ON ORTHOGONAL ARRAYS!

By ESTHER SEIDEN AND RiITA ZEMACH

Michigan State University

0. Summary. It was shown in [11] that one can construct orthogonal arrays
(A2%, k + 1, 2, 3) from arrays (\2%, k, 2, 2) with the maximum number of con-
straints £ 4+ 1 provided that & is the maximum number of constraints for the
arrays of strength two. This result is generalized here to construction of arrays
(N2 k4 1,2,t + 1) from arrays (\2%, k, 2, £).

The structure of arrays (\2°, ¢t + 1, 2, ¢) is analyzed and for A = ¢2", ¢ odd, a
method of extending any array (\2%, ¢ + 1, 2, ¢) to ¢ + n -+ 1 constraints is
described.

Orthogonal arrays (\2*, k, 2, 4) are discussed in detail for A = 1 through A = 5.
The maximum value of k is established in each of these cases and arrays assuming
these values are effectively constructed.

1. Introduction. Orthogonal arrays were introduced first into statistics by
C. R. Rao [9] under the name of hypercubes and then by R. C. Bose and K. A.
Bush [1]. Following their definition, a k X N matrix A with entries from a set =
of s = 2 elements is called an orthogonal array of size N, k constraints, s levels,
strength ¢, if any ¢ X N submatrix of 4 contains all possible ¢ X 1 column vectors
with the same frequency M. Such an array is denoted by the symbol (N, k, s, t)
and the number \ is called the index of the array. Clearly N = \s".

Orthogonal arrays with ¢ = 2, s = 2 were considered as long ago as 1867 by
Sylvester, [13] who gives an explicit construction for the case N = 2™. In pure
mathematics papers, orthogonal arrays are usually called Hadamard matrices.
R. E. A. C. Paley [7] was interested in orthogonal arrays with ¢ = 2, s = 2 because
of their applications to the theory of polytopes. The work of Paley solved the
problem of weighing designs suggested by Hotelling [4] and continued by Mood
[6]. Placket and Burman [8] applied Paley’s work to their research in physiesand
industry. However, the statistical application of Paley’s work is limited to cases
in which no interaction between factors under consideration is present. Such a
situation prevails indeed in the use of weighing designs but is rare in general.
This led Rao, Bose, Bush, Ray Chaudhuri and others to the consideration of
arrays of strength greater than two. It is well known that using arrays of strength
2t, all interactions involving ¢ or fewer factors can be estimated, if one can assume
that interactions of more than ¢ factors are negligible. With an array of strength
2t + 1, interactions of ¢ factors can be estimated, even if interactions of ¢ 4+ 1
factors are present.

Received 17 August 1965; revised 11 May 1966.
1 Publication supported by Public Health Service Research Grant No. NTH-GM-13138-01
from the National Institute of General Medical Sciences.

1355

%J%
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to A2z

The Annals of Mathematical Statistics. EINOIN

Www.jstor.org



1356 ESTHER SEIDEN AND RITA ZEMACH

More recently R. C. Bose [2] applied orthogonal arrays to information theory
and pointed out the analogy between the problems of design of experiments and
information theory. Farrell, Kiefer and Walbran used orthogonal arrays in
their work on optimum multivariate designs [5].

2. Some algebraic and structural properties of orthogonal arrays. Let n;; de-
note the number of columns (other than the 7th) having j coincidences with the
¢th column of an orthogonal array, <=1, --- ,N;5 =0, --- , k. Bose and Bush
[1] showed that for any integer # such that 0 < & =< ¢, the following equalities
hold

(2.1) D o (i)nz] = (s = 1).

These equalities are necessary but not sufficient for the existence of an orthogonal
array. For given values for \, s, k and ¢ there may be several sets of solutions for
n:;’s. The same array may yield different sets of solutions in respect to different
columns. Some properties of a particular array can sometimes be established by
examining the relations between the different sets of solutions which it satisfies.
Equations 2.1 sometimes enable one to prove the non-existence of an array by
showing that there is no set of solutions which satisfies them.

For any given values of s, ¢t and A one can always construct orthogonal arrays
for some values of k. For example all possible ¢-tuples of s elements repeated A
times will given an orthogonal array (\s’, ¢, s, ¢). The problem of construction of
orthogonal arrays reduces to construction of arrays with the maximum values of
k for given values of s, ¢ and \.

C. R. Rao [10] showed that if { = 2, & must satisfy the following inequalities:

(22) M =12 6—=1)+ -+ C)(6s=1" if ¢ = 2u,
(23) M —=12M6E—1)+ -+ G)s =D+ ") — 1)

if ¢=2u+1.
Bush [3] proved that if A = 1,
(2.4) E=s+t—1 if s iseven,
(2.5) Ek=s+4+t—2 if s isodd.

He also showed that for s =< ¢ the bounds are attained.

We will establish in this section some additional properties of orthogonal arrays
for an arbitrary strength ¢ and discuss some methods of constructing them.

ProposiTioN 2.1. Let k' and k denote the maximum number of constraints of
orthogonal arrays (\s"™ k', s,t — 1) and (\s', k, s, t) respectively. Then k < k' -+ 1.

Proor. Select arbitrarily one row of the array with As’ columns. Divide the
whole array into s sets of A\s'™" columns, each set having the same elements in the
chosen row. The remaining £ — 1 rows of each of these sets will clearly form an
array of strength ¢ — 1. Hence the inequality.

ProrosiTiON 2.2. In an array (\2°,t + 1, 2,t) of strength t and t + 1 constraints,
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any two columns differing in an even number of elements appear the same number of
times while any two columns differing in an odd number of elements appear together
N times.

Proor. Let (a1, a2, -+, a;1) be any column of the array, where each a;
assumes the value 0 or 1. Let

* .
a; = 0 lf a;

I

L

a.-*=1 lf a.~=0.

Let z(a1, -+, a;41) denote the number of times the column (ai, -, Gs1)
appears in the array. Since the array is of strength ¢ and index A
*
x(a1,~~-,a,-,-~,a,-,---,at+1)+x(a1,---,ai 7"'7ai7"'7at+1) =)‘7
* * *
x(ala”'yai ,"'ya]',”'yat+1) +x(a1,"'7ai y t oy G y"',aH—l) =\
Hence:
_ * *
x("'l)"';aia“'yajy"'yat+1) _x(aly"',ai y oy Oy 7"'7al+1)'

Successive applications of these equalities prove the proposition.

The following theorem was proven in [11]: Let S be an ordered set of s elements
€,6e1, ,e_1.Forany integer t consider the s' different t-tuples of the elements of
S. They can be divided into s*" sets, each consisting of s t-tuples and closed under
cyclic permutation of the elements of S. Denote these sets by S; 1 = 1,2, --- , s,
Suppose that it is possible to find a scheme of r rows with elements belonging to S

an A1z - O1n
: N : (n = \s')
ar1 (%] T Qrn

such that in every t-rowed sub-matriz the number of columns belonging to each S; ts
the same, say equal to \; then we can use this scheme in order to construct an
orthogonal array (\s', r, s, t). If in addition this scheme consists of an array of
strength t — 1, then one can construct an orthgonal array (\s', r + 1, s, t).

ProposiTION 2.3. If t = 2u an array (\2%, k, 2, t) forms a scheme for construction
of an array (\2", k ++ 1,2, t + 1). If k 4s the maximum number of constraints of
the array of strength t, then k + 1 will be the maximum number of constraints of the
resulting array of strength ¢t + 1.

Proor. Consider any column (¢ + 1)-tuple of the array. Since ¢ + 1 is odd:

a(ar, -, @) + 2@, -, arm) = N

Thus the array forms a scheme satisfying the above theorem of [11]. The re-
mainder of this proposition follows from Proposition 2.1.
ProPosITION 2.4. For any given t consider all possible 21 (¢ + 1)-tuple columns.
They can be split in a unique way into two orthogonal arrays (2°,t + 1, 2, t).
Proor. For ¢t = 2 the existence of an array (2°, ¢ + 1, 2, ¢) was established by
Bush [3]. Choose any (¢ + 1)-tuple column. There are exactly 2° — 1 other
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columns which differ from it by an even number of elements. By Proposition 2.2
each of them has to appear once. Hence the array is constructed. Since the rela-
tion of differing by an even number of elements is symmetric, reflexive, and transi-
tive, an array formed in the described method will be closed under this relation.
The remaining 2° columns will form the second array.

Remark. It may be noticed that if ¢ is even the 2°(¢ + 1)-columns consist of
all the columns having an even number of zeros and an odd number of ones or
vice-versa. For ¢ odd, the columns of the array consist of either an even or an odd
number of both zeros and ones.

Since the construction of arrays with ¢ = 4 will be discussed later in more detail,
it seems worthwhile to present at this stage the two arrays (2, 5, 2, 4) whose con-
struction is established by Proposition 2.4.

D D’
0000000111101111 1111111000010000
0000111000110111 1111000111001000
0011001001011011 1100110110100100
0101010010011101 1010101101100010
0110100100011110 1001011011100001

The second array D’ can be obtained from D by permuting the elements zero
and one. Henceforth D’ will be called the complementary array of D.

ProPosITION 2.5. Any array (N2, ¢ + 1, 2, t) is a juxtaposition of N\ arrays
(2%t + 1, 2,t) of index unity.

Proor. Consider any (¢ 4+ 1)-tuple column of the array. Suppose that it ap-
pears z times. Each column which differs from it by an even number of elements
will also appear x times, forming z identical arrays of index unity, i.e.,
24t+1,2,¢).

If x < X then each column differing from the chosen column in an odd number
of elements will appear A — « times, forming A — z arrays of the complementary
type.

ProrosiTION 2.6. If N = 2", q odd, then any array (\2',t + 1, 2, t) can be ex-
tended to an array (\2',t +n + 1,2, t).

Before proving this proposition we wish to remark that the existence of an
array (\2°,t +n + 1,2,¢+ n) when A\ = ¢2" is a consequence of the previously
mentioned result of Bush [3]. Using his result one can always construct an array
(2" n 4+t + 1,2, ¢+ n) and repeat g times. The main point of our proposition
is to describe a simple method of extending any array (\2*, ¢+ 1,2,¢) tot+n 4+ 1
constraints which does not, however, insure any increase in the strength of the
array beyond the starting strength ¢.

Proor. By Proposition 2.5 one can decompose the array (\2°, ¢ + 1, 2, t) with
A = ¢2" into ¢2" elementary arrays of index unity. Divide the ¢2" elementary
arrays into 2" components, each consisting of ¢ arrays. Adjoin to each of these
components n rows such that the columns form one of the 2" possible n-tuples of
zeros and ones. Use a different n-tuple for each different component. Consider
now any fixed column ¢-tuple of the array. It may have ¢t — m elements belonging
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to the original array and m elements in the added n rows. Each of the q2" ele-
mentary arrays will have the same (¢ — m)-tuple 2™ times, and ¢2"™ of the
elementary arrays will have an m-tuple in the added rows coinciding with the
corresponding m elements of the considered ¢-tuple. Hence the fixed t-tuple will
appear in the extended array 2™ X ¢2"™™, or ¢2", times as required.

REeMmARK. Propositions 2.5 and 2.6 may prove useful if one tries to enumerate
all possible orthogonal arrays for given values of the parameters A, s, and &.
Using Proposition 2.5, one would first enumerate all different arrays with
k=1t+1.If N = ¢2",n 2 1, then one could examine the number of ways these
arrays can be extended to k¥ = ¢ 4+ n + 1 using Proposition 2.6. Clearly there is no
assurance that this method of extension is exhaustive. In general this will not be
the case and further examination of other possibilities will be required.

Prorosrrion 2.7. If \ is odd and any two columns of the array differ in an even
number of elements then the array (\2°,t + 1, 2, t) cannot be extended.

Proor. Clearly such an array is a juxtaposition of \ identical arrays of index
unity. Hence, for any column <

Nit41 = A — 1; Niy = 0; Ni,t—1 = (ﬁii))\, Nip—o = 0.
If this array could be extended to ¢ 4+ 2 rows the following equations would hold :

Niepe + Niepr = N — 1,
iy + Niygoy = (;i%)}\
In addition, the (¢ 4 2)-rowed array would have to satisfy Equations 2.1. The
last two equations become in this case:

nie + T + (P = (YN = 1,)
N1+ (tt—l)ni,t + (iﬂ)ni,tﬂ + (ii%)ni,t+2 = ﬁif)(2}\ - 1)-

The four equations together give unique solutions for the four values of the n.;’s.
It is easy to check that one obtains n:,.s = \/2 — 1 and since n:,..2 has to be an
integer, \ cannot be odd.

The result of this section will be applied presently to the construction of some
orthogonal arrays with ¢ = 4, s = 2. In addition to this, a well known method of
construction using projective geometries will be utilized in some of the cases. The
geometrical method of construction shown by Bose involves the following steps:
First one finds a set of, say, k points, no ¢ conjoint, in finite projective space with
r — 1 dimensions PG(r — 1, s). Then one multiplies the & X r matrix so obtained,
say, C, by the matrix B, consisting of all possible s” r-tuples, including the r-tuple
consisting of all zeros. The k¥ X s" product matrix will be an array of strength ¢.
Moreover the columns will form a group in respect to the distinet columns of the
matrix. The maximum number of constraints of such a matrix clearly coincides
with the maximum number of points which one can find in PG(r — 1, s), no ¢
conjoint. This number is usually denoted by m.(r, s). Once an array is con-
structed using geometrical methods, one may try to extend it using other combi-

I
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natorial methods. In general the known algebraic bounds for the maximum
number of constraints exceed the geometric bounds. However, there is no known
example in which an array was constructed whose number of constraints ex-
ceeded m;(r, s).

3. Construction of orthogonal arrays for ¢t = 4, s = 2, and N = 16, 32, 48,
64 and 80.

ProrosiTion 3.1. For an orthogonal array (16, k, 2, 4) the maximum value for
k78 5.

The construction of (16, 5, 2, 4) follows from (2.4). Take any 5-tuple column
and adjoin to it all columns which coincide with it in an odd number of elements,
i.e., one and three. The remaining sixteen 5-tuples will form the complementary
array. The fact that five is the maximum number of constraints follows from
Proposition 2.7. This result follows also from the theorem of Bush [3].

ProrositioN 8.2. For an orthogonal array (32, k, 2, 4) the maximum value for
k is 6.

First we will show that k¥ < 7 and then construct arrays with ¥ = 6. Using
Equations (2.1) we may express n. through 7, in terms of the remaining »;’s.
This gives

Nip = 3 — Nig — 5?%-6 — 15my ,
Nz = —35 + 107%5 + 4:0’"46 + 105ni7 .

The first equation gives n;s = ns = 0; ns = 3. Hence there is no non-negative

integer solution for n.3 . For £ = 6 there are only two solutions of the Equations
(2.1). They are:

Nip = 0, nag = 5, Nig = 5, N3 = 10, Nig = 10, Ny = 1, Nig = 0,
Nip = 1, N = 0, Nig = 15, Nz = 0, Nig = 15, Nig = 0, Nig = 0.

Arrays corresponding to each of these solutions may be constructed using Propo-
sitions 2.5 and 2.6. Utilizing for the first five rows all possible compositions of the
arrays D and D’ one obtains exactly four arrays, two for each of the solutions.
They are:

DD D' D’ DD’ DD
01 0 1 01 10

Zero or one below the array means that to each column of the array the same
element, either O or 1, is added in accordance with Proposition 2.6. The second
and the fourth array are obtained from the first and the third respectively by
permuting the elements 0 and 1. The first and the second array have the first
solution in respect to each column, while the third and fourth admit the second
solution in respect to each of their columns. One may use geometrical methods to
construct the above arrays. It was pointed out in [12] that there are essentially just
two sets of six points no four in one plane in PG(4, 2). They consist of the five
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points having just one coordinate equal to zero and either the point (1, 1, 1, 1, 0)
or (1,1,1,1,1). Multiplying the first matrix of size 6 X 5 by the matrix whose
columns are all the points of PG(4, 2) augmented by the column of all zeros one
obtains the first array if one interchanges the fifth and the sixth row. The matrix
of the second set of points multiplied by the same matrix of size 5 X 32 gives the
third array.

The four arrays exhibited exhaust all the possibilities for the construction of
arrays (32, 6, 2, 4).

Prorosrition 3.3. For the array (48, k, 2, 4) the maximum value for k is 5.
Solving again the Equations (2.1) for k = 6 we obtain n = 4 — 5nig — n . This
gives nig = 0 for all 7, meaning that an array of six rows could not have two identical
columns. Consider the 6 X 2° array of all possible distinct 6-tuples. In any four rows
of this array every 4-tuple will appear exactly four times. If 48 columns could be
chosen for this array to form an array of index 3, then in any four rows of the re-
maining 16 columns, each 4-tuple would have to appear exactly once. This would yield
an array of 16 columns with k = 6, contradicting Proposition 3.1.

Proposition 2.5 now enables us to give an exhaustive construction of the arrays
(48, 5, 2, 4). It is obtainable by enumerating all distinct juxtapositions of arrays
of types D and D’. Clearly half of them can be obtained from the others by per-
muting the elements zero and one.

Prorosition 3.4. The maximum number of constraints for the orthogonal array
(64, k, 2, 4) is equal to etght.

This proposition will be proven in several steps. We will enumerate first of all

TABLE 1
Solutions for k = 6,7,8,9

Nio Ni1 2] N3 Niq Nis Nse
6.1 0 10 10 20 20 2 1
6.2 1 5 20 10 25 1 1
6.3 2 0 30 0 30 0 1
6.4 0 11 5 30 10 7 0
6.5 1 6 15 20 15 6 0
6.6 2 1 25 10 20 5 0
7.1 0 4 15 5 30 6 3
7.2 1 0 20 5 25 10 2
7.3 0 5 10 15 20 11 2
7.4 0 6 5 25 10 16 1
7.5 1 1 15 15 15 15 1
7.6 0 7 0 35 0 21 0
7.7 1 2 10 25 5 20 0
8.1 0 2 9 12 15 18 7
8.2 0 1 14 2 25 13 8
8.3 0 3 4 22 5 23 6
9.1 0 0 9 6 18 9 21
9.2 0 1 4 16 8 14 20
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the solutions of (2.1) for k£ = 6, 7, 8, 9 eliminating at each stage solutions which
without further reasoning are found not to represent orthogonal arrays. (See
Table 1.) For the solutions which are not eliminated at the final step we will give
effective constructions of arrays satisfying them. For k£ = 7 Equations (2.1) give
ng = 0 for all possible solutions. Hence n;; = 0 forj = 7 and k = 7 since other-
wise there would exist an array with £ = 7 for which n.;; = 0.

Arrays admitting each of the solutions for ¥ = 6 can be constructed. They
will not be exhibited separately since each of them will be a sub-array of some
larger array to be constructed later. The establishment of Proposition 3.4 and the
effective construction of the arrays will be done in several steps.

SteP 1. Solutions 8.2 and 8.3 do not represent arrays.

To make the proofs more readable we will assume without loss of generality
that the first column of the array consists of all zeros and that the array admits
the solution under investigation in respect to the first column.

First we will show that the solution 8.2 does not represent an array. Solution
8.2 has ni1 = 1. The single zero of this column cannot coincide with a zero of the
columns of type ni» because the two columns would have seven coincidences.
Hence if we delete from the array the row which includes the zero element of the
column with a single zero we will get a seven-rowed array which satisfies the con-
ditions n; = 1, n;1 = 0. This means that this sub-array will have to satisfy solu-
tion 7.2 in respect to the first column. Thus n:; = 20. Out of these columns six
would have to have zeros added if the extension has solution 8.2. But 8.2 has
n:3 = 2; hence a contradiction.

Next we will show that no array exists satisfying solution 8.3. In this case
n4a = 3. Columns having one coincidence with the first column must have this
coincidence in different rows, in order to eliminate having seven or more coinci-
dences among themselves. Deleting the row in which one of the columns of the
type ni coincides with the first column we would get a sub-array of seven rows
with n:o = 1, na = 2. Hence the seven-rowed sub-array would have to satisfy
solution 7.7 with n4 = 1, na = 2. But 8.3 has ni + nis = 29, while 7.7 has
N + nis + ne = 25; hence a contradiction.

Step 2. The unique array with eight constraints satisfying solution 8.1 cannot
be extended to nine rows.

We first show that solution 9.2 does not represent an array. First, n,; = 1;1i.e.,
there is one column which has one coincidence with the 7th column. Deleting the
row in which this coincidence occurs yields an eight-rowed array with n,, = 1.
But 8.1 has n;y = 0. ‘

An array with solution 8.1 cannot be extended to an array with solution 9.1.
Solution 8.1 has n;; = 2. Two such columns must have at least six coincidences.
Since 9.1 has n; = 0 these two columns would also have to coincide in the 9th
row which together would give at least 7 coincidences. This is impossible.

StEP 3. An array satisfying solution 8.1 can be constructed. The sets of points
no four on one plane in PG(5, 2) were considered in [12]. It was shown there that
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if one includes in the set the six points forming the identity matrix, then there are
just two ways of completing this set to eight points up to interchanging the role
of the coordinates. These two sets of eight points can be exhibited as follows:

Is IG
C: = | 111100 |, C, = | 111100 {.
110011 111011

Multiplying either of these 8 X 6 matrices by the 6 X 2° matrix, say B , consist-
ing of all possible six-tuples of the two elements 0 and 1, one obtains the required
array satisfying solution 8.1. The first seven rows of either C; or C; multiplied by
Bg gives an array satisfying solution 7.3. If the seventh row is replaced by the
eighth row of C; one obtains a matrix satisfying solution 7.5.

The matrix I:llll ;ll:l multiplied by Bs gives the solution 7.6.

ProrosiTion 3.5. Arrays (64, 7, 2, 4) satisfying solutions 7.1, 7.2, 7.4, 7.6, and
7.7. cannot be extended to eight constraints.

(i) Suppose that an array has solution 7.1. Since nss = 3, we may assume that
there are four columns as in (a):

(a) (b)

0000 ...
0000 e
0000 ...
0000 ...
0001 000000
0010 000000
0100 000000

Suppose one of the last three rows of (a) is deleted. In each case the remaining
six rows have n;s = 1 and nis = 2 and hence must form an array of six constraints
satisfying solution 6.1. The array of seven constraints with solution 7.1 must now
have six columns consisting of five 0’s and two 1’s since ni; = 6. However, de-
leting one of the last three rows must leave each of these columns with only four
0’s. Therefore, in the last three rows, these six columns have only 0’s as in (b).
Suppose the array could be extended to eight rows. Four of the columns in (b)
must coincide with the first column in the eighth row since solution 8.1 has
nis = 7. We would then have the 4-tuple(0, 0, 0, 0)" appearing five times in the
last four rows. Thus the extension is impossible.

(ii) Suppose an array satisfying solution 7.2 is extended to eight rows. Accord-
ing to 7.2 the extension must have ni + n4 = 1. Since the unique solution for
k = 8 hasn + na = 2, this is impossible.

(ili) Consider an array with solution 7.4. The array must have six columns
with exactly one 0. If an eighth row is added, these columns will be followed by
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two 1’s and four 0’s as in (c¢):

(c) (d)
011111 11111
101111 11111
1nom e
111011 e
111101 e
111110 e
1111ir e
110000 ...

The eight-rowed array must now have five more columns with exactly two 0’s.
All these columns must have 1’s in the first two rows as in (d); otherwise there
would be a column having seven coincidences with at least one of the first two
columns.

If any one of the rows 3 through 8 is deleted, the remaining seven-rowed array
would have n; = 0 and hence n;; = 5. This implies that if any one of rows 3
through 6 is deleted then at least two of the columns of (d) must have only one 0
in the remaining rows, while if row 7 is deleted, at least three of the columns of
(d) must have only one 0 in the remaining rows. Therefore the five columns of
(d), with two 0’s in each column, must have at least 4 X 2 4+ 3 = 11 zeros. This
is clearly a contradiction.

(iv) An array with solution 7.6 can be extended only to an array of eight con-
straints with n.;s + n, = 21. Solution 8.1 has n.;s + n = 25.

(v) Suppose an array with solution 7.7 is extended to eight rows. Solution 7.7
hasniy = 1, nia = 2. Let ¢ = 1. The column with no 0 and one column with one 0,
must both have a 0 in the eighth row. This would result in two columns of the
eight-rowed array having seven coincidences, while 8.1 has n.; = 0.

It remains to be shown that one can in fact construct arrays satisfying solutions
7.1,7.2,7.4,7.7. Here is an array which satisfies solutions 7.2, 7.4 and 7.7 in re-
spect to some columns:

D D D D’

0 0 1 1
0 1 0 1

It is easy to see that this array satisfies solution 7.2 in respect to the first 16
columns, solution 7.4 in respect to the next 32 columns and solution 7.7 in respect
to the remaining 16 columns. The proof follows from Propositions 2.5 and 2.6.

An array satisfying solution 7.1 in respect to each of its columns was found by
trial and error. The first 32 columns have the form:

D D

0 1
1 0
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The last 32 columns have the form:

arn (111)

0000111100001111 0000111100001111
0011001100110011 0011001100110011
0101010101010101 0101010101010101
0110100101101001 1001011010010110
0000000011111111 1111111100000000
0000000000000000 1111111111111111
0000000000000000 1111111111111111

It is easy to check that this array does in fact satisfy the condition imposed
upon it. Note that the first five rows have the form D D D D'. In the first 32
columns the first five rows together with either row 6 or 7 form an array (32, 6,
2, 4).

One could give an exhaustive enumeration of all the arrays (64, 7, 2, 4) but
this does not seem worthwhile because of the unique structure of the array
(64, 8, 2, 4) which stems from the unique construction of the arrays 7.3 and 7.5.
It may be worthwhile to point out that the arrays 7.3, 7.5, and 7.6 have the
following structure up to interchanging the rows or the elements 0 and 1:

7.3 7

5 7.6

DDDD DD DD DD D' D
0011 00 11 00 1 1
0101 01 01 01 0 1

PropositioN 3.6. The maximum number of constraints
(80, k, 2, 4) s six.

We will prove this proposition in several steps. First we will enumerate all
possible solutions for k = 5 and k = 6. (See Table 2.)

<,

or the orthogonal array

TABLE 2
Solutions for k = 5, 6

Nio N4 N4z Ni3 Nig Nis Nie
5.1 0 25 0 50 0 4
5.2 1 20 10 40 5 3
5.3 2 15 20 30 10 2
5.4 3 10 30 20 15 1
5.5 4 5 40 10 20 0
6.1 0 12 15 20 30 0 2
6.2 0 13 10 30 20 5 1
6.3 1 8 20 20 25 4 1
6.4 2 3 30 10 30 3 1
6.5 0 14 5 40 10 10 0
6.6 1 9 15 30 15 9 0
6.7 2 4 25 20 20 8 0
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SteP 1. Arrays 5.1, 5.2 and 5.5 cannot be extended to six rows.

Proor. The fact that array 5.1 cannot be extended follows from Proposition
2.7. N is equal to 5 and any two columns coincide in an odd number of elements.

Arrays 5.2 and 5.5 are obtainable from each other by permuting the elements
0 and 1. Hence it is enough to show that 5.5 cannot be extended. Assume that
the first column consists of all zeros. If the array could be extended then its six-
rowed extension would have to have n;s = 0. Solving 2.1 in terms of 75 gives:

ny = —36 + 5ny, which implies 755 = 8

N1 = 10 — Nnis , which implies Nis < 10.

Moreover any extension of 5.5 would have to have ny + nu < 9. Hence there
is only one solution for the extension if possible. It is:

N = 2, nn = 4, N1z = 25, niy = 20, Nia =. 20, Ny = 8, ne = 0.

An array of type 5.5 has four columns of all 1’s, one column of each possible type
with one 0, and four columns of each type with four 0’s. The first five rows of the
following matrix are part of such an array, and the sixth row is the extension if
possible:

1111011110000
1111101110000
1111110110000
1111111010000
1111111101111

1100000111110

The elements added to the nine columns are determined by the solution nyy = 2,
ny = 4, for the extension. Then if the fifth row is deleted, a five-rowed array
remains with ni = 3, which satisfies only solution 5.4. In 5.4, each column with
four 0’s is repeated three times, and ny; = 1. Therefore the last four columns above
must have three 1’s and one 0 added. Now suppose the fourth row is deleted.
Again the same array with solution 5.4 is obtained. 5.4 is of the form D D D' D' D’
Hence it should have each column with three 0’s repeated twice. Since (00011)’
appears three times in this sub-array, we obtain a contradiction.

Note that 5.3 and 5.4 represent the same array with 0 and 1 interchanged.

Step 2. There are no arrays satisfying solution 6.4 or 6.5.

Proor. Consider an array having solution 6.4 with respect to a first column
of 0’s. Since ni = 1, and ni = 3, there must be another column of all 0’s and three
columns with five 0’s and one 1. The columns with five 0’s must be distinct, since
any five-rowed sub-array has to satisfy either solution 5.3 or 5.4 and cannot
have more than three columns consisting of five 0’s. Thus the array would have
to have the following five columns:
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SO OO OO
SO OO O
SO OO =
SO O =~=O
QO ~OO

00000

To complete the requirement that the four-tuple (0000)” appears five times in
each four-rowed sub-array, the columns (000011)" and (000101)" must each
appear three times. However, the four-tuple (0001)" would then appear six
times in rows 1, 2, 3, and 6.

Suppose one could construct an array satisfying solution 6.5. With n; = 10,
it must have a sub-array satisfying solution 5.4. Consequently it would be neces-
sary that ni + na < 13, but 6.5 has n; = 14.

SteP 3. An array admitting solution 6.1 with respect to some column cannot
be extended to seven rows.

Proor. A seven-rowed extension of an array satisfying solution 6.1 must have
N + nag = 2. There are only two solutions of Equations (2.1) which might
correspond to such an extension.

Mo Na Nig Nig Nig Nis Nig N7
7.1 0 4 23 0 40 10 1 1
7.2 0 8 4 35 10 20 2 0

First consider solution 7.1. An array satisfying solution 7.1 could be constructed
only by extending an array satisfying solution 6.1. But an array with solution 7.1
must have a six-rowed sub-array with n, > 0. This gives a contradiction. An
array satisfying solution 7.2 has n,; = 8. Hence it must have at least two identical
columns having one coincidence with the 7th column. Crossing out the row in
which this coincidence occurs we would get n;o > 1. Hence the sub-array ob-
tained would have to satisfy solution 6.7. On the other hand 6.7 has n: + ng = 6.
Hence the extension would have to have ny + 74 < 6, but 7.2 has ny + ng = 8.
Thus a contradiction.

StEP 4. An array satisfying solution 6.1 can be constructed in a unique way.

Proor. It can be easily checked that in order to construct an array satisfying
solution 6.1 in respect to some column one has to distribute each type of the
remaining columns symmetrically. Each column having one, four, or six coin-
cidences with the chosen column has to appear twice, and each column having
two or three coincidences, once. Moreover, such a construction will in fact result
in an orthogonal array. Every five-rowed sub-array will satisfy solution 5.3
with respect to the fixed column used in the process of construction.

One can enumerate the solutions of the constructed array with respect to the
remaining columns:
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Type of Column Solution
One coincidence 6.2
Two coincidences 6.7
Three coincidences 6.6
Four coincidences 6.3

SteP 5. No array satisfying solutions 6.2, 6.3, 6.6, 6.7 can be extended to
seven rows.

This will be established showing that an array satisfying any of the solutions
other than 6.1 must include a column in respect to which it satisfies solution 6.1.

An array satisfying solution 6.2 must satisfy solution 6.1 in respect to at least
one of the columns having one coincidence with the 7th column, since n, = 13.

Solutions 6.3, 6.6, and 6.7 will be considered with ¢ = 1, assuming the first
column to be all 0’s. Solution 6.3 has n; = 4. Any five-rowed sub-array has to
satisfy either solution 5.3 or 5.4. Therefore an array with this solution must have
six columns as follows:

SO oo OO
OO O O
SO oOoOoOoO -
S oo OoO~O
oo ~=OO0O
O~ O OO

Then since A = 5 the column (000011)" must appear three times, yielding solu-
tion 6.1. An array satisfying solution 6.7 is obtained from an array 6.3 by permut-
ing the elements 0 and 1.

An array with solution 6.6 must have columns as follows:

0110000000 111
0001100000 111
0000011000 111
0000000100 000
0000000010 000
0000000001 000

Consider the first 10 columns shown. Deleting the first row leaves a five-rowed
array with nis = 2. Since there are three columns with five 0’s and since columns
differing in an even number of elements must appear the same number of times,
each column with three zeros must appear three times. In particular, the column
(11000)" must appear three times in the last five rows. Further, it must be pre-
ceded each time by a 1 in the first row, since the four-tuple (0000)" already
appears in rows 1, 4, 5 and 6 five times.
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ReMARk. It may be noticed that the proof of Proposition 3.5 gave also a
method of exhaustive enumeration of the orthogonal arrays (80, 6, 2, 4).

4. Orthogonal arrays (81, 5, 3, 4) and (243, 11, 3, 4). The arrays (81, 5, 3, 4)
and (243, 11, 3, 4) can be constructed geometrically. The array (81, 5, 3, 4)
can be constructed by adjoining to the matrix 7, the point (1111) and multiply-
ing the augmented matrix by the 4 X 81 matrix of all possible four-tuples con-
sisting of the elements 0, 1 and 2. The maximum number of constraints is assured
by the theorem of Bush [3]. Tallini [14] gave an example of 11 points in PG(4, 3)
such that no 4 are on one plane. Such points can also be obtained easily by simple
combinatorial argument. An example of a set of 11 points can be exhibited as
follows:

[ N e N
— QO = NN =
OO ==
N = DN O N~
NN O -

No other method of construction can give a larger number of constraints for the
orthogonal array (243, k, 3, 4) because eleven is the upper bound for & in the
inequality 2.2 with A = 3, s = 3, ¢ = 4.

Acknowledgment. We wish to thank Jack Kiefer for the suggestion of the
problem to one of the authors which led to a partial solution presented in this
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