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1. Introduction and summary. Let £ = { |k = 0, &1, - - -} be a sequence of

real valued random variables with E%, = 0 and let {a.x|n = 1,2, --- ; k = 0,
=+1, - - -} be a doubly indexed sequence of real numbers such that

(1) S [anp] <1 for n=1,2, -,

and .

(2) AMn) = maxg [@.] —0 - as n — .

(In (1) we have replaced the upper bound 4 < o« of Condition 2 [3] by 1
which clearly entails no loss of generality.)

The following result was established in [3]:

THEOREM A. If & is an independent sequence of random variables and if the
moment generating functions, fi(t), of the &’s exist and satisfy the condition;

(3) for every B > O there exists Ts > 0 such that |t| < Tp implies
fi(t) = exp (Blt|) uniformly in k,

then the random variables S, = Y e Gn ity are defined almost surely as limits of
the partial sums for each n and for every ¢ > 0 there exists p < 1 (which depends
on e and Tg but not on the particular a, i’s) such that

P[iS,| = { < 2p"™™.

This result was used to establish exponential convergence rates for the law
of large numbers for arbitrary subsequences of linear stochastic processes with
absolutely convergent coefficients and for the convergence in probability to zero
of Toeplitz means of independent random variables, extending previous results
in [1] and [4].

In the présent paper we investigate upper bounds on P[|S,| = ¢] for two types
of discrete parameter stochastic processes, & closely related to independent
sequences; exchangeable processes and *:mixing processes. In Section 2 we
establish a basic theorem for exchangeable processes, analogous to Theorem A,
which enables us to state conditions leading to upper bounds which tend to
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zero with n at virtually any sub-exponential rate. In Section 3 these bounds are
shown to be sharp in certain important special cases by exhibiting a mixture of
normal random variables which actually attains them under the given condi-
tions. In Section 4, the exponential bounds obtained in [3] for independent se-
quences is shown to carry over to *-mixing processes, thus extending a result in
[2]. '

2. Convergence rates for exchangeable processes. Let £ be a process of ex-
changeable random variables over a probability space (@, @, P), i.e., the joint
distribution of &;,, ---, &, is equal to that of &, ---, & for any selection of
distinct integers 4,, - -+ , 2. and anyn = 1,2, --- . Then ([5], p. 365) there exists
a sub o-field ® of @ such that the £’s are conditionally independent and iden-
tically distributed given ®. Moreover, ([5], p. 363) the conditional distribution
of £ can be assumed regular. Conditional expectation relative to this distribution
will be denoted by E®.

We assume that E& = 0. This implies that u(w) = E®(w) exists a.e. and,
centering the £’s at their conditional expectations, we can assume that

(4) ww) =0 ae..
Let
8t (@) = E%"(w).

This conditional moment generating function will exist in some symmetric
(possibly degenerate), closed interval [—T(w), T(w)] about the origin for
almost all w. We will also make the following assumption which is the analog
of Condition (3):

Jor every B, 0 < B = 1, let Tp(w) be the largest value of |t| such that
(5) ) (@) = .
We assume that P[Ts(w) > 0] = 1 forall 3,0 < 8 £ 1.
Note that P[Ts(w) £ Tp(w)] = 1 whenever 0 < 8 < 8 =< 1. In case

Ts(w) = <« on a set of positive probability for 8y < 8 < 1, we can and will
redefine these random variables so that P[Ts(w) = Ts(w) < «] = 1 for all
0<g<pf =1

The following lemma guarantees the existence of S, = D 2 @kt and pro-
vides an expression for its conditional moment generating function.

Lemma 1. Let {@ni: bk = 0, £1, --- ;n = 1,2, ---} be a sequence of real
numbers satisfying Conditions (1) and (2), and let € be a process of exchangeable
random variables satisfying Conditions (4) and (5). Then there exists a random

variable T(w) with P[0 < T(w) < ] = 1 such that
ga>() (@) = 1Mo s ] Loma S (@nit) (00)

exists for all n and |t| < T(w) a.e.. The random variable
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. b
Sn = llmaa_oo b>wo Zk:a [¢7% kgk

exzsts as an almost sure limit and has conditional moment generating functwn
g2 (1) (w). M oreover if & possesses all moments of order <p, so does S, .
particular, ES,

Proor. Deﬁne T(w) = T (w). Then, by Assumption (5), P[0 < T(w) < «]
= 1. Now the proof of the lemma in Section 2 of [3] with 8 = 1 can be carried
over for almost all w to establish that P®(C,)(w) = 1 a.e., where C, is the con-
vergence set of the partial sums { > r_, aniéx}, and that E® exp (18,)(w) =
92 (1) () for [t < T(w) a.e. Then P(C,) = EP®(C,)(w) = 1 which establishes
the first part of the lemma.

Let

M, = ”50“11 = [EIEOIP]IIP
forp = 1.If M, < o, thenforc < a £ —N and N < b < d we have
1220 @it — 222 anatill, < (07" 4 Xti)lanalld, > 0 as N — w

by Assumption 1. By the completeness of £,(P) there exists S, with
18,7, < o such that

” Zz On kkx — Sn(p)”p -0

as ¢ — — o, b — . Then, since S, is defined as the almost sure limit of the
partial sums, S, and S, are equivalent random variables for all p = 1. Since
we have assumed Ef, = 0, we see that ||&|; < « and

Esn = hma»—oo,b—»oo EZ: an,kgk = 0.

The following theorem is the analog of Theorem A for exchangeable processes.

TurorEM 1. Let Tp(w) satisfy Condition (5). Then the moment generating
Sfunction, gs(t), of Ts(w) exists for all t = 0, and for every ¢ > 0 there exists 3 > 0
and t* < 0 such that

PlISa| = ¢ = 2g5(t* IN(n)T).

Proor. Since P[Ts(w) > 0] = 1, gs(t) = E exp [tTs(w)] < 1 for all t £ 0.
Fix ¢ > 0 and let 8 = ¢/2. Then, using the inequality P[X = 0] < Ee"* for
t = 0 and the fact that P[Ts(w) < T(w)] = 1, it follows from Lemma 1 that

P8, = ¢ = EPY[£S, 2 ¢(v)

BE® exp {(£8, — eJ[\(n)] ' Ts(w)}

E exp {—eT(w) M)} ] Iiew £ (£an N (n)] ' Th(w))
Eexp {(—e+ B2 [ani)Nn) " Tp(w)}

g8((8 — N = go(t* M),

A1 A

1A

where t* = —¢/2.
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Since P[|S.| = €] < P[S. = €] + P[— S, = ¢, the theorem is proved.

This theorem leads to a wide range of convergence rates depending on the
concentration of the probability of Ts(w) near zero. For illustration, we provide
the following examples.

CoroLLARY 1. If for every 8, 0 < B =< 1, there exists Ts > 0 such that
P[Ts(w) = Ts] = 1, then the moment generating function of S, exists for |t| < T,
and for every e > 0 there exists p < 1 depending only on e and T such that

P[|Sn| = e] < 2p1/)\(n).

Proor. From Lemma 1 and the condition of this corollary, the conditional
moment generating function of S, exists for |f| £ T; . Thus,

gx(t) = Eg.®(t)(w),

the unconditional moment generating function of S, , exists for |¢{| < T .
Moreover, with ¢* defined in Theorem 1,

gt D)7} = E exp {*Ta(w)Nm)]™} < exp {t*To\(n)]} = o,

where p = exp (t*T).

This is the only case in which an exponential bound can be obtained from
Theorem 1 as is shown by the following lemma. (The case P[Ts(w) = 0] > 0
is clearly excluded.)

LeEmMmA 2. Suppose 0 < 8 = 1. If P[0 < Ts(w) < 9] > O for every n > 0,
then for each p, 0 < p < 1 and M > O there exists T = T(p, M) > 0 such that
forallt = T,

gs(—1t) > Mp".
Proor. Let ¢ = —log pand 0 < 7 < e Set
Sny = /2" £ Te(w) < 7/2"7.

Then U5 8., = [0 < Ts(w) < 7] which implies P(S,,) > 0 for some n. Let
8 =1n/2""and I = [46 < Ts(w) < 8]. Then, if Fy is the distribution function
of Tg(w), :

go(—t) = [ 7 dFy(2)
Jre " dFg(z) 2 e [; dFy(x)
_ pte(e—S)tP[%‘; =< Ts(w) < 9]

v

by definition of e. The lemma now follows, since it is clear that the multiplier of
p’ can be made arbitrarily large for sufficiently large ¢.
The next two examples are special cases of the following result.

LemMa 3. Let p(z) = ¢’®h(zx) be a probability density on (0, «) where
Joh) =M >0
and f(x) is a twice differentiable function on (0, «) such that
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(i) f(0%) = — o,

(ii) f'(z) = 0on (0, ) with f'(0*) = o,

(iii) f"(z) < 0on (0, «).

Then there exists T = 0 and a continuous function r(t) (explicitly constructed in
the proof) with r(t) —» —  ast— o« such that forallt = T,
[5 e “p(z) dz = M.

Proor. Let R(x, t) = f(z) — tz. Then, if T = inf,f'(z), the equation
R.(z,t) = f'(x) — t = 0 possesses a continuous solution, z(¢) = 0, for all ¢ >
T by the implicit function theorem. Since R..(z, t) = f” (z) < 0, this solution is
unique and maximizes R(zx, ¢) as a function of z. Let »(¢) = R(x(t), t). Since, by
(i), z(t) > 0ast— »,r({) > — o ast — o« because of (i). Moreover, for
t= T,

[s e p(z) dx = [7 " h(zx) dx < M,

as was to be shown.
It is possible for the exponential bound to be approached closely even when

P[0 < Ts(w) < q] > 0 for every o > 0:
COROLLARY 2. Suppose T's(w) s absolutely continuous with probability density

ps(z) = exp {—1/x°}he(x), e> 0
where
[5 hs(x) dx = M < oo
for 0 < B = 1. Then, for every e > 0 there exists p, 0 < p < 1, such that
P[IS.] = ] = QM 5N,

Proor. hg(z) and f(zx) = —1/z° satisfy the conditions of Lemma 3 for
0 < B = 1, and a simple computation yields
T(t) — _[s—a/l+l + sl/a+l]tl/l+l.

Thus, by Theorem 1, P[|S,| = ¢ < 2Mzp™*™ """ where log p = r(—t*).
Another application of Lemma 3 yields an algebraic bound:
CoROLLARY 3. If Tg(w) is absolutely continuous with probability density

pa(z) = 2'hg(x), v >0
where '
[5 hs(x) de = My < oo
for 0 < B £ 1, then for every € > 0 there exists M > 0 such that
P[|Sa] 2 €] = M[\(n)T.

Proor. The conditions of Lemma 3 are satisfied with A(x) = hg(x) and
f(x) = vlogz. Now, r(t) = vlog (v/t) — v and the corollary follows from
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Theorem 1 and Lemma 3 with
M = 2Mge’ (—t*/v)".

In the case of algebraic bounds, a slightly better result can be obtained for
commonly occurring damping functions, hsg(x), such as hg(z) = a(B) exp
{—b(B)z} by using Watson’s lemma ([6], p. 37). This is illustrated in the
following corollary:

CoroLLARY 4. If Ts(w) s absolutely continuous with probability density of the
form given in Corollary 3 where, in addition, hs(x) has a power series expansion for
allz = 0 with 0 < hg(0) < o, then for every e > 0 there exists M > 0 such that

P[S.] = ¢ = M)
Proor. We can write
p(z) = D jmoai’™

and, because hg(z) is integrable, the conditions of Watson’s lemma are satisfied.
Since pg(z) is a probability density it follows that ay > 0 and, from Watson’s
lemma,

[gs(—1) — (aol'(v + 1)/t = 0o(1)  as t— .

Thus, for 8 > 0 and M’ = aI'(» + 1) + & there exists 75 such that ¢t = T}
implies gs( —t) < MM,

The result now follows from Theorem 1 by selecting M sufficiently large so that
M\ (n)"™ = 1 for all n such that [t*/A(n)| < T,.

We note, without proof, the following extensions:

1. Many rates other than those given in Corollaries 1 through 4 are possible.
In fact it is not difficult to establish a converse to Lemma 3 wherein functions r(t)
can be specified and the corresponding densities yielding the desired rates con-
structed.

2. The assumption of absolute continuity in Lemma 3 and Corollaries 2 and 3
can be relaxed to admit arbitrary distributions for which the distribution funec-
tion satisfies

Fs(z) < [Sps(y) dy

for 0 < B8 = 1 and all z and in some neighborhood of the origin.

3. The equality of the conditional distributions of the £’s is a consequence of
the exchangeability of the process ¢ and is not an essential requirement of the
theory. If the £’s are conditionally independent given ® but have different con-
ditional moment generating functions, £,®(t) (w), in order to carry over the results
of Lemma 1 and Theorem 1, it suffices to redefine Ts(w) in Condition 5 as the
largest value of [t| for which

&) (w) £ ¢, uniformly in k.

As before, it is assumed that E®, = 0 a.e.
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In this context, the theory is applicable to compound experiments in which an
experimental unit is selected from a population according to a given distribution
and a sequence of independent but not necessarily identically distributed meas-
urements are made on it. Then Theorem 1 provides a bound for the tail proba-
bilities of linear combinations of the measurements averaged over the selection
distribution for the population. We illustrate this application by the following
easily derivable result:

THEOREM 2. Let p = {p;|j = 1, 2, ---} be a probability distribution on the
positive integers and for eachj = 1,2, --- ,let & = {¢p: k = 0, £1, ---} be a
sequence of independent random variables for which Ety = 0 for all k. For each j
and 0 < B < 1, let Ty, ; be the largest value of |t| such that

Eexp (ttz) < "' uniformly in k.

Furthermore, let {a,|n = 1,2, -+ ; k = 0, &1, - - -} be a double sequence of real
numbers satisfying Conditions 1 and 2. '
Now, if € = {& |k = 0, 1, - - -} s selected from {§ |7 = 1,2, - - -} according
to the distributionp (i.e. PlE = &] = p;,j = 1,2, --+) and if
Sn = Zl:;—oo an, ,kék ]
then for every e > 0, there exist numbers t* > 0 and 0 < 8 < 1 such that
PlS.| = ¢ < 2 2 7 pjexp {—t* T, (\(n)] 7).

3. Example of an exchangeable process for which the bounds are attained. An
exchangeable process will be constructed as follows: Let a be a non-negative
random variable with distribution function G(a). Then, for fixed «, the random
variables §, are taken to be independently and identically distributed with zero
mean and varance . The joint distribution of &;,, -+, &, ,

Ffi,.-'-.fin(xl yrtt, Ta) = f:)o H:I;l &, (x;) dG(a),
where
Ba(z) = (2ma)” [2., eV gy,

is that of an exchangeable process. We will show that if > a%: = 8\(n) forn
sufficiently large and some & > 0, then the exponential and algebraic convergence
rates of Corollaries 1 and 4 are the best rates that hold for this mixture of normal
probabilities under the specified conditions on the distribution of Ts(w) given in
the corollaries. For this purpose we will require the following lemma.:

LEMMA 4. Let £ be the above defined normal mixture, and let

An = D 5 wth;.
Then for every e > 0 and 3,0 < B = 1,
P8, 2 o = 377" [Gppa, a7 [T €y} dHp(y) de,
where Hg(y) s the probability distribution function of Ts(w).
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Proor. The conditional moment generating function of &, is exp (at’/2). Thus,
from Condition (5), Ts(e) = 28/c. Moreover,

S = Zk=—oo an ksk

is condltlonally normally distributed with zero mean and variance A,o. Thus, if
G(e) is the distribution function of a,

PS8, = ¢ = [T [11zeupt (2re) e 41 dG(a).

The result now follows by making the transformation y = 28/a, substltutlng
dHg(y) = dG(28/y)(28/y") and then making the transformation z = ¢ ?/48.

THEOREM 3. If & is the above defined normal mixture and if, for some § > O we
have A, = \(n) for alln = Ny > 0, then the condition

(6) forevery B,0 <B =1 thereexists Ts> 0 such that P[Ts(w) = Tg) = 1,

smplies that for every e > 0, there exist numbers M > 0, 0<p<landN > 0such
that forn = N,

P8, = ¢ > Mp"™™,

Proor. Fix 8 and let T4 be the essential infimum of Ts(w). Then Ts > 0 by
Condition 6. If P[Ts(w) = Tg] = psg > 0, then setting

Io(®) = [v ey dHy(y),
it follows that
Is(x) = ps(Ts)? exp (—Ter) forall = = 0.
If P[Ts(w) = Tg] = 0, then
Iy(z) > (Tp)* exp (= Tse) [ ¢ dHp(y + Tp),
and by Lemma 2, for each v > 0 there exists X, > 0 such that
Is(z) > exp [— (T + v)z] forall =z 2= X, .

Fix v and 6 > 0. Then in both of the above cases, since z’¢ ™ — 0 there exists
Xy such that z = X, implies

z *Iﬁ<x> > exp [~ (Ts + v + 0)al.
Thus, if N; = min {n | A, = ¢/(48X,)} and N = max (N, , N2), by Lemma 4 it
follows that ‘
P8, = ¢ > Mp"™™  for n = N,
where M = 1/(Ts+ v+ 6) and p = exp {—Ts + v + 0)€/(465)}.
THEOREM 4. If £ is the above defined normal mizture and if for some § > 0 we
have A, = 6\(n) for allm = N > 0, then the condition

(7) Ts(a) is absolutely continuous with probability density
pe(z) = D ioax’™  forall =0 andsome v> 0,
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implies that for every ¢ > 0 there exist numbers M > 0 and N > 0 such that for
n = N,

P(IS,| 2 ¢ > M\(n)]™.
Proor. By Watson’s lemma, the asymptotic expansion of
I(2) = [Pe™pe(y)dy s XiaalG + v + P77

Thus, for 0 < ¥ < aI'(v + 2) there exists X, > 0 such that * = X, implies
I(z) 2 [al(v + §) — vz~
Consequently,
[P I@)atde 2 [(al(v + 3) — v)/(v + DI, for r =2 X,.

Now, let Ny = min {n | 4, = ¢/(48X,)} and N = max (N;, N:). Then the
result follows from Lemma 4 with

M = [(al'(» + 3) — 7)/(v + 1)](4B8/€)".

4. Exponential convergence rates for *-mixing processes. Let {&, : n = 0,
+1, ---} be a sequence of real valued random variables on a probability space
(Q, Z, P). For each integer n let =, be the smallest o-field with respect to which
£, is measurable and let =" be the smallest o-field with respect to which the
&’s are measurable for all £ < n.

DEFINITION. {£,} is called *-mixing if there exists a positive integer N and a
real valued function ¢ defined for integers n = N such that

(i) ¢ is non-increasing,

(i1) limg,o g(n) =

(iii) if n =2 N, A ¢ 2" and B ¢ 2, then

|P(AB) — P(A)P(B)| = g(n)P(A)P(B).

In [2] the strong law of large numbers is proved for *-mixing sequences {,}
and it is proved that the strong law holds with exponential convergence rate
when the common moment generating function of the £,’s exists in a neighbor-
hood of the origin. The method used to prove the latter theorem is quite crude
and can not be used when one is working with sums of the form considered in
this paper. However, using a slightly different technique we will establish the
following theorem:

THEOREM 5. Let {¢,:n = 0, £1, -} be a real valued *_mixing stochastic
process such that

Et =0 forall n

and the moment generating functions f, of the &,’s exist and satisfy Condition (3).
If the a, x’s satisfy Conditions (1) and (2), then

Sp = liMas—sofow Dt Onifk
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exists almost everywhere for each n, and for every ¢ > 0 there exist positive numbers
A and p < 1 (depending on e but not on the a, i’s) such that

P{IS. = ¢ = 4o,

We will break up the proof of the theorem into two parts. In the first part we
will show that no matter how a« — — « and 8 — « (monotonely), a limit, S, ,
exists a.e. and all possible such limits agree a.e. In the second part we complete
the proof of the theorem.

Proor or THEOREM 5, pART 1. If {v,} is a sequence of numbet such that
lim,e Z,:‘:l v = A and limm,e Z;i_,,. vx = B where A and are finite,
then limg.,_w g Z,f:,, vk« = A + B no matter how a — — o and 8 — «. To
.complete the first portion of the proof it is thus sufficient to show that
limgae D omt G xtx aNd liMgss D ie @n xkx both exist and are finite a.e. We will
prove the former; the proof of the latter is identical and will be omitted. We
see that limg.,. Zf=1 an ikx exists and is finite a.e. if limg.,o, }:1 <k<Bh=m(nody) Ankk
exists and is finite a.e. for each m = 0, ---, M — 1. The proof that the limit
exists is the same for each m. We choose M so that g(M) exists (set 6§ = g(/))
and prove the existence of the limit for m = 0. For notational convenience we
assume M = 1 and drop the subscript n. We want to show that

(8) limg.e Z£=1 ajt;

exists a.e. when ¢g(1) = 4. This limit exists a.e. if and only if for every ¢ > 0

(9) limynse limpae P{MaXm<i<n Z'};m at; S ¢ =1
and
(10) iMoo M P{Milmcign D ojam @i = —e} = 1.

The proofs of (9) and (10) are essentially the same. We will prove (9).

Suppose 7 > 0 and let F, be the distribution function of ¢, . Define d, =
d(%n, n) to be a number such that (1 + 9)F.(d.) = nand (1 + 9)F,.(d,7) < 1.
Define F,,; by

(11) F"[ﬂ](x> = 07 X < dn
= (1 + n)Fn(x) - dn =z

and let {£.;} be an independent sequence of random variables with distribu-
tion functions {F,y}.

It follows from Condition (3) that there exists C < « such that Et,’ < C
for all n. Thus Etam < (1 4 7)C for all n. It follows from standard arguments

and from Condition (1) that limg.. 241 axtry exists and is finite a.e. Thus for
every € > 0

. . k
liminseo iMoo P{MaXm <k <n > i S ¢ = 1.

Now set n = & = g(1). Since the sets involved are complements of set of the
type used in Lemma 3 of [2], it follows immediately from Lemmas 3 and 4 of
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[2] that

P{maXnckgn D jom Gikim < € < P{MaXngign D jom Gij < €}.

One immediately obtains (9) and Part 1 of the proof of Theorem 5 is complete.
For Part 2 of the proof we will need the following lemmas.
Lemma 5. If E|X| < w, then if Be " exists, 1 — Ee 1" < ™% — 1.
Proor. Ee ' exists on an interval containing [0, «]. On this interval define
o(t) = Ee ™" + Ee'™*' — 2. Note that ¢'(t) = —E|X|e"™"* + E|X|Ee™™™
and ¢"(t) = EX%*'X“ + (E|X|)’Ee™™'. We see that ¢(0) = ¢'(0) = 0,
lime. (1) = 0, and ¢” () = 0. It follows that ¢(¢) = O where it is defined.
LEMMA 6. Ee'x” < Ee&* + Ee_"“ + XL _ 9,

Proor. By Lemma 5, ¢™*! — —Ee ™", Thus
Eext _I_ Ee—xt + etE]X] . 2 g EeXt _I_Ee—Xt _ Ee——]x]t
= Ee™",

LemMA 7. For each a > 0 there exists a positive integer M and ¢ > 0 such that

E exp {téam} =1+ at
foralln,0 =t < c, and b = g(M).
Proor. For 0 = t £ Tj from Condition (3) we have
B exp {tham} = (1 + D)fa(t) — [22 e dFu(8)]

where the * indicates that the integral may include part of the mass at d, .
Then

Eexp {ttam} = 14 (1 4+ b)[fa(t) — 11+ b [5 (1 — %) d[(1 + b)F.(£)/b).
Applying Lemma 5 to the integral on the right we see that
E exp {tgam} = 14 (1 + D)[f2(t) — 1] + blexp [(1 + b)t/b) [%5 |¢| dF.] — 1}.

Because the f,,’s satisfy Condition (3), by taking b and 8 small enough we can
make (1 + b)[f.(¢) — 1] less than %at for 0 = ¢ £ T . For ¢t small enough we
can make

blexp [((1 + b)t/b) [ |g] dFa] — 1} = b(1 + v)[((1 + b)t/b) [%5 |¢] dFa(£)]

where v is arbitrary. The ¢ interval depends on b and [%% || dF,(¢). However if

" |¢| dF,(£) can be made uniformly small, then by requiring it to be small
a,nd picking fixed numbers b = g(M) and vy which are small enough we can ob-
tain a t interval for which the inequality holds and such that

t(1 4+ ¥)(1 + b) [% |¢ dFa(¢) < }at

uniformly in 7.
It follows from Condition (3) that [gsa | dFa(£) — O uniformly in 7 as

d— o,
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Suppose ¢ > 0. Choose d such that [ 554 ¢ dFa(£) < ¢/2 uniformly in 7.
Choose M such that g(M) = ¢/2d. Then

2 |t dFa(8) = [io12a 8l dFa(g) 4 df% dF.(£)
= (¢/2) + dg(M) < e

Thus [*% |¢| dF.(£) can be made uniformly small by choosing M large enough.
This completes the proof of Lemma 7.

LemMa 8. Theorem 5 is true if the S,’s are finite sums.

Proor: Since the existence of positive numbers A and p < 1 such that

P{Sn g e} é Apl/)\(n)
and the existence of positive numbers 4, and py < 1 such that
P{S, = —¢} < Aop ™™

are proved in the same way, we will omit the proof of the Iatter.
Define

M
Snm = Zism(modM) On, ;&5

and
A% = 2 jammodnn |ans|-
Then since
P{S, 2 ¢ = 20 P{Swm = (¢/2)(M™ + A¥n))
it follows that it is sufficient to find M, A¢, +++, Ay, 00 < 1, -+« , pyy < 1
such that
PSim 2 (/2) (M7 4 ATn)} S Appn ™™
foreachm =0, --- , M — 1.

We have for every ¢ > 0
P{Sum 2 (¢/2)(M™" + Anm)}
< Eexp {Snm — (&/2) (M7 + AZ)])
< exp (—et/2M) exp [(—te/2) A% nlE [Tiammoary exp (tan st;).

Now the random variables {¢'*#*/} are *-mixing with the same g and because
the function ¢,(z) = e” is monotone strictly increasing for ¢ > 0 we see that
fort > 0

[e“lwan = exp {tEipam}-
Thus,
P{Sum 2z (¢/2)(M7 4 A%0)}
< exp (—et/2M) exp [(—te/2) Al [ Liamomoasn B exp {t]an,s{ (£ 580 an5) g} -
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We see that Lemma 7 holds for E exp [{(—£.) 1] as well as E exp [ténm]. Choose
M and ¢ so that @ = ¢/2. Then for 0 < iIN(n) < ¢
PiSim 2 (¢/2)(M™ + Am)}
< exp (—et/2M) exp [(—1te/2) Axml [ Limmimoan [1 + t|ax.il(e/2)]
exp (—et/2M).

Letting ¢t = ¢/A(n) and p = ¢ “* gives the desired result.
Since

lIA

Sn = liMas oo foce D fima On bk a.e.
it follows that
P>t e auits] 2 ¢ — P{|Sa] 2 ¢}.
But
P{D fatusts] = ¢ < 4o
for all & and 8 by Lemma 8. So P{|S.| = ¢} < Ap'*™, proving the theorem.
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