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1. Introduction and summary. Let A; and A; be two symmetric matrices of
order p, A;, positive definite and having a Wishart distribution [2], [18] with
f1degrees of freedom and A, , at least positive semi-definite and having a (pseudo)
non-central (linear) Wishart distribution [1], [3], [5], [18], [19] with f. degrees
of freedom. Now let

A; = CYY'C’
where Y is p X f. and C is a lower triangular matrix such that
A+ A; = CC'.

Now consider the s( = minimum (f;, p)) non-zero characteristic roots of the
matrix YY'. It can be shown that the density function of the characteristic
roots of Y'Y for fy < p can be obtained from that of the characteristic roots of
YY' for f; = p if in the latter case the following changes are made [6], [18]:

(11) (fl’f2,p)_>(fl +f2_ p’p1f2)~

Now define U® = tr (I, — YY) ™ — p = tr (I, — YY)™ — f;. In view of
(1.1), we only consider U when s = p, i.e. U®, based on the density function
[9] of L = YY' for fo = p. The first four moments of U have been studied by
Pillai in the central case [11], [12], [13], [14], [17] those for U® also by Pillai [15]
in the non-central (linear) case and the first two moments of U® by the authors
[7]. These results are extended in the present paper, obtaining the third and
fourth moments of U™ and further, two approximations to the distribution of
U™ are suggested in the linear case.

2. Moments of U®. In the previous paper by the authors [7] it has been
shown that

(21) 1 4+U® = {1 — )@ —vu)}™ + 1 — vu) ' (WMu) + tr M

where l;1 , u: (p — 1) X 1 and M are independently distributed and their respec-
tive distributions are given by

(2.2) exp (—N) Lo [ /HBE (1 — 1) 7/614s + 4, 3} din
(2.3) [P/ T (A — p + DA — w'u) " gu
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and
(2.4) IR + fo — DUTEG — ¢ + DTS — 91

.[IMI%[fz—l—(p—l)—ll/ni(p—l)(p—2)IIP_I + M[i(v—l)] dM,
where
M

(Ip—l - L22)_1 - dp—-1, L22 = L11 —_ lll/lu ,
— lll l, —
L——(l Lll> and V—f1+f2,

wherelis(p — 1) X landLyis (p — 1) X (p — 1). Now note that (2.3)

is invariant under an orthogonal transformation of u, z; = u.’/(1 — w® —
C—uiy),t=1,2, -+, p — 1, u, = 0, is distributed as [7]
(2.5) gi(z:) = (B[}, 3(f — DT — 2!

and 2y, -+, Tp1 are independent. Further, define & = 1/(1 — u'u) and 8 =
tr M + u'Mu/(1 — u'u). Then, computing E(a*), ¢ = 1, 2, 3, 4, E(a'),
i=1,23 E(aB),i=1,2 E(af) and E(1 — Iy)™" — E(1 — lyo) ", ¢ =
1, 2, 3, 4 (where I, is a variate whose distribution is the same as that of I
when A = 0 and independently distributed of u and M), we can obtain the first
four moments of U”. It may be pointed out that E(a’8) involves E(tr M),
E(a'8%) involves E(tr M)* and E(tr. M), E(a8%), E(tr M)?, E[(tr M) (tr; M)]
and E(tr; M), where tr; M denotes the 7th elementary symmetric function in the
(p — 1) characteristic roots of M. All these results are available in [8].

Expressions for the first two moments of U® have been presented in the pre-
vious paper by the authors [7]. For the third and fourth moments we get:

(2.6) E(1 4+ UP)® = E(1 + Us®)® + A1(22D)® + 34(20D)% + 343(2\)
where

27 A= =[i-p-DHi—p—-3)h—p -5,

(2.8)  As= (v — 2)n” + ",

where

(2.9) 220 = (p— 1) — (i — p — 44/ (fL — D),

(2.10) Ady= (v — 2)(v — 0 + 200 — 2)n® + u®,

where

m? =lp - D=1/ (i—p—=3)i—p+ 1) i— p)
(2.11) A =2)e—=1D + [+ DA —1D/(h—p—2)]
++ D+ DAh—p+ 1)/
(i—p—Dh—p—2)(h—p— 5}
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Similarly
(2.12) E(1 4+ UP)* = E(1 + U,?)* + By(22)*
+ 4B, (2\%)° + 6B5(2)\°)° + 4B, (2)Y),

where

(2.13) Bi=n® =A/(fi—p—T7)

(2.14) By = (v — 2)n® + n,©

where

(2.15) 7" = (p—1)(h— 1)(fi—p — 6)B)/(fi — p)
(2.16) By= (v = 2)(v — )0 + 2(» — 2)m"” + .?
where

m®? = {[(hi—p—D(hi—p—6)(p— 1)(fa— 1)/(i — p)’]
(2.17) RH-DGB+L—p—-1/(h—-p+ 1) —p — 2)]
+—- D0 =Dl —20p - Dk - 2)f — 1)(fr — 2)/
{(i = p)(fr — p + 1)}}B:
(218) Bi= (»—2)(r — 4)(» — 6)0 0 + 3(» — 2)(» — 4)7"
+3(» — 2)n.” + m®
where
n® ={{hi—p—-2hi—p—4hi—p—6)(p — )(f — 1)/
(fi — P)3]
AR =D+ fo—p = D(i+ 2 —p — (i + p—2)/
hi=—p—=2)(h—p -4 —p + (i — p + 2)]
+6(— D+ fo—p— - (- 1)/
(2.19) (h—p=2)h—=p+ DI+ (» = D = 1Y
—b6(fi—p—4)(p— 1) —2)(f— ({fz— 2)/
(i—p—=2)(h—p)(hi—p+ 1)(hi —p + 2)]
HAh=—pp-D+4(—p—1)+20p+ D(p+ 2)]
+4(p — 1 —2)(p — 3)(e — 3)(fa — 2)(f: — 1)/
{h—p)hi—p + 1)(i = p + 2)}}B1.

3. Approximations to the distribution of U?. Pillai [15] has given an approxi-
mation to the distribution of U® for f; > f, and which is good even for very small



MOMENTS OF THE TRACE 1315

values of f,. The following approximation to the distribution of U® for f; >
(p — 1)fs, based on its moments discussed in the preceding section and [7],
generalizes Pillai’s results for U® [15]:

(3.1) ¢(U®) = (U(”))”‘_l/(l + U(p)/k)m+q1+lkmﬁ(pl, o + 1),
0<U” < =,

where

p1 = 2¢/{q:(h — 1) — 2h}, ,

@ =2{(fi—p—3h— (c+ d)*(fr—p— 1)}/
((h—p=38)(h+1) = 2(c+ d)’(fi — p — 1)}

k= clq(h — 1) — 2h}/[2(f — p — 1)], _

h=(c+199d)°(h—p— 1/{(c+ d)’(fi — p — 5)d},

¢c=ph+2\ and d= (fi+ (1 —p)fe — 1)/(h— p).

It may be pointed out that the case p = 1 is that of the non-central F [10].
Hence the accuracy of the approximation may be compared in this case with the
approximation to the distribution of non-central F obtained by Patnaik and the
exact distribution using Table 7 of [10]. However, it should be pointed out
that the approximation to the distribution of U® in (3.1) has been suggested
in this paper using the first three moments and with consideration of accuracy
for p > 1. From some numerical comparisons made in [8], the respective exact
and approximate moments were observed to be closer as p increased. Table 1
gives some idea of the accuracy of the approximation when p = 1. It may be
observed that the approximation suggested for U™ is more accurate at the upper
tail end than the lower. In this case, the condition fi > (p — 1)f; reduces to
fi> 0.

Again a comparison of the probabilities in Table 1 arouses the natural curiosity

TABLE 1
Values of [ g‘” g(t) dt from approximate and exact distributions
Probability
h f Py uw Approximate

Exact
Eqn. 3.1) Patnaik rac
10 3 2 1.1124 765 752 .745
10 3 8 1.1124 154 .203 .206
10 3 8 1.9656 .503 .520 517
10 5 3 1.663 738 .731 .731
10 5 3 2.818 .920 .913 .914
20 3 2 0.4647 .708 .706 .700
20 5 3 0.67775 671 .665 .664
20 5 12 1.02575 .196 .244 .245
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to attempt a generalization of Patnaik’s approximation [10]. The following is
such a generalization equating the first two respective moments of the exact
and approximate distributions:

(32)  q(UP) = (UP)"7/I(1 + UP /) (G, )],

0<U? < w
where

T = (pfo + 2)/n1,
n = (pfe + 2\)'(i — p)/I(4N" + o) {fi + fo(1 — p) — 1}],
Vo = f1 - P + 1.

4. Further accuracy comparisons. For p = 2, Pillai and Jayachandran [16]
have given the cdf of U® in the following form:

(4.1) F(UY) = KX 00 Xino (=1)* DBy + -+ ]

where B;; = f{{‘” f&‘z“ ™/ (1 4 u 4+ o)™ dy du, where m = (fy — 3)/2,
n = (f — 3)/2, and K’ and D;j are functions of f1 , f; and N’ given in [16]. Now
define

B.(p',¢) = Ji2" (1 — 2)" 7 de/B(p', q).
Then the cdf from (3.1) can be written as

(42) G(U(2)) = le(pl » Q1 + 1)’
where ¢, = U®/(k + U®) and the cdf from (3.2) can be written as
(43) Gl( U(z)) = Bmz(%l’l ) %W))

where 2, = U®/(ks + U®). Now Q(U®) — F(U®) and G((U®) — F(U®)
represent respectively the errors of approximations in the cdf from (3.1) and
(3.2). Table 2 provides some numerical comparisons in this respect.

The values of U® and F(U®) in Table 2 are taken from [16]. For p > 2,
the method of comparison assumes the exact cdf to be a Pearson type with the
first four moments the same as those of the exact. Thus using the ‘“Table of

TABLE 2
Values of G(U®), Gi(UP) and F(U®)
i fo A U® GU®)  GU®)  FU)
23 3 1 0.68072 .880 877 .875
23 3 1.5 0.68072 .843 .833 .829
13 5 0.5 2.17706 .933 .932 .931
23 5 1.5 1.00707 .875 .869 .867
23 7 1 1.31973 .914 911 .910
23 13 1.5 2.22596 .913 .912 .912
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TABLE 3

Upper 5 per cent points using the exact moment quotients and the approzimations
(3.1) and (3.2)

Percentage points

2
¢ A fe N Eqn. (3.1) Eqn. (3.2) Exact
3 20 3 12.5 3.873 4.035 4.028
3 50 10 4.5 1.283 1.304 1.300
4 20 4 12.5 4.883 4.971 4.956
4 50 4 12.5 1.409 1.475 1.470
4 50 10 4.5 1.593 1.604 1.598
5 25 5 12.5 4.377 4.407 4.380
5 25 5 32 7.742 7.786 7.768

percentage points of Pearson curves for given (81)* and B , expressed in standard
measure” [4], upper 5 per cent points are obtained for selected values of fi, f2, and
A?, and similar upper percentage points are obtained for Approximations (3.1)
and (3.2). These are presented in Table 3.

Table 2 and 3 show that Approximation (3.1) becomes closer to the exact as
p increases. In fact, the moment quotients from (3.1) are closer in general to those
of the exact than those from (3.2) even for p = 1 as shown by numerical com-
putations in [8]. However, Approximation (3.2) still maintains its accuracy
noted for p = 1 even for larger values of p considered in the tables above.
Further, it should be pointed out that the condition f; > (p — 1)f, applies for
both approximations.
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