A NOTE ON INVARIANT MEASURES1

By N. C. Jain

Stanford University and the University of Minnesota

1. Introduction. We consider a Markov process X_0 , X_1 , \cdots with stationary transition probability function $P(\cdot, \cdot)$ on the state space (X, \mathbf{B}) , where X is an abstract space and \mathbf{B} a countably generated Borel field of subsets of X. $P^n(\cdot, \cdot)$ denotes the *n*th iterate of the transition probability function and $P^0(\cdot, E)$ simply means the characteristic function of the set E.

Harris [4] introduced a recurrence condition and proved the existence of an invariant measure under such a condition. Various attempts have been made, see for instance [2], [3], and [5], to replace Harris' condition by a weaker one. The condition imposed by Isaac [5] is apparently weaker as remarked there and in [3]. The main purpose of this note is to show that Isaac's condition [5] is weaker than Harris' [4] only in a trivial sense. This is done in Section 2. This realization seems to give more insight into the results of [3] and [5]. In Section 3 we give another condition equivalent to Isaac's which seems still weaker. Some of the results of [3] are derived as consequences of these observations in Section 4.

We include some definitions and notations in this section. Most of these can be found in [1]. For any E in B we define

$$L(x, E) = \text{Prob } \{X_n \in E \text{ for some } n \mid X_0 = x\},$$

 $Q(x, E) = \text{Prob } \{X_n \in E \text{ infinitely often } | X_0 = x\}.$

The following relation can easily be verified:

$$(1.1) Q(x,E) = L(x,E) - \sum_{n=1}^{\infty} \int_{E} P^{n}(x,dy)[1 - L(y,E)].$$

Definition 1. A nonempty set E in **B** is stochastically closed if

$$P(x, E) = 1$$
 for all $x \in E$.

Definition 2. For any E in B,

$$E^{\infty} = \{x : Q(x, E) = 1\}.$$

The set E^{∞} is either empty or stochastically closed by Proposition 4 [1]. The following definition was introduced in [5]:

DEFINITION 3. Let m be a σ -finite measure on (X, \mathbf{B}) . The process is m-singular if for each x, except for an m-null set, there exists a set L_x , $m(L_x) = 0$, such that $P^n(x, L_x) = 1$ for all positive integers n. In the contrary case the process is called m-non-singular.

Received 29 October 1965.

¹This work was partially supported by the Air Force Office of Scientific Research.

730 N. C. JAIN

2. Implication of Isaac's condition. We give below three conditions:

CONDITION (C₀) (Harris [4]). There is a σ -finite measure m on (X, \mathbf{B}) , m(X) > 0, such that m(E) > 0 implies Q(x, E) = 1 for all $x \in X$.

Condition (C₁) (Isaac [5]). There is a σ -finite measure m with respect to which the process is m-non-singular such that m(E) > 0 implies Q(x, E) = 1 a.e. (m)x.

The exceptional set of Condition (C_1) may depend on the set E.

Condition (C_2) . Everything else is the same as in Condition (C_1) except that the exceptional set is fixed for all E and its complement with respect to X is stochastically closed.

THEOREM 2.1. Condition (C₁) is equivalent to Condition (C₂).

PROOF. It is enough to show that (C_1) implies (C_2) . Hence assume that (C_1) holds. We give first a lemma.

Lemma 2.1. Under Condition (C_1) there exists a set C with m(C) > 0 such that for some positive integer n we have

$$\inf_{x \in C, y \in C} f^n(x, y) \ge \delta > 0,$$

where $f^n(x, \cdot)$ is the density of the absolutely continuous part of $P^n(x, \cdot)$ with respect to m.

Proof. Lemma 2[5] implies that if r is any real number, 0 < r < 1, there exist a set $B \in \mathbf{B}$ and a positive integer k such that

$$0 < m(B) < \infty$$
, and for every $x \in B$:

(2.2)
$$m\{y: y \in B, f^{1}(x, y) + \cdots + f^{k}(x, y) > k^{-1}\} > rm(B).$$

Moreover Q(x, B) = 1 for all $x \in B$. The rest of the argument is same as the proofs of Lemma 2.1 [7] and Theorem 2.1 [7] since (2.2) is all that is needed to carry forth the argument. For a minor correction to the proof of Lemma 2.1 [7] we refer to Section 4 [6].

We now complete the proof of the theorem. Let $E \subset C$ with m(E) > 0. Then (2.1) implies

(2.3)
$$\inf_{x \in C} L(x, E) \ge \delta m(E) > 0.$$

It follows from Proposition 7 [1] that for all $x \in X$, $Q(x, C) \leq Q(x, E)$. In particular Q(x, E) = 1 for all $x \in C^{\infty}$. Let now E be any set in \mathbb{B} with m(E) > 0. By Condition (C_1) there is a set F contained in C with m(F) > 0, and such that for all $x \in F$, Q(x, E) = 1. Applying Proposition 7 [1] again we have $Q(x, F) \leq Q(x, E)$ for all $x \in X$. Since $F \subset C$, it follows from above that Q(x, F) = 1 for all $x \in C^{\infty}$ and hence Q(x, E) = 1 for all $x \in C^{\infty}$. C^{∞} is stochastically closed since it is nonempty and its complement, which becomes the exceptional set of Condition (C_2) , must be m-null as a consequence of Condition (C_1) . This completes the proof of the theorem.

3. Another condition equivalent to Condition (C_1) . The following condition will be proved equivalent to (C_1) .

Condition (C₃). There exists a σ -finite measure m satisfying the following:

- (i) m(E) = 0 implies $P^n(x, E) = 0$ a.e. (m)x, for all $n \ge 0$,
- (i) m(E) = 0 implies F(x, E) = 0 a.e. (m)x, for an $n \ge 0$, (ii) the process is m-non-singular and m(E) > 0 implies $\sum_{n=0}^{\infty} P^n(x, E) = 0$ ∞ a.e. (m)x. The exceptional set is not assumed fixed.

THEOREM 3.1. Conditions (C_1) and (C_3) are equivalent.

Proof. We first show that (i) of Condition (C_3) can be assumed to hold for the measure m of (C_1) without any loss of generality. Let m be the measure of (C₁) and consider the measure \widetilde{m} given by $\widetilde{m} = \sum_{n=0}^{\infty} 2^{-n} T^n m$ where

$$T^{n}m = \int P^{n}(x, \cdot)m(dx).$$

We claim that \widetilde{m} can replace m in (C_1) and it also satisfies (i) of (C_3) . For the first assertion it is enough to show that Tm can replace m in (C_1) . The definition of T implies that if $P^n(x, \cdot)$ has non-trivial absolutely continuous part with respect to m then $P^{n+1}(x, \cdot)$ has non-trivial absolutely continuous part with respect to Tm. Hence if the process is m-non-singular it is Tm-non-singular. Next thing to show is that Tm(E) > 0 implies Q(x, E) = 1 a.e. (Tm). Tm(E) > 0 implies $P(y, E) > \epsilon > 0$ for $y \in \text{some set } E_0, m(E_0) > 0$. Hence $\inf_{y \in E_0} L(y, E) \ge \epsilon > 0$. By Proposition 7 [1] it follows that for all $x \in X$, $Q(x, E_0)$ $\leq Q(x, E)$. Since $Q(x, E_0) = 1$ a.e. (m) we conclude that Q(x, E) = 1 a.e. (m). Let $F = X - E^{\infty}$. We have to show that Tm(F) = 0. Suppose Tm(F) > 0, then following the reasoning above we conclude that Q(x, F) = 1 a.e. (m)xwhich is a contradiction because we never hit F from E^{∞} and $m(E^{\infty}) = m(X)$. Thus Tm(F) = 0. That \widetilde{m} satisfies (i) of (C₃) is obvious.

To complete the proof it now suffices to show that (C_3) implies (C_1) . Assume (C₃). For $\delta > 0$, let $E_{\delta} = \{x \in E : L(x, E) < 1 - \delta\}$. It follows from (1.1) that for all $x \in X$, $\sum_{n=1}^{\infty} P^{n}(x, E_{\delta}) < \delta^{-1} < \infty$, and since (C₃) is assumed we must have $m(E_{\delta}) = 0$. Consequently L(x, E) = 1 a.e. (m) on E. Using (1.1) again together with (i) of (C₃) we conclude that Q(x, E) = 1 a.e. (m) on E. Thus E^{∞} is not empty, hence stochastically closed. Thus $m(X - E^{\infty}) = 0$ and Q(x, E) = 1a.e. (m)x. The theorem is proved.

4. Equivalence of the invariant measure to \widetilde{m} and its uniqueness under Isaac's condition. We can replace m by \widetilde{m} in Isaac's condition as shown in the proof of Theorem 3.1. Referring back to Section 2 we pick the set C corresponding to \tilde{m} and consider the process on C^{∞} . This process satisfies (C₀) with the measure \widetilde{m} . Harris' Theorem 1 [4] implies the existence of a unique invariant measure which is stronger than \widetilde{m} for the C^{∞} -process. Let π denote this measure. Define $\pi(X - C^{\infty}) = 0$. Since $\widetilde{m}(X - C^{\infty}) = 0$ we still have π stronger than \widetilde{m} . We show that π is actually equivalent to \widetilde{m} . Suppose E is an \widetilde{m} -null set. Then $P^n(x, E) = 0$ a.e. $(\widetilde{m})x$ for all $n \geq 0$. On the other hand, if $\pi(E) > 0$, then Q(x, E) = 1 for all $x \in C^{\infty}$ as a consequence of a remark in Harris [4], this is a contradiction. Hence $\widetilde{m}(E) = 0$ implies $\pi(E) = 0$ and π is indeed equivalent to \widetilde{m} . That π is unique among invariant measures equivalent to \widetilde{m} is also clear from Theorem 2.1 and Theorem 1 [4].

732 N. C. JAIN

I wish to thank Professor D. S. Ornstein of Stanford University for conversations connected with the present study.

REFERENCES

- [1] Chung, K. L. (1964). The general theory of Markov processes according to Doblin.

 Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 2 230-254.
- [2] FELDMAN, J. (1962). Subinvariant measures for Markoff operators. Duke Math. J. 29 71-98.
- [3] FELDMAN, J. (1965). Integral kernels and invariant measures for Markoff transition functions. Ann. Math. Statist. 36 517-523.
- [4] HARRIS, T. E. (1956). The existence of stationary measures for certain Markov processes. Third Berkeley Symp. Math. Statist. Prob. 2 113-124. University of California Press.
- [5] ISAAC, R. (1964). Non-singular recurrent Markov processes have stationary measures. Ann. Math. Statist. 35 869-871.
- [6] JAIN, N. C. (1965). Some limit theorems for a general Markov process. To appear in Z. Wahrscheinlichkeitstheorie und Verw. Gebiete.
- [7] OREY, S. (1959). Recurrent Markov chains. Pacific J. Math. 9 805-827.