 — )]
(1/(n—1—@a) —1/(nk —nj1 +n —a—1)).

Using (3.2), the result in (4.10) is obtained.
As a special case of the above corollary, let j; = 1. Then

(4.11) P(Yiy > Yi2) = (n— 1)ia/(nk — 1)im
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which was first obtained by Mosteller (1948) as the probability function for the
test statistic 7 in a nonparametric test for a k-sample slippage problem.

5. E(Y ;). The theorems of the two preceding sections can be used to compare
one ordered random variable with another in two different ways, both distribution
free. A third method of comparison, depending on the underlying distribution
F(z), is by comparing expected values of the two random variables. To obtain
dFi;(z), Lemma 1 can be used in conjunction with (2.10) resulting in

j—1 i—1 m—1

() = § (L = @ F @) nlF @)U @) + 2 3,
kLl (=1)"" (0 — 1 — B) [F(z)]"**
(5.1) (’ﬂk _ na)[F(x)]nk—na—l]

= 1 )iy =1 =BT =1 B! iF ().
‘(nk —na+1—mn+48)
If F(x) is the exponential distribution function given by
Flz)=1—¢" if 220
=0 if =<0,
then Gumbel (1954), p. 82, gives
(5.2) [ZezdF(z) = D hy1/a.
The use of (5.2) and the expansion of [1 — F"(z)]"in (5.1) yield
=1 nk—na j—l—a j—=1 i—1 m—1
B = 3 5 GG as o5
(5.3) A — [nga% ~ nga %:l

kE—=Dn—m)lal(j —1—a)iB(m —1—B)!(nk —na+1—n+p)

when F(z) is the exponential distribution function.
In the simpler case where F(z) is the uniform distribution function given by

F(z) 1 if 221
z if 02z<1
0 if =<0,

the use of (5.1) gives
E(Yy) = 22050 kin(=1)7"%/(k — j)lal(j — 1 — a)i(nk — na + 1)]
(5.4) —i(5) 25 [N (=1)77/ (nk — na + 1))
2 m(n) 25 ("5 (= 1)/ (n —B)).
The first summation in (5.4) can be simplified by using (3.3). The remaining
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term in (5.4) is reduced in the same way that (3.12) was reduced to (3.13).
Thus a comparison with (3.9) shows

(6.5) E(Yy) = (1 —[(& —1)/nDl(k)i/(k + (1/n))i] = P(X < Y)

when F(z) is the uniform distribution function. In this special case a comparison
of ordered random variables using expected values will give the same result as a
comparison using (3.9).

6. Illustration. Suppose there are nk students at a science fair, each with a
science display, competing for k prizes. The judge has divided the displays into
k groups of n displays each. The displays within each group are ranked in the
usual manner, and then the groups are ranked on the basis of the highest scoring
display in each group. The random variable Y;; then corresponds to the display of
rank 7 in the group of rank j.

The k prizes are awarded to Y, through Yi; in that order. However, if all
nk displays had been considered at one time, it is possible that the prizes would
have been awarded differently. It is possible that Y, is a better display than
Y1 . If the ideal method of awarding prizes is by considering all nk displays at

TABLE 1
Ranks of nk random variables, based on P(X > Yi;)
k = 1| k& =2 k= 3 k=4 k = 5
J J J J J
n i
1 1 2 1 213 1 23| 4 1 213 4 5
1 1 1 1 2 1] 2 3 1 2| 3| 4 1 21 3| 4 5
2 1 1 1 2 1] 2| 3| 1 21 3] 5 1 2| 3| 4 7
2 2 3| 4| 4| 5| 6| 4| 6| 7| 8| 5 6| 8| 9 10
3 1 1 1| 2 1 2| 4| 1| 2| 3] 6| 1 2| 3| 4 8
2 2 3| 4| 3| 5| 6| 4 5| 7| 8| b 6 7] 9 10
3 3 5/ 6| 7| 8{ 9] 9(10]|11 (12|11 12113 |14 |15
4 1 1 1 2 11 2| 4 1 21 31 6| 1 21 3| 4 8
2 2 3| 4| 3| 5| 6| 4| 5| 7| 9| 5 6 7] 9 12
3 3 5, 6| 7| 8| 9| 8|10/11 12|10 |11 |13 |14 |15
4 4 7! 8|10|11 (12|13 |14 (15|16 |16 |17 |18 |19 |20
5 1 1 1 2 1] 2| 4 1 21 3] 6| 1 2| 3| 4*| 8
2 2 3| 4| 3| 5| 6| 4 5 7| 9| 5| 6| 7| 9 12
3 3 5/ 6| 7| 8| 9| 8({10(11 (12|10 |11 |13 |14 |15
4 4 71 8{1011 (1213 (14 |15|16 |16 |17 |18 |19 |20
5 5 9110|1314 |15 |17 (18|19 |20 | 21 22 123124 |25

* For the table of ranks based on P(Yi,j, > Yi,j,), interchange the two starred ranks
and use the above table.

N
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once, then perhaps several alternate methods should be considered and compared
with the actual method of awarding the prizes, to see which method comes closest
to the ideal.

The first alternate method is to rank the random variables Y;; according to
their ability to exceed the unranked random variable X drawn from the same
original population. Then the random variable Y ; is considered better than the
random variable Y;,j, only if P(X > Y,;;) < P(X > Y4,;,), where the desired
probabilities are computed using (3.9). The k prizes would then be awarded to
the k best displays, represented by the k best random variables in the above
ordering. For values of n and & from 1 to 5, this method results in the ordering
shown by the table, the best displays having the lowest ranks.

The second alternate method is to declare Y, ;, better than Y,,;, only if the
probability of Y, ;, exceeding Y,;, , as given by (4.1), is greater than . Curiously,
this method does not always yield the same results as the first alternate
method. For n and % ranging from 1 to 5 the results using this method are the
same as those given in the table, except for n = 5, k = 5, this second method
would give Y3, the rank 4 instead of 5 and Y 4 the rank 5 instead of 4.

The following unusual situation is now possible. In choosing the better dis-
play when n» = 5 and k¥ = 5, the judge might favor Y.; over Y. since
P(Y:1 > Y14) = .53. And yet, in choosing a display for touring the country-
side and competing against all comers, the judge might favor Y;4 over Y,,
since Y7 ,4is more difficult to beat from the standpoint of the unranked display X,
their respective probabilities of getting beat being .22 and .23.

As n and k increase, the differences between the two alternate methods become
more apparent. Consider the case where n = 50 and & = 20. Under method one,
the last nine of the twenty prizes would be awarded to Y2, Y22, Y112, Y23,
Yos, Y13, Y25, Yae, and Vi 1 in that order. Under the second method those
same prizes would go to Y112, Y113, Yo, Yoo, Vi, Yo3, You, Yaos,and Y5
in that order.

An inconsistency sometimes arises when the second method is used. For
example whenn = 40and k = 12, P(Y41 > Y112) = .505and P(Y1,0 > You) =
506, but P(Y.u > Y4,) = .808 leading to an inconclusive ranking.

A third alternate method of assigning ranks is on the basis of the expected
value of Y;; . Knowledge of the underlying distribution function F(z) is needed
here. If F(z) is the uniform distribution funetion, it was shown in the previous
section that the Y,; will be ranked exactly the same as by the first alternate
method.
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