EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL
AND RECTANGULAR ALTERNATIVES'
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0. Summary. A closed form expression for the exact distribution of the Mann-
Whitney-Wilcoxon U test has been derived. From this, expressions for the
exact power of the U test for exponential and rectangular alternatives have been
derived. Several determinations of the power of combined sample sizes of 11, 15
and 21 have been compared with the corresponding determinations of the power
of Mood’s median test procedure. Also, the asymptotic efficiency of the U test
relative to Mood’s median test for exponential and rectangular translation
alternatives is considered.

1. Introduction. Mann and Whitney [10] have derived a rank test which is a
modification of an earlier test proposed by Wilcoxon [17] for distinguishing be-
tween two populations. van der Vaart [16] has derived a closed form expression
for certain probabilities of Wilcoxon’s two sample test under the null hypothesis.
Its asymptotic normality was established by Lehmann [7]. The power properties
of the Mann-Whitney-Wilcoxon U test for some parametric alternatives have
been considered by Lehmann [8], Sundrum [12], van der Vaart [14], [15], van
Dantzig [13], Dixon [2], Dwass [3] and others. Asymptotic relative efficiency of
the U test has been considered by Mood [11], Hodges and Lehmann [4], [5] and
Witting [18].

The purpose of our investigation is: (i) to derive a closed form expression for
the distribution of the U test for the null and the non-null hypotheses; (i) to
derive the expression for the exact power under exponential and rectangular
alternatives; (iii) to compare the small sample exact power of the U test with
exact power of Mood’s [11] median test for exponential and rectangular alterna-
tives; and (iv) to study the asymptotic efficiency of the U test relative to the
Mood’s median test with exponential and rectangular alternatives.

2. Mann-Whitney U test. Let X3, Xo, -+, X, and Y1, Y, ---, Y, be
independently distributed with continuous cumulative distribution functions
(cdfs) F and G respectively. We want to test the hypothesis

Hy:F(z) = G(x),
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against the alternative H, given by
H,:F(z) > G(x).

Let N = m + n denote the size of the combined sample and Zg) < Z@ < - -+
< Zx) be the combined ordered X’s and ¥’s. This ordering is unique with prob-
ability 1, due to the assumption of continuity of F and G.

Mann and Whitney [10] defined a statistic U which is equal to the number of
times a Y precedes an X in the combined ordered sample. Then, a test of size «
based on the Mann-Whitney U statistic is:

reject Hy if U = u, and

accept Hy if U > uo, where Pr{U = u.|Ho} = a.
This U statistic is related to Wilcoxon’s T statistic (the sum of the ranks of
X’s) by
(2.1) U=mn+n(n+1) — T,

which gives a simple way of computing U from the observed value of T. The
exact distribution of U under the null hypothesis H, has been tabulated by Mann
and Whitney [10].

3. The null distribution of the U test. Mann and Whitney have shown that
the null distribution can be calculated recursively from

(8.1) Pua(u) = [n/(m + n)Puia(u — n) + [0/(m + n)Pmas(u),
with

Po.(u) =0 if u > 0;

Pro(u) =0 if u > 0;

Pon(u) =1 if u = 0;

Puolu) =1 ifu = 0;

Pun(u) =0 if u < 05

where Pn..(u) = Pr{U = u| Ho} for samples of size m and n. van der Vaart
[16] has derived closed form expressions for P(U = w | Ho) and P(U = u | Ho)
in the form of determinants. For large U, the calculations may be somewhat
tedious. However, it is possible to express the null distribution in closed form
and to simultaneously derive a joint density function which can be used to
calculate the exact power under fixed alternatives.

Let us first consider that the set {y: |7 = 1,2, - - - , n} has been chosen from G
noting that there are n factorial ways of obtaining the set. Next, we order the
set and then compute the probability of choosing a set {z;|j = 1,2, .-+, m}
from F such that a specific value for U is obtained. (That is, we want an ex-
pression for the joint distribution of U and the Y’s.)
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Any such set of m values of « from F will be spaced between the n previously
chosen y values in the following manner: Let 7 denote the number of x values

between y; and yx1 (k= 1,2, -+ ;n — 1), % the number of = values less than y;
and 7, the number of z values greater than y, as displayed in Figure 1.
(%) | (41) |G | | Gn) | ()
I | | l | I
% Yo Ys Yn—1 Yn
Fig. 1
Any particular arrangement can be denoted by the n 4+ 1 dimensional integer
vectori = (%,%,%, -+, %). A vector i is said to be admissible if
(1) =0 (k=0,17,n);
(3.2) (ii) Dm0 = m;

(iii) > o ki = u.
For convenience, let I be the set of all admissible vectors i. Now consider the
probability of choosing 4 values of « less than y: say Po, 41 values of x in the
interval y» — y1 say P1, and so on until the 7, values of x greater than y, say P, .
These probabilities are given by:

Py = [m!/iy (m — &) |(F2 — F1)%;
Py = [(m — @) /s m — 4y — 5) |(Fs — F2)*;
(3.3) P = [(m — 2205 &) /in m — 2 i) (1 — Fo)™
= [(m — 22850 &) /3 Lo 1(1 — Fa)™;
Py = Flio;
where F; = F(y:),t=1,2, -+, n.
The resulting joint density function of w, y1,y2, * * * , Yn is given by the product

of the above probabilities and the probability of choosing the n values of y
summed up over all admissible values of the vector i as follows:

(34) h(u, g1, =+, ¥a) = minl 2o (JLimos I7FS(Fy — F)™ -+
(1 — F,,)i”(dG1/dy1)(dG2/dy2) <o (dGa/dyn),
where G; = G(y,),2=1,2, -+, n.

Now the distribution of % under the null hypothesis: F = G, can be found by
integrating the y’s over the range — o < y1 < -+ < yn < . To simplify the
integration, the variables of integration are transformed from y. to F(y:) = F.,
and the new range of integrationis0 < F, < -+ < F, < 1.Substituting F; = G;,
1=1,2, ---,n,into (3.4) and integrating yields
(35) gao(’ll/) = ml!n! Z[ [H]:;o ’l,k !]_1 f% :" e f:z Flio(Fz - Fl)il e

(1 — F,)"dF,dF; - - - dF,,
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which integrates and simplifies to
(36)  eo(u) = m!nl/(m +n))2s1
= [m!n!/(m + n)!]-[number of elements in the set I].

4. Power of U test against the alternatives of translation in the exponential
population. Here, the alternative hypothesis considered is

F(z) =1—¢7, z =0,
= 0, z <0,
(4.1) H,:
Ay) =1—-6¢“", yzaq
= 0, y < a, where a > 0.

Let oq.(u) denote the probability of U taking on the value u given that H,
is true. Then

(4.2) ea(w) = [ oo [h(u,y1, 02, , ¥n) dyr -+ dyn,
where & is given by (3.4). For convenience of notation, let
(4.3) n=-ce€, y=1—n1.
Then
(44) Fi=~v+1G=1—9(1-G;) for a=y; <.
Substituting (4.3) and (4.4) into (4.2) and expanding the term (v -+ nGy)"
yields
(4.5) @a(u) = minl Dor Do [[Tiod TGy n™ % [ [o» - -

PG (Ge— G)™ -+ (1 — Go)™dGrdGy -+ dGn .
Transforming the variables of integration and integrating gives
(46) ga(u) = minl 200 208y 0" (Gl — 0)l(m + n — do +0) 1
The power of the test can be computed from (4.6) by evaluating

Pr{U = us | Ha} = 2 %% ea(u).

5. Power of U test against the alternatives of change in location and scale
in the rectangular population. The alternative hypothesis is given by

F(z) =z, 0=z=1,
= 0, x <0,
=1, x> 1,
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(5.1) Ho:
Gly) = (y—a))s, a=y=a-+0,
=0, y <a,
=1, y>a-+0, where a>0,0> 0.

Let pa9(u) denote the probability of U taking on the value u given that H, is
true. Then, as in (4.2),

(5'2) ¢a9(u) =f"' fh(u’yly “',?/n) dyl"' dyn?
where & is given by (3.4). For notational convenience, let
(5.3) b=1-a.

There are two cases to be distinguished, namely:
(i) a+06=1, (ii) a+6>1

51 a + 6 = 1. A development similar to j;hat used in Section 4 yields

(5.4) @a(u) = mlnl D r D iy > ing (—1)%™ b 9@ """ g1 (5 — )!
(n—Qlm+n—dg—dat+o—Dm+n—d— 4+ v+ g

52 a+6=1.Ifwedefinen = 1 — @',y = 1 — 5 this case is identical to that
in Section 4 with ¢™* = 1 — @',

5.3 a + 6 > 1. This case can be further subdivided into two subcases, namely:

1) a<1, (i) e=1.

5.3.1 a < 1. For a < 1, the range of integration for y can be split into four
parts, namely: (1) —o <y <a; (2)a=y=1;,3)1 <y =a-+6;(4)
a+ 0 <y < «. Over parts (1) and (4) the value of the integral is zero since
G is constant. Hence, we will consider only the ranges (2) and (3).

For notational convenience, let I; be the subset of I such that 2 = 0
for j < k = n; then define
(5.5) Py(w) = 21, 2 020 2abo [(—1) ™0™ H][0g1 (6 — 0)1(4; — g)!

(m—do—di+o+j—1)m—d—d+v+qg+ )
forj = 1 and 7
Po(u) = 5u,o/m! where 6«“,0 =0 if u # 0
=1 ifu = 0.

Substituting these results into (5.2) and breaking up the range of integration

properly yields

(58)  va() = mind Do (Piw) (1 — b/0)"(n — )T,
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5.3.2 @ = 1. In the case @ = 1, the results are trivial, namely:
(5.7)  @aa(u) = 01y [, [0 1o -+ [¥oadG1dGy -+ dGn = bup-

Using the above results for ¢.6(u), the power of the U test under the alterna-
tive hypothesis can be calculated from

Pr {U é Ua I Haﬂ} = Z:u=0¢a6(u)'

Exact power of Mann-Whitney test and Mood’s median test with exponential
translation alternatives for certain chosen sample sizes and levels of significance
are given in Table 1.

TABLE 1

Power of Mood’s median test, Mann-Whitney’s U test—exponential distribution
F(z) =1— ¢2, Gy =1— e, a>0

N m o |e=0.0| 0.1 | 0.2 | 0.3 | 04 | 05 | 06 | 07 | 0.8 | 09 | 1.0 | 1.5 | 2.0 | 3.0

1u 4 4 |.0152 |.0241 |.0370 |.0545 |.0765 |.1031 |.1338 |.1680 |.2049 |.2438 |.2841 |.4851 |.6536 | .8591*
2 |.0121 |.0237 |.0418 |.0661 |.0961 |.1307 |.1690 |.2099 |.2525 |.2959 |.3395 |.5424 |.6996 | .8808}

5 5 |.0022 [.0039 {.0071 |.0126 {.0211 [.0334 |.0499 |.07(8 |.0960 |.1252 |.1577 |.8502 |.5418 | .8044

0 |.0022 |.0039 |.0071 |.0126 |.0211 |.0334 |.0499 |.0708 |.0960 |.1252 |.1577 |.3502 |.5418 | .8044

4 |.0671 |.0075 [.1371 |.1855 |.2410 |.3015 |.3647 |.4283 |.4906 |.5500 |.6057 |.8141 |.9209 | .9877

6 |.0628 [.1019 [.1523 |.2115 |.2764 |.3441 |.4121 |.4781 |.5408 |.5990 |.6523 |.8424 |.9345 | .9901

6 5 |.0130 |.0214 |.0351 |.0561 [.0860 |.1252 |.1728 |.2273 |.2868 |.3490 |.4120 |.6887 |.8579 | .9764

3 |.0152 |.0249 |.0399 |.0611 |.0886 |.1220 |.1605 |.2030 |.2484 |.2955 |.3432 |.5644 |.7277 | .8993

7 5 |.0455 |.0678 |.1007 |.1464 [.2053 |.2751 |.3519 |.4316 |.5102 |.5847 |.6529 |.8803 |.9657 | .9978

5 |.0545 |.0808 |.1163 |.1610 |.2137 |.2725 |.3351 |.3994 |.4631 |.5246 |.5826 |.8027 |.9163 | .9871

15 5 5 |.0070 {.0121 |.0200 |.0814 {.0467 |.0663 |.0000 |.1178 |.1491 |.1833 |.2200 |.4175 |.5979 | .8320

5 ].0063 |.0148 |.0296 [.0514 [.0799 |.1145 |.1538 |.1968 |.2421 |.2887 |.3355 |.5510 |.7122 | .8893

4 [.1002 |.1421 [.1924 [.2494 [.3110 [.3746 |.4384 |.5004 |.5594 |.6144 |.6648 |.8466 |.9358 | .9902

14 [.1032 |.1725 |.2521 |.3356 |.4180 [.4962 |.5680 |.6324 |.6893 |.7388 |.7813 [.9140 |.9675 | .9955

7 6 |.0089 |.0158 |.0271 |.0447 |.0699 |.1033 |.1450 |.1939 |.2485 |.3072 |.3679 |.6503 |.8354 | .9717

7 0070 |.0146 |.0281 |.0491 |.0785 |.1161 |.1609 |.2115 |.2662 |.3231 |.3806 |.6374 |.8056 | .9461

7 5 [.1002 |.1454 |.2024 |.2697 |.3441 |.4219 |.4994 |.5734 |.6418 |.7031 |.7569 |.9219 |.9785 | .9987

16 |.0046 |.1586 |.2379 |.3263 |.4172 |.5054 |.5872 |.6603 |.7240 |.7781 |.8233 |.9490 |.9868 | .9992

15 8 7 |.0012 {.0025 |.0050 |.0100 |.0189 |.0336 |.0556 |.0858 |.1243 |.1704 |.2227 |.5190 |.7561 | .9549

4 ].0019 |.0038 [.0074 |.0139 |.0244 |.0397 |.0606 |.0870 |.1186 |.1549 |.1950 |.4185 |.6172 | .8520

6 1.0317 |.0513 [.0806 |.1215 |.1746 |.2385 |.3105 |.3870 |.4645 |.5397 |.6101 |.8579 |.9577 | .9972

12 |.0361 |.0648 |.1072 |.1631 [.2300 |.3043 |.3820 |.4594 |.5336 |.6025 |.6649 |.8726 |.9564 | .9952

10 7 |.0186 |.0307 |.0506 |.0823 |.1295 |.1932 |.2713 |.3593 |.4511 |.5412 |.6251 |.8958 |.9786 | .9994

8 |.0200 |.0328 |.0525 |.0810 |.1196 |.1681 |.2253 |.2892 |.3571 |.4263 |.4945 |.7686 |.9005 | .9882

21 7 7 1.0010 |.0222 [.0043 |.0079 |.0137 |.0222 |.0339 |.0493 |.0686 |.0917 |.1184 |.2017 |.4839 | .7713

10 {.0011 |.0037 |.0099 |.0214 |.0397 |.0652 |.0980 |.1317 |.1814 |.2294 |.2798 |.5266 |.7125 | .9000

6 |.0209 |.0359 [.0579 |.0879 |.1261 |.1720 |.2242 |.2812 |.3410 |.4020 |.4623 |.7190 |.8722 | .9788

21 |.0189 |.0451 |.0871 |.1438 |.2120 |.2873 |.3655 |.4428 |.5165 |.5847 |.6465 |.8558 |.9458 | .9928

10 8 |.0073 |.0143 |.0266 |.0467 |.0768 |.1183 |.1713 |.2342 |.3046 |.3792 |.4548 |.7694 |.9244 | .9946

20 [.0064 [.0158 {.0345 |.0656 |.1108 |.1603 |.2384 |.3146 |.3939 |.4725 |.5476 |.8227 |.9416 | .9946

1 9 ].0016 |.0035 |.0074 |.0149 |.0285 |.0506 |.0833 |.1276 |.1831 |.2480 |.3194 |.6734 |.8837 | .9909

14 [.0014 |.0035 |.0085 |.0182 |.0352 |.0613 |.0976 |.1439 |.1988 |.2605 |.3263 |.6419 |.8423 | .9760

8 |.0226 |.0402 |.0683 |.1099 |.1663 |.2369 |.3182 |.4058 [.4943 |.5794 |.6574 |.9051 |.9804 | .9995

26 [.0215 |.0463 |.0883 |.1491 |.2266 |.3156 |.4097 |.5028 |.5902 |.6685 |.7364 |.9303 |.9846 | .9993

14 10 |.0028 |.0057 |.0115 |.0230 |.0449 |.0824 |.1394 |.2161 |.3085 |.4096 |.5118 |.8744 |.9799 | .9997

13 [.0028 |.0056 |.0110 |.0208 |.0372 |.0624 |.0980 |.1446 |.2013 |.2662 |.3366 |.6770 |.8787 | .9877

9 |.0426 |.0697 |.1113 [.1713 |.2511 |.3477 |.4539 |.5608 |.6600 |.7460 |.8164 |.9753 |.9978 |1.0000

26 |.0469 |.0840 |.1401 |.2160 |.3081 |.4096 |.5124 |.6095 |.6959 |.7691 |.8286 |.9699 |.9959 | .9999

* First row—Mood’s Median Test.
t Second row—Mann-Whitney’s U Test.
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6. Asylmptotic results. It is well known (see Lehmann [7]) that (U — EU)/
(Var U)* tends to the standard normal variable as m, n — « such that n/m —
constant < oo, where

E(U) = mn [ GdF

= (mn/2)e °, for the exponential alternatives (see (4.1)),
= mnb/2, for the rectangular alternatives (see Section 5.1,
(i):a+6 =1)

= mnb’/20  for (ii):a +0>1(a<1,b=1— a)

andVar U = mn{[(m +n+ 1)/12] + (m — 1) (A — &) + (n — 1)(\ — &) —
(m+n — 1N} with \ = } — [GdF, « = } — [ G dF, & =
1 — [ (1 — F)?dG. The Pitman efficiency of the test procedure r* relative to
7 is given by

B, = limg.g, {o(00) (u™) (60) /o™ (60)w (60},

where u(9), o*(8) (u*(8), (¢¥)*(8)) are the asymptotic mean and variance of
“r*). For Mood’s [11] median test

uu(0) = mF(c), o (6) = mn/4(m + n)

vhere ¢ is the solution of mF(c) + nG(c) = (m 4+ n)/2. Computations yield
T,y = 1 either for the exponential translation alternatives, or the rectangular
sranslation alternatives or the rectangular translation and scale alternatives in
which G(z) = (z — a)/(1 — a),a Sz = 1.

7. Discussion of Table 1. The exact powers of the Mann-Whitney U test for
exponential alternative and for total sample sizes 11, 15 and 21 given in Table 1
are computed from Equation (4.6) by performing the indicated sum. As a check,
the values for the null distribution (¢ = 0 in Table 1) were compared with direct
calculations using (3.6) and the recurrence formulae of Mann and Whitney
(8.1). The powers of Mood’s median test are taken from Leone, et al. [9].

It should be noted that when the location parameter is zero, we get the null
distribution with the power equal to the level of significance, «. Since the distri-
butions of the test statistics are discrete, the values of a do not in general coin-
cide for both the tests. Hence, although many different cases have been com-
puted, only those values that are relatively close together and which indicate
the general trend, have been tabulated. The conclusions that can be drawn from
this table (relative to the exponential alternatives) are:

(1) If m is smaller than n, the Mann-Whitney test is more powerful than
Mood’s test. To note this increase of power, several cases were intentionally
chosen where the level of significance for the Mann-Whitney test was slightly
less than that of the Mood test. In these cases, the power of Mann-Whitney’s
test overtakes Mood’s test as the location parameter, a, increases.
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(2) If mislarger than n, Mood’s test is more powerful than the Mann-Whitney
test. Likewise, to note this increase of power, several cases were intentionally
chosen where the level of significance for Mood’s test was slightly less than that
of the Mann-Whitney test. In these cases, the power of Mood’s test overtakes
Mann-Whitney’s test as a increases.

(3) In those cases in which m = n, the two test procedures seem to exhibit
powers that are approximately the same.

It is interesting to note that these conclusions based on the exact results of
Table 1 are quite different from those suggested by the asymptotic efficiency
discussed in Section 6.

Since rectangular alternatives for the special case in which 8 = 1 — o’ are
related to the exponential alternatives by the simple transformation:e™* = 1 — @/,
the results in Table 1 also apply to this special case of rectangular alternatives.
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