A NOTE ON INVARIANT MEASURES'
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1. Introduction. We consider a Markov process X, , X;, - -+ with stationary
transition probability function P(-, -) on the state space (X, B), where X is an
abstract space and B a countably generated Borel field of subsets of X. P"(-, )
denotes the nth iterate of the transition probability function and P°(-, E)
simply means the characteristic function of the set E.

Harris [4] introduced a recurrence condition and.proved the existence of an
invariant measure under such a condition. Various attempts have been made, see
for instance [2], [3], and [5], to replace Harris’ condition by a weaker one. The
condition imposed by Isaac [5] is apparently weaker as remarked there and
in [3]. The main purpose af this note is to show that Isaac’s condition [5] is
weaker than Harris’ [4] only in a trivial sense. This is done in Section 2. This
realization seems to give more insight into the results of [3] and [5]. In Section
3 we give another condition equivalent to Isaac’s which seems still weaker. Some of
the results of [3] are derived as consequences of these observations in Section 4.

We include some definitions and notations in this section. Most of these can
be found in [1]. For any E in B we define

L(z, E) = Prob {X,eE forsome n|X, = z},
Q(z, E)
The following relation can easily be.verified:
(L1)  Q(z,B) = L(z, E) — 2234 [» P"(x, dy)[L ~ L(y, B)].

DEeriniTION 1. A nonempty set E in B is stochastically closed if

It

Prob {X, ¢ E infinitely often | X, = z}.

P(x,E) =1 forall z¢E.

DerintTION 2. For any E in B,
E* = {2:Q(x, E) = 1}.

The set E” is either empty or stochastically closed by Proposition 4 [1].

The following definition was introduced in [5]:

DeriniTION 3. Let m be a o-finite measure on (X, B). The process is m-singular .
if for each z, except for an m-null set, there exists a set L, , m(L,) = 0, such that
P"(z, L,) = 1 for all positive integers n. In the contrary case the process is
called m-non-singular.
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2. Implication of Isaac’s condition. We give below three conditions:

Conprrion (Co) (Harris [4]). There is a o-finite measure m on (X, B),
m(X) > 0, such that m(E) > 0 implies Q(z, E) = 1for allz ¢ X.

ConprrioN (C;) (Isaac [5]). There is a o-finite measure m with respect to
which the process is m-non-singular such that m(E) > 0 implies Q(z, E) =
1 a.e. (m)z.

The exceptional set of Condition (C;) may depend on the set E.

Conprtion (C,). Everything else is the same as in Condition (Ci) except
that the exceptional set is fixed for all E and its complement with respect to
X is stochastically closed.

TuEOREM 2.1. Condition (Ci) is equivalent to Condition (Cs).

Proor. It is enough to show that (C:) implies-(C,). Hence assume that
(Cy) holds. We give first a lemma.

Lemma 2.1. Under Condition (C1) there exists a set C with m(C) > 0 such that
for some positive integer n we have

(21) infzeC,yeCfn(x; '!/) ; 6 > 0’

where *(x, -) is the density of the absolutely continuous part of P"(z, -) with
respect to m.

Proor. Lemma 2[5] implies that if r is any real number, 0 < r < 1, there
exist a set B ¢ B and a positive integer k such that

0 <m(B) < =, and for every z ¢ B:
(2.2) m{y:yeB, f'(z,y) + - + f(z,y) >k} > m(B).

Moreover Q(z, B) = 1for all z ¢ B. The rest of the argument is same as the proofs
of Lemma 2.1 [7] and Theorem 2.1 [7] since (2.2) is all that is needed to carry
forth the argument. For a minor correction to the proof of Lemma 2.1 [7] we refer
to Section 4 [6].

We now complete the proof of the theorem. Let E C C with m(E) > 0. Then
(2.1) implies

(2.3) infoeo L(z, B) = $m(E) > 0.

It follows from Proposition 7 [1] that for all z ¢ X, Q(z, C) < Q(=, E). In par~
ticular Q(z, E) = 1 for all z ¢ C*. Let now E be any set in B with m(E) > 0-
By Condition (C;) there is a set F contained in C' with m(F) > 0, and such that
for all z ¢ F, Q(z, E) = 1. Applying Proposition 7 [1] again we have Q(z, F) =
Q(z, E) for all z ¢ X. Since F C C, it follows from above that @(z, F) = 1 for
all z £ C° and hence Q(z, E) = 1 for all z ¢ C”. C” is stochastically closed since
it is nonempty and its complement, which becomes the exceptional set of Con-
dition (Cs), must be m-null as a consequence of Condition (C1). This completes
the proof of the theorem.

3. Another condition equivalent to Condition (C;). The following condition will
be proved equivalent to (Ci).
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ConpitioN (C;). There exists a o-finite measure m satisfying the following:

(i) m(E) = 0 implies P"(z, E) = 0 a.e. (m)z, for alln = 0,

(ii) the process is m-non-singular and m(E) > 0 implies D no P"(z, E) =
o a.e. (m)z. The exceptional set is not assumed fixed.

TueoreM 3.1. Conditions (C1) and (C;) are equivalent.

Proor. We first show that (i) of Condition (C;) can be assumed to hold for
the measure m of (C,) without any loss of generality. Let m be the measure of
(C1) and consider the measure # given by @ = Yo 2 "T™m where

T'm =. [ P"(z, -)m(dz).

We claim that # can replace m in (C:) and it also satisfies (i) of (Cs). For the
first assertion it is enough to show that Tm can replace m in (Cy). The definition
of T implies that if P"(x, -) has non-trivial absolutely continuous part with
respect to m then P™"'(z, -) has non-trivial absolutely continuous part with
respect to Tm. Hence if the process is m-non-singular it is T'm-non-singular.
Next thing to show is that Tm(E) > 0 implies Q(z, E) = 1 ae. (Tm).
Tm(E) > 0 implies P(y, E) > ¢ > 0 for y ¢ some set Eo, m(Eo) > 0. Hence
inf,e, L(y, E) = € > 0. By Proposition 7 [1] it follows that for all z ¢ X, Q(z, Eo)
< Q(z, E). Since Q(z, E,) = 1 a.e. (m) we conclude that Q(z, E) = 1 a.e. (m).
Let,F = X — E”. We have to show that Tm(F) = 0. Suppose Tm(F) > 0,
then following the reasoning above we conclude that Q(z, F) = 1 a.e. (m)z
which is a contradiction because we never hit F from E* and m(E*) = m(X).
Thus T'm(F) = 0. That #i satisfies (i) of (C;) is obvious.

To complete the proof it now suffices to show that (C;) implies (C.). Assume
(Cs).Fors > 0,let B; = {xr ¢ E:L(x, E) < 1 — 8}. It follows from (1.1) that for
allz e X, X my P"(z, E5) < 6 < «, and since (Cs) is assumed we must have
m(E;) = 0. Consequently L(z, E) = 1 a.e. (m) on E. Using (1.1) again to-
gether with (i) of (Cs) we conclude that Q(z, E) = 1 a.e. (m) on E. Thus E” is
not empty, hence stochastically closed. Thus m(X — E*) = 0 and Q(z, E) =1
a.e. (m)z. The theorem is proved.

4. Equivalence of the invariant measure to 7 and its uniqueness under Isaac’s
condition. We can replace m by # in Isaac’s condition as shown in the proof
of Theorem 3.1. Referring back to Section 2 we pick the set C corresponding to 7
and consider the process on C”. This process satisfies (Co) with the measure 7.
Harris’ Theorem 1 [4] implies the existence of a unique invariant measure which
is stronger than # for the C™-process. Let = denote this measure. Define
(X — C”) = 0. Since (X — C”) = 0 we still have = stronger than 7. We
show that = is actually equivalent to #. Suppose E is an #i-null set. Then
Pz, E) = 0 a.e. (fit)z for all n = 0. On the other hand, if 7(E) > 0, then
Q(z, E) = 1 for all z £ C* as a consequence of .a remark in Harris [4], this is a
contradiction. Hence #(E) = 0 implies 7(E) = 0 and = is indeed equivalent to
#i. That = is unique among invariant measures equivalent to #i is also clear from
Theorem 2.1 and Theorem 1 [4].



732 N. C. JAIN

I wish to thank Professor D. S. Ornstein of Stanford University for conversa-
tions connected with the present study.

REFERENCES

[1] Cuuneg, K. L. (1964). The general theory of Markov processes according to Doblin.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 2 230-254.

[2] FELpmaN, J. (1962). Subinvariant measures for Markoff operators. Duke Math. J. 29
71-98.

[3] FELDMAN, J. (1965). Integral kernels and invariant measures for Markoff transition
functions. Ann. Math. Statist. 36 517-523.

[4] Harris, T. E. (1956). The existence of stationary measures for certain Markov processes.
Third Berkeley Symp. Math. Statist. Prob. 2 113-124. University of California
Press.

[5] Isaac, R. (1964). Non-singular recurrent Markov processes have stationary measures.
Ann. Math. Statist. 36 869-871.

[6] Jain, N. C. (1965). Some limit theorems for a general Markov process. To appear in
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete.

[7] OreY, S. (1959). Recurrent Markov chains. Pacific J. Math. 9 805-827.



