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1. Summary and introduction. It was shown by the authors [1], [2] how to ad-
just the treatment design matrix X to furnish estimates of effects as orthogonal
linear functions of observations for any irregular fractional replicate from an N
treatment factorial. The fractional replicate considered earlier was such that the
design matrix X was of dimensions p X p implying that p effect parameters be
estimated from p observations. The method consisted in finding a matrix A such
that the design matrix X and the observation vector Y were augmented to be-
come X; = [X':X'\]’ of dimensions (p + m) X p and Y1 = [Y":Y'\]’ of dimen-
sions (p + m) X 1 with p + m = N in such a way that [X ' X1] reduced to a
diagonal matrix. In the present note, the earlier results have been generalized
in the sense that the design matrix X need not be square, that is, of dimensions
p X p, but is of dimensions (p + m1) X p, p + m1 < N, implying that p effect
parameters be estimated from (p + ma) observations. Besides this generalization
the following additional results were obtained: (i) the structural relationship
between the effect parameters retained and the observations omitted was derived,
(ii) a working rule was developed for constituting the irregular fractional replicate
with observations that are internally consistent making it possible to estimate
the effect parameters, and (iii) a desirable procedure of designing the fractional
replicate to obtain maximum efficiency was set forth.

2. Notation and the background material. A set of » = p 4 m, observational
equations is denoted by ¥ = XB + ¢, where ¥ is a » X 1 random vector of ob-
servations with elements y; , X is the » X p treatment design matrix with rank
p < »,Bisthe p X 1 vector of effect parameters and eis a » X 1 random vector of
errors with E(ee’) = o’I, . The least squares estimates of B are given by Bt =
[X'X]'X'Y with the covariance matrix as cov (BT = [X'X]%".

With the augmentation as referred to in Section 1, the observational equations
take the form, Y; = XiB: + e, where the dimensions of X; are N X p and those
of Y1 and ¢; are N X 1 and the p columns of X; are orthogonal. With this adjust-
ment and with » = p it was demonstrated [1], [2] that the least squares estimates
B," are the same as BY and that cov (B;") = cov (BT) = [X'X]".

Partitioning the design matrix X (dimensions N X N) pertaining to a full
replicate as

Xu ¢ X .
(21) x=[3 1]
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we note that Xy (dimensions p X p) would correspond to the design matrix X
for the fractional replicate dealt with earlier and that X (dimensions m X p)
to M'X (denoted earlier by X,,) with which the design matrix X was augmented.
Denoting the augmented part \'Y of the observation vector Yy by Y., , it was
proved [2] that if solutions to the equations X 00¥m’ = —X1.Y exist, it is always
possible to find the matrix A\ = — Xo[X2] . The procedure amounted to finding
the values of m omitted observations from m equations obtained by equating to
zero the m effects which were taken as aliases of the estimated effect parameters.
Such a method of estimation is similar in principle to estimating ‘“missing
values,” as has been done by Tocher [3].

3. The generalized situation. In the full factorial partitioned into N orthogonal
contrasts of the N observations X'X is a diagonal matrix D, say, with diagonal
elements d;, ¢ = 1, -+, N. In the 2" case X'X/2" = Iy = the identity matrix
with dimensions N X N. From this we note that X'X = 2"Iy = XX'. This is
not true for other factorial design matrices X since they are only columnwise
orthogonal. However, we may transform the design matrix and the parameters
in the following manner: let XB = (XD })(D'B) = WC, where W = XD#,
C = D'B, and D} is an N X N diagonal matrix with diagonal elements d. and
similarly for D*. Then, since X’X = D, when we pre- and post-multiply both
sides by D™* we obtain D?X'XD™* = D'DD™ = Iy, = W'W. Likewise when
we pre-multiply W'W = Iy by W and then post-multiply both sides by W™
we obtain WW'WW ™ = WW' = Iy = WW’. Partitioning the X matrix as in
(2.1) we note that the following relations hold:

(3.1) X1Xn + XuXa = D, (ap X p diagonal matrix);
(3.2) X1:X1s + X3:Xos = D (anm X m diagonal matrix);
(3.3) X1 X + XoXe = 0 (a p X m null matrix);

(3.4) XX + X0oXo = 0 (an m X p null matrix).

Likewise, in the 2" case and for the transformed design matrix we note the fol-
lowing relations:

[WhW@][WnW%]
Wis Was | | War W

(3'5) ! 4 ’ !
= I:Wll Wll + W%l W21 W}l W12 + W?l W22] = [Ip 0 ] .
W;2 Wll + W22 W21 W12 W12 + W22 W22 0 Im ’
[W]l W12:| [Wil Wél]
W21 W22 W12 W22
(3.6)

[Wn W;.l + Wi Wiz Wu Wél + Wi Wéz] — [Iﬁmx 0 :|
Wor Wis + Waa Wis Wa Wor + Was Was 0 Inl
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I,, Iy Ipim, , and I, are identity matrices with dimensions p X p, m X m,
(p + m) X (p 4+ m1), and my X ms , respectively.
Let the observational equations in the generalized situation be denoted by:

(307) Yp-l-mx = XllBP + €ptm 5

where the dimensions of X1, By, Ypim, and epim, are (p 4+ m1) X p, p X 1,
(p + m1) X Land (p + m1) X 1 respectively with E(epimepim) = 0 Lpim, -
The dimensions of the observational vector Y,, will be taken as ms X 1. Using
this notation the following two theorems and the derived variance formulas are
presented to generalize previous results [1], [2].

TurorEM 1. If Xy, is of rank ms , then the least squares estimates Y+, obtained
from the observational equations Xs5Y %y = — X15Y pim, (the error part not indicated )
and expressed as A'Y,H.,,,1 , are such that Xy = A'Xy; .

Proor. The least squares estimates Y., are given by

Y,:Z = —[X22X421—1X22X{2Yp+rn1 .
Thus, A" = —[XpX2] ' X2X12, and
AXy = —[X0oXoo] " X0oX1:X 11 = [XoXoo] [ XnX20) Xy = Xy

by (3.4).

THEOREM 2. If X11, Y pim; and €prm, are augmented respectively by A' Xy, = Xor
A'Y pym, and A'epim, to become X1, Y1 and e1, then the least squares estimates,
B, obtained from the observational equations Y1 = XB, + e, are algebraically
the same as the least squares estimates, B,", obtained from the observational equa-

tions Ypim = XuBp + €pim, -
Proor. The least squares estimates B,* obtained from the observational

equations Yy = XiB, + e are given by
Bp* = [XI,XI]—1X1,Y1

- . Yoptm
(3.8) = [X1:Xu + XonXo] [X1: X114 [A,;;;l]

= X1 Xu + XaXa] (Xt + X1AA Y pim -

Now transform the design matrix and the parameters such that XuB," =
WuC," and XB,* = WiC,” as described above. The least squares estimates

become:
(3.9) Cp* = [W1,W1]_1W1/Y1 = [W{1W11 + Wéle]_l[W{l + W{lAA']Yp_,_ml ,

where A" = — [Wngég]_IWle'z in the same manner as for A’ when using the X
matrix. Using Equations (3.5) and (3.6), Equation (3.9) may be manipulated
to obtain the least squares equation for C,* as follows:



1036 K. S. BANERJEE AND W. T. FEDERER

WiuWu + WaWal (Wi — Wa(WaeWa) " WaW1aY pim,
= WiuWu + WaWaul [, + War(WeuWas) " Wa
(3.10) S(WiuWu) (WaW ) " WY pim,
= [WuWu + WaWal ' WiuWn + WaWul(WuWu) " WiY pim,
= (WiuWu) ' WY pm, = C,7.
Premultiplying C," and C,* by D, we find that B," = B,*.

4. Variance of the estimated effects under the above adjustment. We have
e1 = [enim; €pimAl corresponding to ¥y = [Y 4 Y pimAl’. Thus

N o ee’ ee’A _ I ptmy A 2
Blae') = B I:A’ee’ A’ee’A:I = I: A AALT
The covariance matrix of B,* obtained from Y; = X;B, 4+ e, is given by
A/
where 8; = [X:'X1] = D,. It can further be shown [2] that

Xll
I m A . I m A
(4'2) Xl/ [ :C; ! A/A] Xl = [X{I:Xéll [ IX-/ ! A/A] [:X. ']
21

=X11(1 4+ AA )Xy = X11(1 4+ 2AA" + AA'AA) Xy

(4.1) cov (B,") = Si* Xy’ [I“'"‘. ﬁA] X, 857

After some matrix manipulations and simplifications using the relations in (3.1)
to (3.6) we find that the covariance matrix reduces to [X1:.Xu] '¢® which is
the same as cov (B,"), where B," is obtained from observational Equations
(3.7). Thus, for finding the covariance matrix, expression (4.1) may be pre-
ferred, as it would involve inversion of a matrix of smaller dimensions in that
the inverse of [X2Xss], or [WasWas], needs to be obtained.

5. Estimability of the effect parameters that are retained and their connec-
tion with the observations that are omitted. The methodology given above
consists in getting the least squares estimates of the omitted observations from
equations obtained by equating the ‘“negligible’” effects to zero. The question
of estimability of the omitted observations is thus connected with the question
of what effect parameters are being ignored and consequently with the question
of what effects are being retained. In other words, given that a certain set of
effects is neglected (or equivalently, given that a given set of effects may be
retained), it would not be possible to cut out the observations arbitrarily to obtain
a fractional replicate. We now prove a theorem showing that the question of
being able to estimate (in the least squares sense) the retained effect parameters
is inseparably connected with the question of being able to estimate (in the least
squares sense) the omitted observations. The retained effect parameters are p
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in number, which have to be estimated from (p + m;) observations. We recall
that the dimensions of X1; and Xy are (p + m1) X pandme X m (p +m = N,
my + me = m, p > N/2) respectively. In order that it be possible to have least
squares estimates for each of the p effect parameters and also for each of the m.
omitted observations, X1,Xy and XXz, should be of rank p and ms respectively.

TrEOREM 3. Each of the set of p effect parameters (as denoted by B,) is estimable
(¢n the least squares sense), if and only if each of the set of my omitted observations
s estimable.

Proor. Asin Theorem 2, we shall transform the X matrix to the W matrix.
This does not alter the rank of the matrix. Since Rank (W) isp + m1 4+ mq = N,
Rank (Wu:Wy) is p 4+ mi and Rank (Wy!Wa) is ms. Now suppose that
Rank (W) is p. This implies that (W1, W)™ exists. Then from Equation (3.6)
we write WuWii = — WauWis . Post-multiplying both sides by Wu we obtain
W21W{1W11 = —W22W{2W11 . Then ng = Wng where F = — W{ng(W{qu)_‘l.
Since (Wu:Wx) = Wy(F:I,) and since Rank (WaiWa) is ms, Rank (Wy)
is ms . Hence (WaWas) ™" exists.

Now suppose that Wy has rank m,. From Equation (3.5) we have W, W,
= —WuW,. Post-multiplying both sides by W, we obtain Wi WyuWis, =
—WuWuWs, . Hence Wi = WG, where G = —WiuWay(WuWis)™. Since
Rank (Wi Wa) is p and since (Wi: W) = (WiiWu@), Rank (Wy) is p.
Thus, if each of the m, omitted observations is estimable then each of the p
effect parameters is estimable, and vice versa.

6. A working rule for omitting observations against a given set of negligible
effects. From what has been indicated in Section 5 it will be clear that it is
permissible to omit only those observations for which it is possible to have least
squares estimates from the omitted effect parameters, as this permissibility im-
plies the estimability of the effect parameters that are retained. If it is possible
to have least squares estimates for each in the set of omitted observations, we
shall call this set consistent, otherwise, inconsistent. We give below a working
rule for omitting observations against a given set of omitted effects:

1. Write the full set of observational equations as

_ Xll X12 Bp _ Yp+m1

*B = [le Xm] I:Bm] B [sz ]

where Y, are the ms < m observations to be omitted and B,, are the m parameters
not to be estimated.

2. Specify two observations to be omitted; if the rows in X, for the two
observations are not multiples of each other, the two observations are consistent,
and, hence, may be omitted.

3. If the row in X for the third observation to be omitted is not a multiple
of the rows of X, for the previous two omitted observations, it is consistent and,

therefore, can be omitted.
4. Continue this process until m, observations are omitted. If the rows of
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Xo are independent and if there are at least m, independent columns, then
X2X5, has an inverse and the omitted set of m, observations is consistent.

7. The most efficient way of omitting observations given a choice. Efficiency
of a design may be judged by more than one criterion. The design given by X1
may be considered to have maximum efficiency if the value of the det |X11Xu|
is maximized, or that of |(X1,X1)™"| is minimized. Since the dimensions of Xy
may be different in different designs, for the purpose of comparing two different
designs, the criterion of average trace of [Xy:Xyu]™" may also be adopted a sa
measure of efficiency, a design being considered to have maximum efficiency when
the average trace is the minimum. There are situations, however, when any one
of these two criteria would imply the other.

We consider below the question, given a choice, of omitting observations suit-
ably so as to maximize the efficiency of the design for the 2" series. (The same
arguments may be used for the general case by transforming the X matrix to
the W matrix.) We have

Tr (X1:.Xn) ™" = (1/N?) Tr [X1(1 + AA")’Xq)
(1/N*)[Tr (X1 Xu) + 2 Tr (X X1AA")
+ Tr (XuX]l,lAA,AA,)].

(7.1)

The second term of (7.1) may be shown to be equal to 2 Tr (NI, — X»Xs)
and the third term equal to Tr [N (XX3:) ™" — 2N I, + (X2X3:)] by relations
(3.1) to (3.6) for the 2" case. On substitution of these expressions in (7.1) we
get Tr (X1:Xu) ™" reduced to

(7.2) Tr(XnuXn)" = (1/N)[Tr (X1:Xn) + N’ Tr (XnX2) " — Tr (XuX1)].

Now (7.2) will be minimized if Tr (X2X;) is maximized and Tr (XXs,) " is
minimized.

It is known that if the elements of X (square) are restricted to lie between +1,
then the maximum possible value of the det |X| is given when X is orthogonal
in the sense that X'X is diagonal. In such a situation, det |X'X| is maximum,
det |(X’X)7"| is minimum, Tr (X’X) is maximum and Tr (X'X)™ is minimum.
[These aspects are connected in a way with the problem of Hadamard matrices
and Hotelling’s weighing problem.] Hence, it would be clear that if the rows
of Xy are chosen to be orthogonal to each other Tr (XX3) " is minimized and
Tr (X2Xs) is maximized simultaneously. In other words, if it is possible to
estimate the omitted observations with maximum efficiency, the effect parameters
are also estimated with maximum efficiency. When, however, it is not possible to
have the rows of X3 orthogonal, we have to cut out observations, if there is a
choice, in such a way as to minimize the trace of (XX3z2) "
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