AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE
LATENT ROOTS OF THE ESTIMATED COVARIANCE MATRIX!

BY GEORGE A. ANDERSON?

Yale University

0. Summary. The distribution of the latent roots depends on a definite integral
over the group of orthogonal matrices. This integral defines a function of the
latent roots of both the covariance matrix and the estimated covariance matrix.
With an integration procedure involving first a substitution and then an expan-
sion of the resulting integrand the first three terms of an expansion for the in-
tegral are found. This expansion is given in increasing powers of n™", where n is
the sample number less one. A numerical example is given for the distribution
of the latent roots using the expansion for the definite integral given in this
paper. Improved maximum likelihood estimates for the latent roots are found
and the likelihood function is considered in detail.

1. Introduction. To motivate a study of the distribution of the latent roots
consider the notion of a principal component. Suppose z has the normal multi-
variate distribution with mean p and covariance matrix = where

'
x=($1,x2,"‘,$x), I‘=(l"17”’2"'°7ﬂx)’:
and
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Since = is positive definite symmetric, there is an orthogonal matrix H, such that

l—al 0
22
(1.1) H1,EH1 = '. =Q
'70 (254

where a; = oy = --+ = ax > 0. Let 2 = Hy'(z — p). Then z has the normal
distribution with mean zero and covariance matrix @. Clearly

z=p+ 21h + 2he + -+ + 2ghx

where h; is the ith column of H, . If for > r the a; are very small then the cor-
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1154 GEORGE A. ANDERSON

responding z; are nearly zero and with small error we write
z=p+ah+ -+ 2h.

Thus we are interested in those principal components z; which have large variance.
The variances of the principal components are estimated by the latent roots of
the estimated covariance matrix.

Consider the distribution of these latent roots. Let

yll .o yw
Y =1: :
yn PP ny

be the sample matrix of N observations from a normal K-variate population
with mean u and covariance matrix =. It is well known that W = nS, where S,
the sample covariance matrix, is given by

S = (8i) = 0 (bt (Yar — F:)(ys — §3))y, n=N-—1,

has the Wishart distribution on n degrees of freedom. Since S is positive definite
symmetric we can write

(1.2) S = HLH'
where H is the group O(K) of K X K orthogonal matrices and
by 0
by
L =
0 e

withly = Il = --- = lg > 0, Finally the (marginal) distribution of the latent
roots comes to

(1.3) dF(h, b, -+, k) = c(JI& 1) " VP T (L — 4TI dlf= ™"
fowm exp [(—n/2) tr ZHLH'|(H' dH)

where
K o
oK nK/2 ) K(E—1)/4 n— K41
c = 27%(n/2)"""/x ;I;];I‘ (——————2 )
and (H' dH) = J]%;h/ dh; is the invariant measure on the group O(K) with

h; and dh; the 4th and jth columns of H and dH. This measure is considered in
detail in James [6]. The group O(K) has volume

V(K) = [ow (H dH) = 25"/ T]E, 1(4/2).

If we replace H by H,H with H; defined in (1.1) then the distribution (1.3)
depends on the integral
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(1.4) I, = [ou exp [(—n/2) tr AHLH'|(H' dH)

where
ay 0
A= =@q*
0 a
=

KJ
so that a; = (a:)™;0 < a; ag .
The power series

I = V(K) D e (1/k!) 2o [Cu(— 34)Ce(nL) /C(Ix)]

has been given by James [7], [8]. With S any K X K positive definite symmetric
matrix the zonal polynomial C(S) is defined for each partition « of k into not more
than K parts as a certain symmetric polynomial in the latent roots of S. This
series converges slowly unless the latent roots of the argument matrices are small.
Thus another type of expansion for I, appears necessary if = is large.

The main result of this paper, given in Section 2, is the expansion

(1.5) I, = 2%exp [(—n/2) tr AL)(2x/n) =4[ ci) - F
where
F =14 (1/2n) 2%(1/cy) + (9/80°) 25,(1/c%) + (1/4n%) 251 /esieer) + - - -

and

[22]
<

IIA

Cij = (aj — a,-)(l,- - L) > 0.

The third sum in F is simply all possible cross products of the ¢;; without repeti-
tion. The last two terms of F are shown for K = 4 and conjectured for higher
values of K. Together with (1.3) this yields the distribution of the latent roots
for large n. This distribution will be compared with a result given by Girshick
[3] which states that for large enough n the I; are independent normal with mean
and variance a; and a.’(2/n) respectively.

The procedure used to find the expansion (1.5) requires that

a > ag> 0 > ag.

Thus this paper considers only the case when all the population roots «; are dif-
ferent. A limiting distribution of the sample roots when the population roots
have arbitrary multiplicity has been given by T. W. Anderson [1]. If all the
multiplicities are unity (if the roots a; are different) then this limiting distribu-
tion reduces to Girshick’s result mentioned in the preceding paragraph.

The procedure used to find the expansion (1.5) is an extension of the well
known methods sketched below for the case K = 2. Here, as is demonstrated in
the next paragraph, I, comes to a multiple of a Bessel function. Let
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0%(2) = {He0(2) | |H| = =£1}.
Then
I, = 2[ o+ exp [(—n/2) tr AHLH')(H' dH).
Now let
n=[_gt il
so that (H' dH) = hy' dhy = df and
(1.6) I = 4exp [(—n/2) tr AL][Z%; exp [(—ncin/4)(1 — cos 20)] db.

Clearly the integrand has a maximum of unity at 6 = 0 and then decreases to
exp (—ncwp/2) at 6 = /2. Laplace’s method (Erdélyi [2]) is used to show that
for n large enough, I, is approximately 4 exp [(—n/2) tr AL](2r/nepw)t. Also,
however, there is an expansion associated with I, . If we expand cos 20 in the
usual power series then

I, =4exp I( —n/2) tr AL][Z/%, exp (—ncwb’/2)
[exp(ncib'/6 — nci®/45 4 - - -)] db.

If the exponential in the brackets is expanded and the integration performed
term by term then for large n the limits can be set to = « since each integration
is of the form [Z7%, exp (—ncw®/2)60™™ db and most of this integral is given in a
small neighborhood of § = 0. Thus for large n, I, is approximately

(1.7) 4exp [(—n/2) tr AL)(2x/new) (1 + 1/2ncie + 9/8n%2% + <o)

Section 2 also contains a statement of a lemma proved by Hsu [5] which is an
extension of Laplace’s method. With K arbitrary it is used to show that, for large
n, I, is approximately (1.5) with ¥ unity.

Clearly the change § = ¥/2 in (1.6) yields

I, = 4w exp [(—n/2) tr AL) exp (—mnci/4)Io(ncw/4)

where Iy(2) = (1/7)[4 exp (2 cos ¥) d¥ is the imaginary Bessel function of the
first kind. Thus (1.7) is essentially the well known asymptotic (z large) expansion

In(2) = (¢//(2r2)))(1 + 1/8z + 9/1282
+ o (158 (2m = 1)7)/(mU(82)™) + - --).

The precise definition of asymptotic expansion is given at the end of this section.
Finally it should be noted that (1.3) and the above expression for I, in terms of
I, yield the distribution of the sample roots when K = 2. Girshick [4] gave this
distribution with a power series for the integral I; . However he does not state
here that the integral is a Bessel function or that his power series is the ordinary
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power series for Io(z). There is also no mention of an asymptotic expansion for
the integral.

In Section 3 a numerical example is given using the asymptotic distribution for
the latent roots resulting from the expansion given in Section 2. This distribu-
tion comes to

(1.8)  d(JT= W)™ (Il (1 — 1)) IT% dis
(I e)™ (115 (a5 — @)™ exp [(—n/2) X addF
where
d = (n/2)(nK/2—K(K—1‘)I4)/H§_1 I‘[(n - K + 'L)/2]

and F is given in (1.5). The likelihood function is calculated and improved maxi-
mum likelihood estimates are given. The computations here are quite lengthy
and the author is indebted to Mr. Jack Alanen of the Yale Computing Center
for his excellent work in programming the IBM 709 computer for this example.

The definitions below are taken from Erdélyi [2].

DEerinITION. The sequence of functions {¢.(z)} is an asymptotic sequence
as £ — oo, if for each n

$n1(2) = o(pa(7)) asz— .

Let {¢,} be an asymptotic sequence.
DerintTioN. The (formal) series ) a.¢.(x) is an asymptotic expansion to N
terms of f(z) as * — oo if

@) = 2V audn(z) + o(dn(z)) asz— o.

This is written f(z) ~ 2.~ anda(z).
DEeriniTION. The function ¢(z) is an asymptotic representation for f(z) as
z — oo if

f(x) = ¢(z) + o(d(z)) asz — .
This is written f(z) ~ ¢(z).
2. The expansion for I . In this section the integral
I, = [oum exp [(—n/2) tr AHLH')(H' dH)

will be considered in detail. In the asymptotic theory it is necessary to assume
O<am<m,< - -+ <agandlh >0L> -+ >1lg>0.
With these assumptions it is easy to show that the integrand

exp [(—n/2) tr AHLH'] = exp [(—n/2) 2_%; ad;hi;]

has identical maximum values of exp [(—n/2) tr AL] at each of the 2% matrices
of the form
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+1 0
+1

0 +1
For large n the integrand is negligible except for small neighborhoods about each

of these matrices and I, consists of identical contributions from each of these
neighborhoods so that

(2.1) I = 2 [y exp [(—n/2) tr AHLH'|(H' dH)
= 2fg

where N (I) is a neighborhood of the identity matrix on the orthogonal manifold
and as such consists only of proper orthogonal matrices.

Since any proper orthogonal matrix can be written as the exponential of a
skew symmetric matrix we transform ¢ under

(2.2) H = exp S,

so that N(I) —» N (S = 0). (Note that ‘“‘S”’ was also used as the sample covariance
matrix in the introduction). It is not necessary to go further into the nature of
N(I)or N(8 = 0) since for large n we are going to approximate g by integrating
not over exactly N(S = 0) but simply over the intervals — o < s; < « for
each s;; . This argument is given below following Equation (2.5).

We shall now calculate the Jacobian of the transformation H = exp S given
in (2.2) above. Murnaghan [9] is used here but the essential idea was suggested
to the author by A. T. James. For any proper orthogonal matrix H there is an
orthogonal matrix H; such that, with K = 2k + 1,

S a K x K skew symmetric matrix,

cos 6, —sin 6, 0
sin 6, cos 6,
H = H/ Hi,
cosf, —sinf;, O
sin 6, cosf, O
| 0 0 0 1]
where —7 < 6; < 7,12 =1, 2, ---, k. The last row and column are deleted if
K = 2k. With
0 —6 0]
66 0
@ =
0 —6. O
6, O 0
| 0 0 0 0 ]
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it is clear that
H = exp (H,/®H,).
From Murnaghan [9], pp. 230-235, with K = 2k+ 1,

(H'dH) = JJiz 4 sin’ (6:/2)g1(0) I T%-1 do:((H,' dH,))

and, when K = 2k,
(H' dH) = g(©) 1.1 dos((HY dH,))

where

91(0) = JIi<; {16 sin® [(6: + 6;)/2] sin® [(6: — 6;)/2]}
and

((Hy' dH))) = TT%j.is5m1,5 even (hi") db}*

with &;' and dh,' the sth and jth columns of H; and dH 1 respectively. This pro-
cedure can also be used with the transformation

S = H/6H,
and easily shows that with K = 2k + 1
1T« dsij = ITi=16.°9:(©) T %mr dos( (HY dH,))

and, when K = 2k,

I1%<idsi; = g2(0) IT4-: do.((H,' dHL))
where

92(8) = ITi<; (6: + 6,)°(8: — )",
Thus with K = 2k 4+ 1 it is clear that
(H'dH) =Tt [(sin 6:/2)/(6:/2)Pf(©) [15; dsi; ,

and, when K = 2k,

(H' dH) = f(0) ]k, dsi;,
where
£(8) =ITi; {Isin ((0.4-6;)/2)/((0: + 6;)/2)]lsin ((8: — 6,)/2)/((6: — 6;)/2)]}.

Since S = Hy'®H,, we have tr 8 = (—1)"(2) D_%_, 6" so that for K even or
odd (H' dH) — J [[%; ds:; where

(23) J =1+ [(K—2)/24]tr 8* + [(8 — K)/4(6!)] tr S*
+ [(5K* — 20K + 14)/8(6!)](tr §%)% + --- .
Direct substitution of (2.2) yields
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tr AHLH' = tr AL + tr (ALS® — ASLS) + tr (ASLS?)
(2.4) + tr (ALS'/12 — ASLS*/3 + AS’LS?/4)
+ tr (ASLS*/12 4+ AS’LS*/6)
+ tr (ALS*/360 — ASLS*/60 + AS’LS'/24 — AS’LS'/36) + - - - .

This is rewritten using curly brackets to define the expressions in parentheses so
that

tr AHLH' = tr AL + tr {S8% + tr {S*} + tr {S*} + tr {S%} + tr {S%} + ---
Since S is skew symmetric
tr {8} = 2 % cusl

where c;; is defined in (1.5).
Finally we can write
(25) 9 =expl(—n/2) tr AL] [ -+ [wis—0) €xp [(—1/2) 23 ciss’y]

- exp [(—n/2) (tr {8} + tr {8% + - )W ]I dsi; .
If this integration is to be performed term by term on the expansion of ! '/ then

for large n the limits for each s;; can be put to = « since each integration is of
the form

[ Ine—o exp [(—n/2) Efq’ cijs%;] Hf<i i qu‘ dsij,
and most of this integral is given in a small neighborhood of § = 0. The m;;

are positive even integers or zero since any term containing an odd power of
an s; will integrate to zero. Since

(26a) [Zu - [Zoexp [(—n/2) 20K, costi] T dsiy = T (2n/nei)t = €
and
(2.6b) [Za -+ [Zoexp [(—n/2) 2% costilsir [1%; dsis

= (Ce[1:3:5 -+ (2m — 1)/(nce1)™]

it is clear that after integration each of the terms in the expansion of ¢! J is of
the form M(A, L)(C/n™) wher¢ M(A, L) depends on the a; and I; and
m =0, 1,2, --- . Finally we expand ¢! J, writing the terms in groups, each
group corresponding to a certain value of m. We have

(2.7a) o' =14 (—n/2) tr {8} + (#¥/8)(tr {$*})* + (K — 2)/24) tr §°
+ (=n/2) tr (8% + (n7/8)(tr {§%)" + (n'/4) tr {S"} tr {S%}
(2.70)  (—n'/16)(tr {8°}) tr {S"} + [n*/16(41)](tr {S°})*
+ (n(2 — K)/48) tr {S8'} tr §* + [*(K — 2)/8(41)](tr {S%})* tr §*
+ [(8 — K)/4(61)]tr 8* + [(BK* — 20K + 14)/8(6!)](tr §%)*

4o
The three theorems below yield the expansion (1.5) for 4.



DISTRIBUTION OF LATENT ROOTS 1161

TareoreM 1. Let A and L be diagonal matrices with0 < a1 < a2 < - -+ < ax and
L>10L>- >l > 0. Then for large n the first two terms in the expansion for 9
are given by

(2.8) ¢ = exp [(—n/2) tr AL]J]E; (2/nci))!
(14 (1/2n) 2 (Yew) + -+

Proor. Application of (2.6a) shows that the one in e' J yields C after
integration. We must write out and integrate the three terms in (2.7a). We include
only terms without an odd power of an s;; and do not write the C which appears
with each term after integration. The integrations all follow Formula (2.6b).

From (2.4)

12tr {8% = 2%k susasusuf (4, 7, k)
where f(4, 7, k) = a:(l; — 4l; + 3l). In detail we have
12tr (8% = 2 T sissa(f(4, 4, k) + £(4,4,5)) + 2 %580l (3,3, 9)
= 2%« [Sisi(9(3, 4, k) + g(k, 4, 7))
+ shisi(g(k, 4,5) + 90, 1, k))
+ shshi(g(, k, ©) + 9 b, )] + 2 (—4eq)si;
where ¢(¢, §, k)= (4, 4, k) + f(j, ,7). But
9(3, 5, k) + g(k, j, ) = —4ci; — 4cie + 3ca
so that after term by term integration 12 tr {S'} contributes
—(8/n") 2¥iar (/eij + 1/ca + 1/ci)
+ (3/n%) X Kjar (cafeicin + ci/ciscir + cuifeacn) — (12/n°) 2 1/eij .

Denote the second expression by Si; and the third by S; . Since the first sum can
be written

SE i (L) + Xfaci (1ei) + Diciar (M) = (K — 2) 225 1/eyj
we have finally that (—n/2) tr {S*} contributes
(2.9) (K — 2)/3n]8: — (1/8n)S1 + (1/2n)8,.

Again from (2.4)

tr {8%) = D icj<x D(35, J, k)sijssui
where
DG4, 5, k) = aile — 1) + a;i(l — L) + a(l; — L).
It is not difficult to show that
CODMi k) = 4 ¢+ ch — 2(cotu + Cutn + Cuca)
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so that after integration (tr {S°})? yields
(1/n") 22 %sar (ca/Ciei + can/Ciscan + CigfCacs)
— (2/n°) Xl (1 + 1/ca + 1/ca).
Thus from (n*/8)(tr {S*})* we have
(2.10) (1/8n)S1 —[(K — 2)/4n]S, .
Finally since

tr 8 = —2 > %k
it is clear that ((K — 2)/24) tr S? contributes
(2.11) —[(K — 2)/12n]8; .

The results in (2.9), (2.10), and (2.11) add to S;/2n so that the proof of the
theorem is complete.

No proof has been given to show that (2.8) is an asymptotic expansion for 4.
An extension of Laplace’s method can be applied here to show that at least we
have an asymptotic representation for 9. This extension is given by Hsu [5] in
the lemma below.

LemmA (Hsu). Let ¢(u1, -+, Un) and f(us, - -+, Un) be real functions on an
m-dimensional closed domain D such that
1. f>0on D.

2. ¢(f)" 7s absolutely integrable over D,n = 0,1, 2, --- .

3. All partial derivatives f.; and f..; exist and are continuous, i,j = 1,2, --- ,m.

4. f(u) has an absolutely mazimum value at an interior point £ of D, so that all
fu.'(‘s) = 07 and l_fu;uj(s)l > 0.

5. ¢ 1s continuous at £ and ¢(£) #= 0. Then for n large

Ioo(f)" dus - -+ dum ~ [$(£) (F(£))"/(Alkr, -+, Em)) (20 /n)™"
where

fu) = @
and

Alur, oo Um) = [ =Yl

This lemma, is used to prove that we have an asymptotic representation for 4.
TuEOREM 2. Under the conditions of Theorem 1

g ~ exp [(—n/2) tr AL][]%; (2n/ncs) .

Proor. Apply the lemma directly to d after making the substitution H = exp S.
We have

9 = [ne=n (exp [(—=3) 25ad L™ + (K — 2)/24]tr §* + ---) 1% dsi;
so that



DISTRIBUTION OF LATENT ROOTS 1163

f=exp [(—3%) 2% adihl],
6=14+[(K —2)/24]tr S+ -+,
¥ = (—3%) Xisadih,

and
D = N(8 = 0).

Also £ corresponds to the point 8§ = 0 and f* and hence f have just the single
maximum point 8 = 0in N(S = 0). From the form of ¢ it is clear that the con-
ditions of the lemma are satisfied. Also

—(8"/08mn) = 2% ailihi;(3hi/Osmn) + 2_%7 aidi(Ohii/Ismmy’
and
— (8°W/08mynyO8myny) = D15 Ailihij(8°hii/ OSmynyOSmyny )
+ 255 adi(9his/ 08mymy ) (9his/ 08 myny )

so that to find l—nl/;‘.u ;(8 = 0)| we are to differentiate the elements of H = exp S
at most twice and then set each s;; to zero. Hence to find this determinant we can
essentially use

H =8+ 82
Finally, it follows easily that
— /08 = Cun; 0%/ 05mynyOSmimy = OY/Osmn = 0,
and the lemma shows

g ~ exp [(—n/2) tr AL}(2x/n) %, ¢i) %

This completes the proof of Theorem 2.

From the relative simplicity of the proof of Theorem 1 one might think that a
similar proof using (2.7b) would quickly yield the next term in the expansion
(2.8) for 9. However it is extremely lengthy to write out some of the expressions
in (2.7b) when K is arbitrary, especially when tr {S°} or tr {S*} is raised to a
power. The author has worked out the details of this both for K = 3 and K= 4.
Of course the latter is many times more difficult. In both cases the result is

(9/8n%) 25 (1/¢%) + (1/4n%) 225 (1/ciserr).

Certainly this indicates strongly that the result holds for arbitrary K. We now
state this result precisely for K = 4.

TuEOREM 3. Under the conditions of Theorem 1, but with K = 4, the term in n”*
in the expansion (2.8) for 9 is given by

(9/8n%) Dt (1/¢%) + (1/4n%) 2°* (1/cijers)



1164 GEORGE A. ANDERSON

where the second sum contains all (fifteen) possible cross products of the (ci)™
without repetition.

Proor. Due to an enormous amount of detail necessary for this proof only an
outline is given and this is put in the appendix.

There is a conjecture that can be given here from the results of Theorems 1
and 3. From (1.6) and (1.7) it is clear that when K = 2 the general term of the
expansion for I, is given by (1*-3% -+ (2m — 1)?)/m!(2nc)™. It appears that
in the expansion (1.5) for I, with K arbitrary the term in D _%; (1/ ¢7;) 1s given
by

(2.13) [(12-3% .- (2m — 1)%/(2n)™m!] D % (1/c%).

In the numerical example given in Section 3 the cross product term is much
smaller than (2.13) with m = 2 so that this conjecture could be of considerable
importance.

We close this section with a precise statement of a theorem concerning the dis-
tribution of the latent roots proved by Girshick [3] and with a comparison of this
with the distribution (1.8). Using the notation of the introduction we have

TueoreEM (Girshick). Let a1, a2, -+, a: be any set of simple nonvanishing
roots of

2 — al] = 0.

For sufficiently large samples these will be approximated by certain of the latent roots
L, b, -, 1l of the samples. If l; — o is divided by the standard error, a:(2/n)}
then the resulting variates have a distribution which, as n increases, approaches the
normal distribuion of t independent variates of zero mean and unit standard devi-
ation.

In the introduction Z is taken non-singular so that ¢ = K. From (1.8) the
distribution of the latent roots can be written

(2.14) M(A)H§=1 [, exp (—nli/2e:) ] I5<i (L — lj)*FH:;l dl;

where M (A) depends on the a; but not on the I; . For n large enough (2.14) will
now be shown to agree with Girshick’s theorem.
Suppose we can assume that

T = H§<i L — l,')*

and F have little effect on the distribution (2.14). Then the I; are independent
and each /; has the same distribution as

aol/n
where x® has the chi-square distribution on n — K + 1 degrees of freedom. But
for large f, x* on f degrees of freedom can be approximated by a normal variate

with mean f and variance 2f. Thus for large n, I; has the normal distribution with
mean

(ei/n)(n — K + 1) X a;
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and variance
(al/m)[2(n — K 4 1)] = oi(2/n).

Now let us expand T to find the conditions necessary in order that " not depend
on the [; . We have

@ =) = (o — )l + (8l — 8;)/ (e = &)}
= (ai — o) (1 + 3(3L — &) /(@i — o)) + -+ )
where 8l; = [; — a; . Thus
T =JT% (o — )@ + 3 25 [0k — 81) /(s — a)] + - +).

Using a.(2/n)* for the standard deviation of I; we can assume |8li| < 2a;(2/n)! s0
that

13 25 [0l — o)/ (e — o)l < (2/n)} 25 [(as + @)/ (s — aj)l.

Thus we need n large enough to make this small so that 7 may be taken as
II% (e — o)

Also we need n large enough to take F as unity. This does not require as large
an n since F has the form

1+ n7(3 25 (ey) + -+
All of this shows that Girshick’s normal approximation follows from (2.14)
provided = is large enough to take F as unity, T’ as not depending on the I;, and

finally to use the normal approximation to the x° distribution on n — K + 1
degrees of freedom.

3. Numerical Example. The distribution (1.8) follows from the results of the
theorems in Section 2. This distribution can be written

3.1) IT%: 0™ exp ((—=n/2)ad))(IT%; (a5 — a:))7'F
AT 1) "I (e — ) TR dle,
where d is a constant given in (1.8) and

F=1+F+F+F+ ---

with
Fi = (1/2n) 22%; (1/ci),
Fy = (9/8n") 22%; (1/ci),
and

F3 = (1/4n2) ZK (1/0,’,'0“).

Here again ¢;; = (a; — a:)(l; — ;) > 0 and F;includes all possible cross products
without repetition. As mentioned just before the statement of Theorem 3 the
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results for F; and F3 have been proved only for K = 3, 4 and conjectured for
arbitrary K. _

Since (3.1) is a marginal distribution of the sample roots it appears that the
corresponding likelihood function is appropriate for inference concerning the
population roots provided either there is no prior information about the charac-
teristic vectors or such information suggests a uniform distribution for the charac-
teristic vectors.

Suppose that the latent roots I; have been calculated. Consider the likelihood
funetion

(3.2) L(a, a2, -+, ag) = LLF
where
Ly = [T [0 exp ((—n/2)ad,)],
and
L, = (H§<i (a; — a:))™.
Assume for the moment that L, and F have essentially no dependence on the

a:. From L, we have the maximum likelihood estimates 4. = 1/I;, 7 = 1,
2, ---, K. Clearly the function

ai"/2 €xp ((_n/2)aili)/f;° 2™ exp ((—n/2)zl) do

has the same graph as the graph for (1/nl;)x” where x* has the chi-square dis-
tribution on n + 2 degrees of freedom. Thus the likelihood function of the a; is
similar to the distribution of a variate having mean (1/nl)(n + 2) = 1/I; = d;,
and variance (1/n17)[2(n + 2)] = 2/nl? = .. The foregoing heuristic con-
siderations suggest that the set of intervals

Aai=(d,-—2a,~,di+2a,~), ’i=1,2,"',K

would be a suitable region over which to study the likelihood function.
The function L, has an effect on the maximum likelihood estimates. We have

In(a; — a;) = In(d; — d:) + In(1 + (da; — 6as)/(d; — 6:))
= c(4, ) + (ba; — 8a,)/(4; — d:) + ---
where ¢(4, j) is independent of the a; and éa; = a; — d; . Thus
Ly = D% [(n/2)m a; — (n/2)ad]
— 325 (Ba; — 8a:)/(8; — ) + ) — 3 2%, ¢(5, 7).
From partial differentiation with respect to a; the corrected maximum likelihood
estimates d; have the form

di = (1/I)1/I + (1/nl) (25 (1/(8: = )] + ---1}
(1/L) — (/)X 5e (1/(d: — 65))] + - --
d: — (0°/2) 25 (1/(ds — d5)) + - .

(3.3)
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Thus dg , the largest of the d;, is decreased, while d, ,-the smallest of the d,, is
increased. The effect of L. is to move the maximum likelihood estimates closer
together.

Consider the function F. The term (J[5; (I — ;) ) in the distribution (3.1)
for the latent roots indicates that the I; will be reasonably well spaced. At
a; = d4;, a; = d;, we have

G = /(L — )
so that for large n the functions F; , F; and F; will be small as compared to unity.
In most of the region defined above by the intervals Aa; the F; remain small.
Thus in calculating L we take F as unity and examine the F; separately.

Suppose that we have a sample of 181 observations from a normal 3-variate
population such that the latent roots of the estimated covariance matrix are

L = .37, l, = .23, Iy = .15.
We have
a1 = 2.70, Gy, = 4.35, ds = 6.67
g = .285, g = 459, g = .703.
From (3.3) the improved maximum likelihood estimates are
1 = & + .035 = 2.74,
ds = Gy — .018 = 4.33,
s = ds — .169 = 6.50.

The correction for ds is about o3/4 and cannot be assumed trivial.
An IBM 709 computer was used to evaluate InLiL,, InL,, F1, F5, and F; at
the set of points T' given by

a1=2.17+.14m1, m1=0,]_,2’...’8
(34) a2 = 3.41 + 23m., my=01,2--,8
a3 = 5.09 + .35m;, msg=1,2,3,+--,8.

For each value of az in T we now reproduce square arrays for the function
In(L;Ly) — 116. At (di1, do, ds) this function has a maximum of 5.17. Curves for
constant in(L;L;) — 116 of two units below this maximum are sketched in. These
curves yield the surface of constant likelihood in 3-space. See Table I.

For a; = 6.49 we also reproduce below arrays for inL,, Fy, Fs, and F; . Cer-
tainly it is clear thet L, does contribute essential information to the likelihood
function. The results for F; , F, and F3 do not change appreciably for the other
values of az so that F' can be taken as unity over most of the points of T' to within
5% accuracy. See Table II.



ay

TABLE 1

2.17 2.31 2.45 2.5 273 2.8 3.0l 3.15 3.29
3.41 0.77 0.27 1.00 1.44 1.64 1.62 1.41 1.00 0.76
3.64 0.32 1.35 2.02 2.49 266 261 2.37 1.95 1.40
3.87 1.07 2.09 2.80 __3:2—3737—3-30__ .3.03 2.58 1:97
410| 152 254 3.9 3.65 379 3.71 343 2.96 2.30
4.33 171 271 (3.42 3.8 3.96 3.87 3.58\ 3.00 2.44
4.56 1.67 2.68 \3.37 3.77 3.91 3.81 3.51) 3.02 235
4.79 1.44 2.45 3:14_ 3.53 3.67 3.57 326 2.76 2.09
5.02 1.08  2.00 2.77 3716—3.20—3719" 2.88 2.37  1.69
5.25 071 172 2.40 279 291 2.8 249 1.98 1.30

ln(Lle) bt 116, asg = 5.44
@ 2.17 2.31 245 259 273 2.87 3.0l 3.15 3.29
3.41 0.02 1.03 1.75 2.19 238 2.36 2.16 1.8 1.5
3.64 1.06 2.10 2.81 3-23—3740—3:35—_3.10 2.68 2.12
3.87 1.80 2.83—353 3.04 410 403 375 320 2.68
4.10 2.24 3736 3.95 4.36 4.50 4.42 413  3.65 \3.01
4.33 2.40 (3.42 411 451  4.65 4.56 4.24 377 )3.11
4.56 2.38 335 4.04 443 457 447 416 3.66_/3.00
4.79 2.0 307 376 415 428 418 3.8 3367 2.68
5.02 1.61 2.62 S3-30_ 3.60 3.82 3.71 3.30— 2.89  2.20
5.25 1.02 203 271 3709—3:22—3-11" 2.79  2.28  1.59

In(LiLs) — 116, as = 5.79
& 2.17 2.31 2.45 259 273 2.87 3.01 3.15 3.29
3.41 0.43 1.47 2.19 263 2.8 279 2.59 2.26 1.92
3.64 1.50 . 3-24—3.66 3.83 3.77 3752—3.10 2.54
3.87| 223 395 3.96 4.36 4.52 444 416 3.77~3,09
4.10 2.66 /3. 437 477 491 4.83 4.53 4.06 3.41
4.33 2.81( 3. 451 491 505 4.95 4.65 4.16 3.50
4.56 2.72 \ 3. 442 481 495 486 453 403 3.3
4.79 2.42 \3. 412 450 463 453 421 377 3703
5.02 1.93 2094 3.62 4.0l 413 4.02 3.70 3197 2.51
5.25 1.28 2.29 2796 3.35 3.47  3.36—3:04— 2.52 1.83

l’n(Ll‘Lz) - 116, a; = 6.14
o 2.17 231 2.45 2.59 273 2.87 3.0 3.15 3.29
3.41 0.59 1.63 2.35 278 2.97 2.95 2.74 241 2.06
3.64 1.66 2.69 339" 3.81 3.98 3.92 —3766—3.24  2.68
3.87 2.38/3{4.10 451 4.66 4.58 4.30 3.8;K3.~2z
4.10 2.807 3.81 4.51 491 5.05 4.96 4.67 419 3.5¢
4.33 2.94 3.9 4.64 5.04 517 508 4.77 4.28 3.62
4.56 2.84 3.8 4.54 493 506 5.96 4.65 4.14 3.47
4.79 2. 3.54 4.22 461 4.73 4.63 4.31 3.8 342
5.02 2.02 3,03 3.70 4.09 4.21 4.10 3.78 3.2 2.58
5.25 1.34  2.34 302 3.40 3.52 3.41 3.08— 2.56 1.87

In(L,Ls) — 116, as = 6.49
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TABLE I—Continued

2.17 2.31 245 259 273 2.87 3.01 3.15 3.29
3.41 0.50 1.54 2.26 2.69 2.8 2.8 264 230 1.96
3.64 1.56 2.59 —3730" 3.71 3.8 3.82 3.56——3.13 2.57
3.87 2.98 3730 4.00 4.41 4.5 4.48 4.20 3.73~3.11
4.10 2.63/3.71 440 4.80 4.94 4.85 4.55 4.07 3.4
4.33 2.83 3.8¢ 453 4.92 506 4.96 4.65 4.16 3.49
4.56 2.72._ 3.73 4.42 4.8l 4.94 483 452 401 334
4.79 2.40\3\.4'1 4.08 447 4.60 449 417  3.66 2007
5.02 1.88 288 3.56 3.94 4.06 3.95 3. 3117 2.42
5.25 118 2.18 S2.85. 3.23 3.35 3.24 -2:917 2.39  1.70

In(L1Ls) — 116, as = 6.84

o 2.17 231 245 259 273 2.8 3.01 3.15 3.29
3.41 0.18 1.22 1.93 2.37 2.55 2.52 231 1.8 1.63
3.64 1.24 227 _2.97—3739" 3.55 3.49—3:23___2.80 2.2
3.87 1.95 2.987 3.67 4.08 4.23 4.5 3.8 340 _ 2.78
410 2.36 43.38 4.07 447 461 451 4.22 3.73 N3.08
4.33 2.49 (3.51 4.19 458 472 4.62 431 3.8 3.4
4.56 2.38 \3.39 4.07 4.46 4.59 4.48 4.17 3.66 ,2.98
4.79 2.05 3.73 412 424 413 3.81 3.30.72.61
5.02 152 2.52 “3:20__ 3.8 3.70 3.5 3.2 —2774 2.0
5.25 0.81 1.81 2.48 2.86——2798—2°86— 2.53 2.01  1.32

In(LiL2) — 116, a; = 7.19

o 2.17 231 245 259 273 2.87 3.00 3.15 3.29
3.41| —0.35 0.69 1.41 1.84 202 1.99 1.78 1.44 1.10
3.64 071 1.74 244 2.8 3.02 2.96 270 2.27 1.70
3.87 1.42 244 _3-14— 354 3.69 3.61 3:32—2.86 2.24
4.10 1.8 2.847 3.53 3.03 4.07 3.97 3.67 3NO 254
4.33 1.96 2.97 3.65 4.04 4.17 4.07 3.76 3.27  2.60
4.56 1.84  2.85 3.5 3.91 4.04 394 362 31 243
4.79 150  2.51 “3.18  3.57  3.69 3.58/3.26/2.74 2.06
5.02 0.96 1.97 2.64 3:02—3-14—3-03" 2.70 2.18 1.49
5.25 0.24 1.2¢ 1.92 220 241 22 1.9 144 0.74

In(LsLy) — 116, a; = 7.54

2.17 2.31 2.45 2.59 273 287 3.01 3.15 3.29

w o

CUOU R 00 W W
gor oo 00D W
8838 2

—-1.06 —0.0° 0.69 1.12 1.31 1.27 1.06 0.72 0.38
—0.00 1.02 1.72 2.14 2.30 2.24 1.98 1.55 0.98
0.70 1.72 2.42 2.82 2.97 2.89 2.60 2.13 1.51
1.11 2.12 2.81 3720 3.34 3.25 2.95 2.46 1.81
1.23 2.24 2.92 3.32 3.45 3.35 3.03 2.53 1.86

1.11 2.12 2.80 3-18 3.31 3.207 2.88 2.38 1.70
0.77 1.77 2.45 2.83 2.95 2.84 2.52 2:00 1.31
0.23 1.23 1.90 2.28 2.40 2.28 1.96 1.44 0.74
—0.50 0.50 1.17 1.55 1.66 1.55 1.21 0.69 -—0.01

In(I.Ls) — 116, a; = 7.89
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TABLE II

N 2.17 2.31 2.45 2.59 2.73 2.87 3.01 3.15 3.29
3.41 1.40 1.32 1.24 1.14 1.03 0.90 0.73 0.49 0.08
3.64 1.45 1.38 1.31 1.23 1.14 1.04 0.92 0.77 0.58
3.87 1.48 1.42 1.36 1.29 1.21 1.12 1.03 0.92 0.79
4.10 1.50 1.44 1.38 1.32 1.26 1.18 1.10 1.01 0.91
4.33 1.50 1.45 1.40 1.34 1.28 1.22 1.15 1.07 0.99
4.56 1.50 1.45 1.40 1.35 1.29 1.23 1.17 1.10 1.03
4.79 1.48 1.43 1.39 1.34 1.29 1.23 1.18 1.16 1.05
5.02 1.45 1.41 1.36 1.32 1.27 1.22 1.17 1.11 1.05
5.25 1.40 1.36 1.32 1.28 1.23 1.18 1.13 1.08 1.03

—~InL;,a; = 649
@ u 2.17 2.31 2.45 2.59 2.73 2.87 3.01 3.15 3.29
3.41 .030 .032 .035 .039 .044 .052 .065 .091 .181
3.63 .029 .030 .032 .034 .037 .041 .047 .056 .073
3.87 .028 .029 .030 .032 .034 .037 .040 .045 .051
4.10 . .028 .029 .030 .031 .032 .034 .036 .039 .043
4.33 .028 .029 .030 .031 .032 .033 .035 .037 .039
4.56 .029 .030 .031 .031 .032 .033 .034 .036 .038
4.79 .031 .031 .032 .033 .033 .034 .035 .036 .038
5.02 .034 .034 .034 .035 .036 .036 .037 .038 .039
5.25 .037 .038 .038 .039 .039 .040 .040 .041 .042
F1 , Az = 6.4:9
@ & 2.17 2.31 2.45 2.59 2.73 2.87 3.01 3.15 3.29
3.41 .0018 .0021 .0025 .0033 .0045 .0067 .0117 .0268 .1237
3.64 .0015 .0017 .0020 .0023 .0028 .0037 .0052 .0081 .0152
3.87 .0014 .0016 .0017 .0019 .0022 .0026 .0032 .0043 .0061
4.10 .0015 .0015 .0016 .0018 .0019 .0022 .0025 .0030 .0037
4.33 .0016 .0016 .0017 .0018 .0019 .0020 .0022 .0025 .0029
4.56 .0018 .0018 .0019 .0020 .0020 .0021 .0023 .0024 .0026
4.79 .0022 .0022 .0022 .0023 .0023 .0024 .0025 .0026 .0027
5.02 .0028 .0028 .0028 .0029 .0029 .0029 .0030 .0031 .0032
5.25 .0038 .0038 .0038 .0038 .0039 .0039 .0039 .0040 .0041
Fy,as = 649
@ o 2.17 2.31 2.45 2.59 2.73 2.87 3.01 3.15 3.29
3.41 .0003 .0003 .0003 .0004 .0005 .0006 .0008 .0012 .0026
3.64 .0002 .0003 .0003 .0003 .0004 .0004 .0005 .0007 .0010
3.87 .0002 .0002 .0003 .0003 .0003 .0004 .0004 .0005 .0006
4.10 .0002 .0002 .0003 .0003 .0003 .0003 .0004 .0004 .0005
4.33 .0002 .0002 .0003 .0003 .0003 .0003 .0004 .0004 .0004
4.56 .0002 .0002 .0003 .0003 .0003 .0003 .0003 .0004 .0004
4.79 .0002 .0002 .0003 .0003 .0003 .0003 .0003 .0004 .0004
5.02 .0003 .0003 .0003 .0003 .0003 .0003 .0004 .0004 .0004
5.25 .0003 .0003 .0003 .0003 .0003 .0004 .0004 .0004 .0004
F, , A3 = 6.49
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APPENDIX

TraEOREM 3. Under the conditions of Theorem 1, but with K = 4, the term in n™"
in the expansion (2.8) for 9 is given by

(9/8n%) D ici (1/ck) + (1/4n”) 2°* (1/ciseer)

where the second sum contains all (fifteen) possible cross products of the (ci;)™
without repetition. ,

OUTLINE OF PROOF: As in the proof of Theorem 1 each of the expressions in
(2.7b) is written out in detail as the sum of polynomials in the s;; and any term
with an odd power of an s;; is dropped. Then each polynomial is integrated using
(2.6b) and all of these results are combined to give a linear combination of the
expressions S , Su , -+ - , Siin defined in (2.12) below. Since an n°C' is common
to each of the terms in (2.7b) after integration we write

f(8) = dS; + duSu + -+ + diSiin
if
2w o ffw exp [(—n/2) ZK:‘ cijsilf(S) H:Q dsij
= n7°C(dsS2 + -+ + dituSHu).

Here the d’s are constants. We now list without proof the results for each of the
expressions in (2.7b).

(—n/2) tr {8 = (1/61)[—4328, — 2538y — 1048,_; + 455h
+ 1581 + 15 Sinn — 10 Sty
(n?/8) (tr {S'})* = (135/32)8: + (359/144)Su + (59/36)S1_1
+ (—11/16)82 + (9/128)8:: + (—11/48)8in
+ (—11/48) Shy + (13/288) Siu + (1/32)84H*
+ (3/64)S31 + (1/64)8h .
(n'/4) tr {8} tr {S°} = (3/4)8: + (13/16)8u + (1/2)814
+ (—3/16)82 + (—5/48)8iu + (—5/48) Siu
+ (1/12) St .
(—n*/16) (tr {S*})* tr {S*} = (—61/16)S; + (—157/48)8u + (—23/12)8.
+ (7/16)8k: + (9/16) St + (—7/48) Bt + (19/16)Sh
+ (—9/64)8% + (—3/32)83: + (—1/32)Shu + (—3/16)SI1".
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(n'/384) (tr {S°})" = (33/32)8: + (5/6)8u + (17/24)81
+ (—5/24)8t + (—1/4) Siu + (11/96) Sin + (—3/8)Sn
+ (9/128)8% + (3/64)Si: + (17/192)8tu: + (7/48) St -
(—n/24) tr {§*) tr 8 = (—3/4)8, + (—23/48)8u + (—7/18)8:14
+ (1/16)S3: + (1/48)Sin + (1/48) St -
(n*/96) (tr {S°})" tr 8* = (1/4)8; + (13/48)Su + (1/6)811
+ (—1/48)8iu + (—1/48) Siu + (—1/16)8u.
(1/6!) (tr 8* + (7/4)(tr SH*) = (1/6!)[278, + 188u + 1481
It is clear that the integration of (2.7b) comes to
(9/8)8: + (1/3)8u + (7/12)811 + (—1/12)Siu
+ (1/12)81n + (—1/12)8H

However from (2.12) it is not difficult to show the dependence

Su + 481 — Sin + Sin — SR = 0.
Finally then integration of the expressions in (2.7b) yields
(9/8)8: + (1/4)(Su + S11).

We complete the outline of this proof by defining the expressions S, Su,
.-+, SHu which appear after the integration of (2.7b).
Formura (2.12).

8y = 1/cly + 1/cls + 1/ctu + 1/c3s + 1/c + 1/cia,
Su = 1/ceis + 1/ciocis + 1/crocm + 1/ciocos + 1/cis61a + 1/c1scs + 1/c1368
+ 1/cucos + 1/cuacss + 1/coscos + 1/c256ss + 1/couCaa
1/c12c3s + 1/crsces + 1/c14c2s
cta(1/clachs + 1/clucss) + cls(1/clachs + 1/cluchs)
+ a(1/chachs + 1/chacss) + caa(1/clacts + 1/c3ucs0)
+ Gu(1/clect + 1/chacsa) + cia(1/chscis + 1/¢3scha),
Sh = cu(1/cuchs + 1/cticm + 1/cucss + 1/claca)

+ cia(1/cuchs + 1/claczs + 1/cucis + 1/clucar)

+ cu(1/cizche + 1/chacu + 1/cuscse + 1/claca)

+ ca(1/cucts + 1/clacis + 1/cucse + 1/chucu)

Si1
Se
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+ cu(1/ciacie + 1/chacrs + 1/cucse + 1/ciacas)
+ esu(1/ciacis + 1/clscrs + 1/emcss + 1/chscn),
Sin = (cz + ca + ca)/cracucu + (c15 + cu + Can/Cracaca
+ (e + ¢ + cu)/crscucu + (2 + 13 + €28)/C1uc2cs,
T = (cu + ca)[1/CisCrsCas + 1/C1sCisces + 1/Cracauca + 1/cracaucsd]
+ (c13 + caa)[1/croCiucas + 1/c12614623 + 1/CraCoscss + 1/C14C25Cs4]
+ (c12 + c3a)[1/c1scacas + 1/c1sciacas + 1/cracesces + 1/c15C232),
Sin = (ci/cs + css/ci2) (1/ciscos + 1/cracan)
+ (cs/cu + cu/eis) (1/cucs + 1/c1acn)
+ (cu/czn + /) (1/cusen + 1/cracu),
(1/c32 + 1/ch4) (C15C1a/CosCon + CasCos/Cracrs + C13Ca/CuaCas + C14623/C15c24)
+ (1/cks + 1/che) (C1oC1s/CasCas + CasCsa/CizCia + Ci2C3a/Cracas + CraCas/Cracas)
+ (1/cls + 1/cis) (cratra/ Caucan + Caucaa/Cracis + Cracas/ Cracas + Craca/ Crzua)

Shn = (clz + cha)/crsciucmcas + (cls + €34)/croCrcaca + (cle + €33)/cCraCraCoscas

11
S211

11
S = 012034/ €13C14C23C24 + 013024/ C12C14C23C34 + 614023/ C12€13C24C34
(1+1)2 2 11

Stii. = St + 281 .
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