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1. Introduction. A logistic distribution is defined by z = In {F/(1 — F)},
where F is the probability of a value less than z. This is a symmetric distribution
with mean zero and variance =°/3. The shape of a logistic distribution is nearly
the same as that of a normal distribution except at the tails. Birnbaum [2], Birn-
baum and Dudman [3], Plackett [9] and others [8] have given tables of the ex-
pected values of the order statistics.

In Section 3 a convenient expression for the moment generating function of
the 7th and jth order statistic (7 > ¢) in a random sample of size n drawn from a
logistic distribution is derived. This expression is useful in deriving the higher
product moments of the order statistics. In Section 4, a finite and easily comput-
able expression [11] is developed. Also various recurrence relations are obtained.
In Section 5, using digamma and trigamma values tabulated in [5], [6], we give
the covariances of all pairs of order statistics up to sample size n = 10.

2. Notation and order statistics theory. Let #;,, < %2n < - %u,n be the
order statistics in a sample of size n from any continuous distribution. Let the
cumulative distribution function (c.d.f.) be denoted by F(x). It is well known
that the distribution of sth order statistics has the probability differential ele-
ment

(2.1)  @ia(z) dz = [B(,n — i + D]7'F 7 (2)[1 — F(x)]** dF (),
1=1,2,---,m,

where B(k, m) = T'(k)T'(m)/T(k + m), k > 0, m > 0. And the joint distribu-
tion of 7th and jth order statistics is

ai,in(x, y) dz dy = [B(i,§ — 9)B(j,n — j + 1) 'F 7 (2)
(2.2) - [F(y) = F(@)/" 7L = F(y)]"” dF () dF (y),
z<y and 1=:i<j=mn

Let
(2.3) i = B(XE,) = [Pedtain(z)de, 12020, k=1,2,---,
with pin = pin and
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(24)  piin = BE(XinXin) = [ [ocouco @i, iin(2, y) dedy, 1=i<j=n.
The covariance of the 7th and jth order statistics is denoted by o,;. , Where
0,50 = E(Xiij,n) - MinMjn .

3. Moment generating function and bivariate moments for order statistics of
a logistic distribution. The probability differential element for a logistic dis-
tribution is
(3.1) f(z)de =exp (—2z)[1 + exp (—2)] Pdx, —o <z < .
Throughout this paper we will talk of logistic order statistics unless otherwise

stated in the text. Since z = In (F(z)/(1 — F(x))), the expression for moment
generating function can be written as

(32) M(t,s) = CJ focucrar (w/(1 — ) (0/(1 = ))u " (v — w)"™"
(1 — )" dud,
where C = [B(3,j — ©)B(j, n — j + 1)]"". Expanding (1 — u)~* in powers of u
and integrating with respect to u first and v next, we have
(83) M(l,s) = C Dot + 17— 1)O/r)B(t + 1+ 4,5 — 7)
-Bt+s+r+jn—7—s+1).
This is a simpler expression for the moment generating function, involving only

one summation, than that of the m.g.f. given by Gupta and Shah ([8], p. 912).
From Expression (3.3), one can obtain the bivariate moments as follows:

(34) E(XI:,anrfn) = [leDZMM(tl ) t2)]t1=52=0 )

where D, = 9*/94," and D," = 8™/dt,". The case k = 1, m = 1 is of practical
importance in estimating best unbiased linear estimators of the parameter p
and ¢ of the logistic distribution. Thus differentiating (3.4) with respect to 4
and ¢, and then putting {; = ¢, = 0, we have (details omitted)

B(XinXjn) = ¥0G — 1) + PG - 1) = ¥%(n — )]

(3.5) w06 - 1) = ¥O(m)] + 2 B(n— i+ 1,7+ 71)
“frB(i,n — i+ DITEOG +r — 1) — ¥%(n — 7)),
where ¥ (z) = d"In I'(z)/dz", (see [12]). Expression (3.5) is a convergent

infinite series with only one summation. Expected values of higher powers of
the product of two order statistics can be obtained from (3.3) using (3.4).

4. Exact results for the bivarate moment. Expression (3.5) is slowly conver-
gent, and it is rather difficult to obtain an answer correct to four or five decimal
places. But for higher order product moments of two order statistics, the method
explained in Section 3 is quite suitable. In the section we derive more convenient
results for the expected values of the product of any two order statistics. First
we prove certain important lemmas.
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Lemma 4.1. If x 18 a gamma variate with parameter r, then
(4.1) E(lnz) = ¥9(r — 1).

Proof is obvious and given by M. 8. Bartlett and D. G. Kendall [1].
Lemma 4.2. If x s a Beta variable of the first kind with parameters r and s

(r,s > 0), then
(4.2) (a) E(lnz) =¥ —1) — ¥ + s — 1),
(4.3) (b) E(nz)’ =¥V —1) =¥ +s—-1)
+ (¥ = 1) =¥ + s - 1)},
(c) Efflnag}{ln (1 —2)}] = —¥"(r+s—1) + (¥ —1)
(4.4) — ¥ 4+ s — ¥ —1)
— O 4 s = 1)}.

Proor. Consider the identity B(t, + r, & + ) = [32"7 7 (1 — )™ da,
th+ r >0, + s > 0. Differentitating this identity w.r.t. #, and then putting
t = 0 and £, = 0, we will have (a). Similarly differentiating the identity two
times w.r.t. t; and setting £, = t;, = 0, we have the result (b). Result (c) in the
above lemma can be obtained by differentiating the identity partially w.r.t. ¢
and ¢, and then setting &, = & = 0.

COROLLARY 4.1.

(4.5) Eln (1 —2)) = ¥% s —1) — ¥ 4+ s —1).
Proof is similar, with  and (1 — z) interchanged. .
COROLLARY 4.2.
(46) Eln(1 —2)=¥®s—1) =¥ +s—1) + (¥ - 1)
— YO0 + s — 1)}%

Proof is similar to Lemma 4.2 (b) with z and (1 — z) interchanged.

LevMa 4.3. For a logistic distribution,

(4.7) Vo F'(z) do = — [In[l — F(y)] + 225 Fi(y)/il, r> L

Proor. Denoting the L.H.S. by I, and using f(z) = F(z)[1 — F(z)], we have

I= [YF (2)de = [“w F ' (z)dz — [LwF 7 (z)f(z) dx

=Ia— F7'(y)/(r = 1).
Hence
I = =25 F(y)/i — n[l = F(y)l
Lemma 4.3 is true for r = 1, also, provided the summation is interpreted as
vacuous when r = 1.
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Resuwr 1. For a logistic distribution,
Womn = bn 20 Doim (—1)THE () (Y
(48)  B(t,n — i 4 1) pmirinremi + (0) 2im (—=1)CT) (4 4)7
A= —m) + @O —m) = ¥O(n — k — )]
WOm -k —i—1) = ¥%n — m)]}.
Proor. From (2.5) we have
(4.9)  semn = C Z0yll — F(y)]" ™" dF (y) %0 2F* 7 (z)
(F(y) — F(e)]™™" dF (x),

where C = [B(k, m — k)B(m, n — m + 1)]”". Using Lemma 4.3 in the last
integral w.r.t. x we have

Vo F* N (2)[F(y) — F(z)]" " dF(z) = Yoo (—1)°
(4.10) NPT @) T 4 AT F (y)
+ Zk+1—1 —lFt(y) +In{l — F(y)}l.

Notk. If £ = 1 and ¢ = 0, then the second term in the second square bracket
is understood to have value zero. Substituting (4.10) in (4.9) and after little
adjustment we have

e = Doime K (4, kym) [Zo y'F" 7 (y)[1 — F(y)]" " dF (y)
(@.11) + 2057 K, by m) 2057 [Ze yF T T ()L — F@)IMT" AR ()
+ 23T K@ kym) [ZeyIn (L= F()IF" 7 (y)IL = F(y)]"™ dF (),

where K (3, k, m) = C(—=1)*(k + o) ("F™).
Let px,mn = A + B 4+ C1, where A, B and C; are the three integrals including
the summation w.r.t. 2. Thus, we have

= [B(k, m — k)] e v (=) (CE (B + )7

(4.12) = [B(k,m — k)7 us, [32°71 — 2)" " da
(2)
= Mm,n
B = 205 2 (— D)™ ED @) TR
(4.13) ‘B(t,n — 2+ Vpmes_s,n +1 — 2, and

Cr = SIFR (i by m) [Py In [l — F(y)F™ N (y)
L= FyI"™ dF (y).

Now using the previous lemmas, and after simplification, we have,
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Cr= (&) 257 (D)% + )7
(4.14) A=V —m) + 20 — m) — ¥ — k& — 0)]
WOm -k —i—1) — ¥9n — m)]}.

Thus adding (4.12), (4.13) and (4.14) we have the Result 1.
COROLLARY 4.3.

ma = e + 200 2 (—1)TE) (T
415)  B(t,n — i+ Dpmpeines +n 25 (—1DCTHA 4+ )7
A=¥P(m —m) + ¥ —m) — ¥9(n — i - 1)]
Om —i—2) —¥%m —m)]}, 1<m=n.
Ruben [10] gave a formula for p;,,,, for any distribution only for » even.
COROLLARY 4.4.
(4.16) 2w = pin + n{—¥P(n — 2) + [¥O(n — 2) — ¥9(n — 1)]
[¥?0) — ¥ (n — 2)]).
COROLLARY 4.5.
pearn = e + (8) 205 (DB =k + Disang s
@17) 4+ @O-v"m -k = 1)+ F%n -k - 1) — ¥ - k)]
w20) —¥%m —k—-1)}, 1<k<n-1.
Resurt 2. For a logistic distribution for 1 < k < m < nandm — k = 2,
one has
(418) (n+ Durn = (n+ 1)(n — m + Dpk,ma
—(n—=k+1) (n —m-+ Dprmass — k(n — m + 1) pigs,mans1 -

Proor. Consider
Men = E(Xk,n)
= C [0 aF*(z) dF () J2 F(y)[1 — F()]" " [F(y) — F()]"™"" dy.

Now denote the second integral w.r.t. y by I, . Writing F(y)[1 — F(y)]" """
== F)I"™" — [ — F)I"™, wehave I = [31-{[l — F(y)]"™"
— [l = F)I"™H[F(y) — F(x)]" " dy. Integrating I, by parts and substi-
tuting back in uz ., we have (omitting details),

pea = C(n — m + 1) [Zo [T ayF* 7 (2)[F(y) — F ()"

1 = F(y)I" ™ dF(z) dF (y) — C(n — m + 2) [Zu [T ayF* " (2)

(4.19) (F(y) — F(@)]" 'L = F(y)I" ™" dF () dF (y)

— C(m — k — 1) [Zo [T ayF* 7 (@)[F(y) — F(x)]""

F(y) [1 — F(y))"™"" dF (z) dF (y).
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Using F(y)[1 — F(y)I"™" = [F(y) — F@))1 — F(yI"™"" + Fle)l —
F(y)]"™™*, in the last integral of Equation (4.20) and after simplifying, we get
the Result 2.

COROLLARY 4.6. For m = k + 1, we have,

(n—k)(n —k+ D gqan = (2 4+ 1) (0 — E)prptrn
— k(n — E)ptian — (0 4+ D, 1Sk <n— 1.

Resurr 3. For a logistic distribution, for 1 < k < m £ nandm — k = 2
one has

(420) (n 4+ Dpma = —(n + ke, mn + mMkin 11,me1,n41
+ k(n — m 4+ 1)prg1, mnt1 -
Proor. Proceed in a similar manner to Result 3, by considering the quantity,
tmn = B(yma) = Cf [ wcacy<e yF* " (2)[F(y) — F(2)]" ™
L= FyI"™" dF () dF (y).

Resunr 4. For a logistic distribution for l<k<m<nandm—k = 2
one has

(4.21) mhkprsr,mirntr = (0 4+ Dgen + pm,al
+(n—k+1)(n—m+ Dpgmnys — (n—m — &k + Dpgmn -

Proor. Adding (4.18) and (4.20), we have the proof.

Resvrr 5. For the logistic distribution, if all wsjn1(z # j), wes for k =
1,2, .- ,n—1 and wh §=1,2, ---, nare known, the number of linear and
independent constraints among the distinet w; ;.(¢ # j) and the number of
linearly independent u; ;.(7 # j) are as shown in Table A.

TABLE A
Number of Corollary 4.3 Corollary 4.5 Number of
Independent or Corollary 4.4 or Corollary linearly
Constraints or Ruben’s [10] 4.6 independent
Result I-‘t.im(i = ])
n even nin — 2)/4 1 n — 2)/2 0
n odd (n — 1)2/4 0 n—1)/2 0

Proor. 7 is even: Total number of distinet elements are n(n + 2)/4 (see
[7], Theorem 4.11, p. 642). The number of distinct and independent constraints
among the distinct u;,;,.(¢ # j) imposed by the recurrence formula obtained by
Govindarajulu ([7], Theorem 4.2, p. 636) are n(n — 2)/4. The number of dis-
tinct elements of the type wi ;.(¢ = j) are n/2, which are known [3], [8]. One
independent constraint is due to Ruben [10]. The number of distinct elements
of the type wiit1,» are n/2 from Corollary 4.5 or Corollary 4.6 except one,
which is contained in relation proved by Govindarajulu ([7], Theorem 4.2, p.
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636), hence the total number of distinct independent elements of the type p:, ;41,0
are (n — 2)/2. Thus the number of linearly independent elements of the type
piin(t, 7 =12 --- mand 7 # j) aren(n + 2)/4 — n(n — 2)/4 — n/2 —
1 — (n — 2)/2 which is zero. Hence the proof.

n is odd: Proof is similar to above. We simply write a parallel equation as

(n+ 14— (n—-10%4—-n+1)/2—-0—(n—1)/2=0.

Thus one can obtain all distinet elements u; ;,(%?  j) using Ruben’s result,
Corollary 4.5 or Corollary 4.6 and the Theorem 4.2 [7].

InLusTRATION. N = 4: Assume that all the moments u;, and cross moments
ki, i, are known for n = 3. Also u;, and w; ;.(¢ = j) are known for n = 4. So
the distinct elements to be obtained are pis4, w134, 1,44 and pa34a. 144 18
known using Ruben’s formula. p;,2.4 can be obtained using Corollary 4.5 or Corol-
lary 4.6 and py,3,4 and ps 3,4 can be obtained using Theorem 4.2 [7]. Thus putting
k =1 and n = 3 in Corollary 4.6, we have

(2)
3#1,2,4 = 4#1,2,3 — M2,4 — 2#1,3,

and using Theorem 4.2 [7], by putting 7 = 2,j = 4,n = 4and ¢ = 2,5 = 3,

n = 4, we have

1 0 M1,3,4 2 —-1 0 0 H1,3,3
1 1] | s 0 0 4 —2 [He
M1,2,3
M1,2,4

Thus one can write down the whole matrix ((u: ;..))-

N = 5: The number of distinct elements of the type w: ;. (7 ## j7) are 6. Ob-
tain first w25 and we 35 using Corollary 4.5 or Corollary 4.6, and solve u; 35,
1,45, 1,5 and us 45 from the following equations:

1 0 0 O M1,3,5 Sp1,2,4 — 3p1,2,8 — M2,3,5
2 2 0 1 H1,4,5

0 2 3 O [#1,5,5 [ Su1,4,4
0 0 0 1 M2,4,5 Sua,3,4 — 4ua,s,5
5. Table of covariances. Table 1 gives all the covariances of a logistic dis-
tribution whose mean is zero and variance is unity. The covariances are given
for upper half of the sample size n. The remaining values can be obtained from
the symmetry relation o, ;,» = on—jt+1,0—i+1,, . The values in Table 1 are correct
up to eight decimal places. Independent checks using recurrence relations and
others revealed no errors. However, the eight decimal may be off by one unit.

The exact covariances given in Table 1 greatly simplify the solution of various
problems of determination of best linear combinations of order statistics for

5u1,3,4
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various estimation problems concerning parameters of a logistic distribution.
The problem of obtaining the best unbiased linear estimators of the parameters
of a logistic distribution is studied separately.
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