ON FINDING OPTIMAL POLICIES IN DISCRETE DYNAMIC
PROGRAMMING WITH NO DISCOUNTING!

By ArtHUR F. VEINOTT, JR.
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1. Introduction. In an elegant paper [1] Blackwell has studied the infinite
horizon discrete time parameter Markovian sequential decision problem with
finitely many states and actions. He focuses initially on the case where there is a
discount factor 3,0 = 8 < 1. The problem is to choose a policy, termed B-optimal,
that maximizes the total expected discounted return over an unbounded time
horizon. He shows that there is a 8-optimal policy which is stationary. He also
gives a neat proof that Howard’s [2], p. 84, policy improvement method yields a
B-optimal stationary policy in finitely many steps.

For the case 8 = 1, a policy is called 1-optsmal if the difference between the
total expected discounted return with that policy and the B-optimal policy for
0 < B8 < 1tendsto0asg ~ 1.” Blackwell established the existence of a 1-optimal
policy that is stationary. He also shows that Howard’s [2], p. 64, policy improve-
ment method yields an element of the set of stationary policies that maximize the
long run average return per unit time. Blackwell shows that this set contains the
set of stationary 1-optimal policies. Thus if there is only one stationary policy
with maximal average return, then that policy is 1-optimal and will be found by
the policy improvement method. If there are two or more stationary policies hav-
ing maximal average return, the method still yields a 1-optimal policy in certain
special cases—e.g., where the chains associated with the stationary policies have a
common absorbing state and transient states elsewhere. However, there are situ-
ations, e.g., example 2 in [1], p. 726, in which the policy improvement method
fails to produce a 1-optimal policy.

Blackwell does not give an algorithm that will always find a 1-optimal policy.
The principal purpose of this paper is to fill this gap by generalizing the policy
improvement method to solve this problem (Theorem 14 below).

2. Review and extension of Blackwell’s results. Following Blackwell [1] con-
sider a system which is observed at each of a sequence of points in time labeled
1,2, - -+ . At those points the system is observed to be in one of S states labeled
1,2, - - -, S. Each time the system is observed in state s, an action a is chosen from

Received 8 February 1966.

1 This work was supported by the National Science Foundation under Grant GP-3739.

2 Actually Blackwell uses the term ‘nearly optimal” for what we call 1-optimal policies
for the case 8 = 1. He reserves the term “optimal’’ for 8 = 1 for a policy that is a-optimal
(in our sense) for alle, 0 < o =< B, sufficiently near 8 (= 1). He does not consider this latter
concept for 0 < B8 < 1 even though it is also meaningful (see Theorem 2 below) in that case.
We have changed his terminology to establish what seems to us to be a more natural re-
lationship between the definitions for the case 0 = 8 < 1 and 8 = 1.
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a finite set A, of possible actions and an income 7(s, a) is received. The conditional
probability that the system is observed in state s at time n 4+ 1 given that it is
found in state s at time n, that action a is taken at that time, and given the ob-
served states and actions taken at times 1,2, - - - ,n — 1, is assumed to be a func-
tion (s | s, a) depending only on s, s, and a.

Let F = X351 A, . A policy = is a sequence (fi, f2, - - -) of elements f, of F.
Using the policy = means that if the system is in state s at time n, the action
chosen at that time is f,(s), the sth coordinate of f, . Let f* = (f, f, ---) and
(g,°) = (¢,f,f, --) for fand g in F. f* is called a stationary policy. For any
feF,let r(f) bethe 8 X 1 column vector whose sth element is #(s, f(s) ), and let
Q(f) be the S X S Markov matrix whose (s, s') element is ¢(s | s, f(s)).If
= (fi,fo, ), let Qu(7) = Q(f1) - - - Q(£,). Thus the vector of total expected
discounted returns starting from each state and using the policy = is

Vﬂ(ﬂ') = ::=0 5nQn(7T)7'(fn+l)

where 0 = 8 < 1is a discount factor and @o(7) = I (the S X Sidentity matrix).

For any two S-vectors u = (u:) andv = (v:), write w = v if u; = v; for all f and
write u > vif u = v and u # v. A policy =™ is called -optimal if V(7™) = Va(m)
for all # where 0 = 8 < 1.

Tureorem 1 (Blackwell). Ezactly one of the following must occur for each f ¢ F
and0 = 6 < 1:

(a) Va(f*) = Vg(g, f7) for all g € F and f* is B-optimal.

(b) Vs(f*) < Velg, f") for some g ¢ F and Vs(f*) < Va(g”).

This theorem describes a finite algorithm (the policy improvement method)

for finding a B-optimal policy that is stationary, 0 < 8 < 1. Let 7(3) be §-optimal
and U(B) = Ve(n(B)), 0 £ B8 < 1. A policy =* is called l-optimal if
limg = [Vg(x*) — U(B)] = 0. The next theorem is a slight generalization of Black-
well’s Theorem 5 [1], p. 725. Only slight modifications of the original proof are
required.

THEOREM 2. For each 0 < 8 =< 1, there is a B-optimal policy that is stationary and
that is a-optimal for all 0,0 = a < B (B = a = 1), sufficiently near 8.

ExampLE 1. An f which satisfies the hypotheses of part (a) of Theorem 1 and s
not a-optimal for a 7% 3. There are two states 1, 2. In state 1 there are three actions
1, 2, 3 with action ¢ yielding an income of (5 — 7) and the system remaining in
state 1 with probability (¢ — 1). In state 2 there is only one action which yields
an income of 0 and the system remains in state 2. Now F' = {f, fa, f;} where

fi(1) =14, £i(2) =1, and
(6 — 1)
Va(fi®) =|1— 3G — DB |, i=123.
0

Thus f;” is a-optimal for 0 < « < %, £, is £-optimal only, and f;* is a-optimal for
1 < a £ 1. For 8 = &, f»” satisfies the hypotheses of part (a) of Theorem 1.
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But only f,* and f;* are a-optimal for « in a neighborhood of 1 relative to [0, ]
and (3, 1] respectively as described in Theorem 2.

If we replace the income (5 — ¢) by 3 — 7, the above illustration reduces to
Blackwell’s example 1 [1], p. 726, in which f;” is a-optimal for 0 < « < 1 and
/2" is 1-optimal only. Moreover f,” satisfies the hypothesis of part (b) of Theorem
14 below. Thus the algorithms given in Theorems 1 and 14 for finding 8-optimal
policies, 0 = 8 = 1, do not always yield a policy satisfying the conditions of
Theorem 2, i.e., a policy that is a-optimal for an interval to the left or right of B.

TreEorEM 3 (Blackwell). For each f e F, let Q*(f) = limy.o N 7' D10 Q(F)".
Then

(1) Ve(f*) = 2(f)/(1 — 8) + y(f) + €8, 1), 0=8<1,
where x(f) 1s the unique solution of

(2) -k =0, Q*(Ne=Q*Nr(),

y(f) s the unique solution of

(3) I—-QWNly=rl)—=2(), Qy=0,

and limg.1— (B, f) = 0.
By Lemma 1 in [1] we have for f ¢ F that

(4) R*(NQ() = QNA* (N = Q*NR* () = Q*().

Thus

(5) a(f) = Q*(Nr()

solves (2). Also upon premultiplying (1) by @*(f) and using (3) and (5) we get
(6) 2(f)/(1 = B) = Q*(N)Vs(f*) + (8, 1), 0=8<1,
where limg.,1- (8, f) = 0 so by (1),

(7) y(f) = Va(5*) — Q*(NVs(f*) + (8, 1), 0=8<1,

where limg.,1- 7(8, f) = 0. The formulas (5)—(7) give interpretations to z(f) and
y(f). One may compute z(f) and y(f) by determining @*(f), then computing
z(f) from (5), and finally solving (3) for y(f).

Let ' = {f|feF,z(f) = x(g) allge F} and F” = {f|fe F',y(f) 2 y(g) all
g € F'}. In view of (5), F’ is evidently the set of all f ¢ F having maximal average
return per unit time.

TueoreM 4 (Blackwell). F” is the (nonempty) set of all f e F for which f is
1-optimal.

Proor. Use Theorem 2 and the representation (1).

In the sequel we shall sometimes denote by [u]; the sth component of a vector
u. Consider the following inequalities associated with any f, g ¢ F:

(i) Q(g)z(Nls = [=(N]s ;
(ii) [r(g9) + Q(@y(N]s 2 () + y()]s.
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Let G(f) be the set of g ¢ F such that (i) holds for all s; (ii) holds for each s for
which (i) holds with equality; at least one of the inequalities in (i), (il) is strict;
and for each s for which (i) and (ii) hold with equality, g(s) = f(s).

TuaeOREM 5 (Blackwell). Suppose f ¢ F.

(a) If G(f) isempty, thenfe F'.

(b) If g £ G(f), then Vs(g°) > Va(f7) for all B(<1) sufficiently near 1.

This theorem describes a finite algorithm (Howard’s policy improvement
method) for finding an f ¢ F’, i.e., an f with maximal average return per unit time.

CororrArY 1. Suppose feF and ge G(f). Then either x(g) > x(f), or
z(g) = z(f) and y(g) > y(f).

Proor. From part (b) of Theorem 5 and the representation (1) we have
z(g) = z(f) and z(g) = «(f) implies y(g) = y(f). It remains only to show
(z(g), y(9)) = (x(f), y(f)). If instead (xz(g), y(g9)) = (x(f), y(f)), then
g 2 G(f) which is a contradiction and completes the proof.

Let E(f) be the set of g £ F such that (i) and (ii) hold with equality for all s.
Since the sth components of the bracketed vectors in (i), (ii) depend on the sth
component of g and no others, it follows that E(f) can be expressed in the form

(8) E(f) = Xi=1E(s, f)
where E(s, f) = {g(s)| g ¢ E(f)}.

Lemma 1 (Blackwell). If f e F and g € E(f), then x(g) = z(f). If in addition

Q™ (9)Q™(N) = Q*(g), then y(g) = y(f).
Lemma 2. Suppose f, g € F and the Markov chain defined by Q(g) has no transient
states.

(a) If g € G(f), then x(g) > x(f).

(b) If G(f) is empty and g £ E(f), then x(f) > z(g).

Proor. From Corollary 1, g ¢ G(f) implies z(f) < z(g). From part (a) of
Theorem 5, G(f) empty implies 2(f) = z(g). Thus it suffices to show z(f) = z(g)
in each case.

Suppose to the contrary that x(f) = z(g). Then by (4),

Q*(9)1Q()x(f) — ()] = Q*()z(f) — Q*(9)x(f) = 0.

But Q*(g) = 0has a positive element in every column since there are no transient
states; and Q(¢)z(f) — x(f) is nonnegative if g ¢ G(f) and nonpositive if G(f)
is empty. Thus

(9) Q(g)x(f) = =(f).
Also by (2), (4), and (5),
R¥*(9)lr(g) + QYN — () — y(N)]
= z(g9) + Q¥ (9)y(f) — =(9) — Q*(Py() = 0.

Thus since Q*(¢) has a positive element in each column and by (9) the bracketed
term above is nonnegative if g ¢ G(f) and nonpositive if G(f) is empty, we have
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r(9) + Q(g)y(f) = z(f) + y(f).

It follows from this equation and (9) that g ¢ E(f). This contradicts the hy-
pothesis g e G(f) in part (a) and g £ E(f) in part (b), which completes the
proof.

COROLLARY 2. Suppose f ¢ F'. Then

(a) E(f) C F'.

(b) If the Markov chain defined by Q(g) has no transient states for each g e F,
then G(f) is empty and E(f) = F'.

Proor. Part (a) follows from Lemma 1.

To prove part (b), suppose first g ¢ G(f). Then z(f) < x(g) by part (a) of
Lemma 2 which contradicts the hypothesis f ¢ F’. Thus G(f) is empty. Now sup-
poseg € F' — E(f). Then by part (b) of Lemma 2 z(g) < x(f) which contradicts
the hypothesis g € F'. Thus F' © E(f). Combining this fact with part (a) com-
pletes the proof.

If the Markov chain defined by @Q(g) has no transient states for each g ¢ F,
then by part (a) of Theorem 5 and part (b) of Corollary 2, the policy improve-
ment method terminates immediately upon finding an element f of F’. Moreover,
E(f) is precisely the set of all g with maximal average return per unit time. Thus
if the algorithm is initiated with f ¢ F* — F”, the method does not yield a 1-optimal
policy. For a numerical illustration, see Example 2 in [1], p. 726.

Lemva 3. If f, g e F”, then E(f) = E(g). Moreover, F” C E(f) C F'.

Proor. The set E(f) depends only on (z(f), y(f)), and similarly for g. But
f, g e F” imply (2(f), y(f)) = (z(g9),y(9)) so E(f) = E(g). Also since g ¢ E(g)
= E(f), F" < E(f). Finally, E(f) C F’ follows from Corollary 2.

ExampLE 2. An F” that is a proper subset of E(f), f e F”. Blackwell’s Example
2, [1], p- 726.

ExampiE 3. An E(f), fe F”, that is a proper subset of F’. There are two states
1, 2. In state 1 there are two actions 1, 2. Action 1 yields an income of 0 and the
system remains in state 1. Action 2 yields an income of —2 and the systemmoves
to state 2. In state 2 there is one action yielding an income of 0 and the system
remains in state 2. Now F = {fi, f2} where f:(1) = 7. Also

F' =E(f) = {fi} #F =F.

3. Computing 1-optimal policies. In this section we develop an algorithm for
finding a 1-optimal policy. To this end suppose we have found an f e F' with
G(f') empty by employing the policy improvement method given in Theorem 5.
It would then suffice to have a method for finding an f” ¢ F’ that maximizes
y(g) over g ¢ F’ since by Theorem 4 it would follow that f" is 1-optimal. Un-
fortunately it seems to be difficult to characterize F’ in general. However, E(f’)
is immediately available and from Corollary 2 we have E( f') < F’. This suggests
that we consider instead maximizing y(g) over g ¢ E(f'). It turns out that this
problem can be solved with the techniques already developed as the next lemma

shows.
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Lemma 4. Suppose f ¢ F and g € E(f). Let w(g) be the unique solution to

(10) - Q@ =0, Q" g)w=Q*g)(~y(f)).
Then
(11) y(9) = y(f) + w(g).

Proor. The uniqueness of w(g) follows from Theorem 3. Since g ¢ E(f) we
have from (ii) that

I — Q) = r(g) — =().

Adding this equation to the first equation in (10) and then rewriting the second
equation in (10) we get

I — Q) + wlg)] = r(9) — 2(f), QAW + w(g)] =

But from Theorem 3 the unique solution to this system is y(g). Thus (11) holds,
which completes the proof.

Notice from (2), (8), and Lemma 4 that the problem of maximizing w(g)
over g ¢ E(f) has the same form as that of maximizing z(g) over g ¢ F where we
replace 4, by E(s, f), F by E(f), and r(g) by —y(f) fors = 1, --- , S and all
g € E(f). Thus the policy improvement method of Theorem 5 can be used to
find an h that maximizes w(g)—and hence y(g) in view of (11)—over g ¢ E(f).

Returning now to the discussion preceding Lemma 4, suppose we find ' & F’
with G(f') empty and then f” ¢ E(f') that maximizes y(g) over geE(f). If,
as in part (b) of Corollary 2, we have E(f') = F’, thenf” ¢ F” and by Theorem
4 (f' ")* is the desired l-optlmal policy. Unfortunately, as Example 3 shows,
E( f ) may be a proper subset of F in which case we need a method for determining
if f* & F”. Such a method is given in the next lemma.

Lemma 5. If fe F, if G(f) is empty, and if y(f) = y(g) for all g £ E(f), then
feF".

Proor. (The proof is essentially a slight modification of Blackwell’s proof of
part (d) of Theorem 4 in [1].)

Choose 8 < 1 so near 1 that for any pair f,, fi with G(f;) empty we have
Va(fi, /o) 2 Vs(fo”) implies fi ¢ E(fo), and Vg(f1) Z Vs(fo) and z(f1) = z(fo)
implies y(f1) = y(fo). If f° is not B-optimal, let f, = fand let fi, f2, --- , fi be a
sequence of S-improvements, obtained as in Theorem 1, terminating in a 8-op-
timal f”. We show by induction on ¢ that (z(f:), y(f:)) = (z(fo), y(fs)) and
G(f:) is empty for ¢ = 0, 1, - - - , k. This is true for ¢ = 0. If true for a given ¢,
then E(f:) = E(f) because E(f) depends only on (z(f), y(f)). Thus fiys ¢ E(f)
so by Lemma 1, 2(fi;1) = z(f). Moreover, Vs(fir1) > Vs(f*) so by the defini-
tion of 8, y(fit1) 2 y(f). But by hypothesis, y(fir1) < y(f) so necessarily y(fi1)
= y(f). Since (2(fis1), y(firr)) = (z(fo), y(f)) and G(fo) is empty, G(fi1) is
empty also.

(I am indebted to Bruce Miller for correcting an error in the original proof.)

Consequently, writing f(8)” for the g-optimal f,°, we have from (1) that
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UB) =z(f)/(1 = B) + y(f) + B, £(B))
and

Ve(f*) = 2()/(1 = B8) + y(f) + (8, 1),

so U(B) — Ve(f7) = 0as B ./ 1. Thus f° is 1-optimal and so by Theorem 4,
feF".

The next result generalizes part (d) of Theorem 4 in [1] slightly.

CoroLLARY 3. If fe F, if G(f) is empty, and if Q*(9)Q*(f) = Q*(g) for all
g e E(f), then E(f) = F".

Proor. By part (a) of Theorem 5 and Lemma 1, (z(f), y(f)) = (z(g), y(g))
for all g ¢ E(f). Thus E(g) = E(f) and G(g) = G(f) for g ¢ E(f) so by Lemma
5, E(f) < F”. On the other hand, by Lemma 3, F” < E(f) which completes the
proof.

For each f ¢ F let z(f) be the unique solution (by Theorem 3) to

(12) I - QWNk() = —y(f), QN = 0.
Consider the following inequalities associated with any fe F and g ¢ E(f):

(iii) [=y() + Q(9)z(N]: = [(N)]. .

Let H(f) be the set of g ¢ E(f) such that (iii) holds for all s and strictly for some
s; and for each s for which (iii) holds with equality, g(s) = f(s). We now come
to our main result.

THEOREM 6. Suppose fe F.

(a) If G(f) is empty, then f e F'.

(b) If G(f) u H(f) is empty, then f ¢ F”.

(c) If g € G(f), then either x(g) > xz(f), or z(g) = x(f) and y(g9) > y(f).

(d) If g e H(f), then z(g) = x(f); and either y(g) > y(f), or y(g) = y(f)

and z(g) > 2(f).
Proor. Parts (a) and (c) follow from Theorem 5 and Corollary 1.

We now prove part (b). First note from (11) that w(f) = 0. Thus since H(f)
is empty, it follows from Theorem 5 and Lemma 4 that y(g) = y(f) for all
g ¢ E(f). Part (b) then follows from Lemma 5.

It remains to establish part (d). Now g ¢ H(f) € E(f) so we have from Lemma
1 that z(g) = z(f). It follows from Theorem 5, Lemma 4, and part (c¢) above
that either w(g) > w(f) = 0or w(g) = w(f) = 0and z(g) > z(f). Upon taking
account of (11), the proof is complete.

Observe that Theorem 6 provides the following algorithm for finding an
f e F for which G(f) u H(f) is empty (and hence f is 1-optimal). Let f; ¢ F be
given. Choose fa2, f3, --- inductively so as to satisfy fi1e G(f:) u H(f:). The
sequence {f:} is finite because F is finite and the sequence of triples {(z(f:),
y(f:), 2(f:))} is lexicographically increasing® so no f; can recur. Thus, G(f;) u
H(f:) must be empty for some <.

3 We say u ¢ R» is lexicographically smaller than v ¢ B~ if 4 5 » and the first nonzero

component of » — u is positive. The relation ‘“lexicographically smaller than’’ is transitive
and completely orders Rn.
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In carrying out the computations one would probably choose fiie G(f:)
if possible and fiy, ¢ H(f:) only if G(f:) were empty. Under this rule the first
phase of the algorithm, i.e., the calculations leading to an element of F’, coincide
with the method of Theorem 5. The second phase, i.e., the remaining calculations,
leads to an element of F”. Notice that in the first phase one must compute z(f;)
and y(f;) at the 7th stage but not z(f;). In the second phase z(f:) remains fixed
and it is necessary to compute only y(f:) and, when G(f:) is empty, also z(f.).

Let E'(f) be the set of all g ¢ E (f) for which (iii) holds with equality for all s.

COROLLARY 4. Suppose f & F”. Then

(a) E'(f) c F" C E(f) C F'.

(b) If the Markov chain deﬁned by Q(g) has no transient states for each g ¢ F,
then G(f) u H(f) is empty and E'(f) = F”.

Proor. To prove part (a), note from Lemma 3 that we must show only that
E'(f) < F”. This relation follows from part (a) of Corollary 2 and Lemma 4.
Part (b) follows from part (b) of Corollary 2 and Lemma 4.

4. An alternative proof. Our proof of Theorem 6 in the preceding section de-
pended heavily upon treating 8 = 1 as a limiting case of 8 < 1. In this section
we give an alternative proof of the theorem that was suggested by the approach
of Howard [2], pp. 69-73. Howard proved part (a) of Theorem 6 and that g ¢ G(f)
implies #(g) = «(f). (We shall repeat his proofs of these facts below.) He did
not show, however, that his policy improvement method terminates in finitely
many steps—i.e., that “cycling” does not occur. That cycling does not occur
follows from part (c) of Theorem 6, however.

Proor or TaEOREM 6. Suppose f, g ¢ F. From Markov chain theory by ap-
propriately relabeling the states we may write

[ Qu 7
0
Q22 0
Q(g) = '
0
QN—I.N—I——
| Qw1 Qw2 --- Qv.v—1 1Qww ]
and
[ Qh }
0
Q% 0
Q*(g) = :
0
Q;‘:’—LN—I
| Qm Qv Qv | O]
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where QF; , 1 < i < N, has identical rows of positive numbers and (I — Qyx)™"
exists and is nonnegative. Let

v = Q(g)x(f) — =(f);
v =r(g9) + Q@y(f) — =(f) — y(f);
0 = —y(f) + Q(g)z(f) — 2(f).

Let Az = z(g) — z(f). Define Ay, Ar, Az similarly. From the definitions involved
we have

(13) Az = ¢ + Q(g)Az;

(14) Az + Ay = v + Q(9)Ay;

(15) Ay + Az = 6 + Q(g)Az.

Upon premultiplying (13)-(15) by @*(g) and using (4) we get respectively
(16) 0= Q%g)¥;

(17) RQ*(9)Az = Q™(g)v;

(18) R*(9)ay = Q@*(g)6.

Now partition the transpose of z(f) by z(f)* = ('), ---, 2" (f)”) where

the column vector z*(f) has the same number of components as @.; has columns.
Do the same for z(¢), y(f), y(¢9), 2(f), 2(9), ¥, v, 6, Az, Ay, Az ,

If ¢* = O for fixed 7, 1 < ¢ < N, we have from (13) that Az" = Q::Az", so from
Markov chain theory Az* has identical components. Consequently, it follows from
(17) that

(19) v =0 implies Az = QFn’ 1<i<N.

A similar argument using (14) and (18) gives

(20) Az = 4* =0  implies Ay’ = QL6 1<i<N.
We can solve (13)-(15) respectively for Az", Ay", Az" as follows:

(21) A" = (I = Quw) "W + 205 Quita);

(22) = (I — Q)7 (¥" — A" + 2205 Qwidy);

(23) A2 = (I — Quv) (6" — Ay" + 275 Quine)).

We now prove part (a). Suppose G(f) is empty. Then ¢ = 0 and ¢* = 0 im-
phesy =<0,1 =7 = N.Nowby (16) and ¢' = 0, wehavey’* = 0,1 <4 < N.
Thus vy £ 0,1 < ¢ < N, so from (19) and (21), Az < 0 which estabhshes part
(a).

Turning now to part (b), suppose G(f) u H(f) is empty. Then ¢ = 0; v'=0
impliesy* £ 0,1 £ ¢ =< N;and¢' = 4" = Oimplies* £ 0,1 £ 7 < N. From part
(a),feF sofeF” if Ax = 0 implies Ay < 0. From the preceding paragraph,
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(21), and Az" = 0, we have ¢ = 0. Thus from (19),7* = 0,1 £ 7 < N; and
vV = 0.Hence§° £ 0,1 < ¢ < N so from (20) and (22) we have Ay < 0, which
proves part (b).

To prove part (c), suppose g € G(f). Then ¢ = 0 and ¢' = 0 implies v* = 0,
1 =4 < N.Nowby (16) and ¢' = 0, we have ¢’ = 0,1 < ¢ < N. Thus v* > 0,
1 =4 < N, sofrom (19) and (21), Az = 0. To complete the proof it suffices to
show Az = 0 implies Ay > 0. It follows from Az = 0, g ¢ G(f), (19), and (21)

thaty = 0;7' = 0,1 £ 7 < N; 4" > 0. Thus from (14)
(24) Ay' = QuAY', i=1---,N—1
Since (¢¥s, v.) = 0 and g ¢ G(f) imply f(s) = g(s), it follows that the first

N — 1 rows of submatrices of Q(g)(Q*(g9)) equal the corresponding rows of
submatrices of Q(f)(Q*( f)) Consequently, for 1 < 7 < N, we have

(25) QhAy' = Qly'(g) — Qiy'(f) = 0.

Since Ay’ = 0 satisfies (24), (25), and since (24), (25) have a unique solution,
we have Ay = 0,1 < 7 < N. Thussince 4" > 0 and Az" = 0, we have from (22)
that Ay” > 0 so Ay > 0, which establishes part (c).

We now prove part (d). Suppose g e H(f). Theny = v = 0s0 6 = 0. Thus
from (19) and (21), Az = 0. Hence from (20) and (22), Ay = 0. It remains to
show only that Ay = 0 implies Az > 0. We have from Ay = 0, (20), and g ¢ H(f)
that 6° = 0,1 < 7 < N; also ¥ > 0. Thus from (15)

A2 = QuAz', i=1 - ,N—1.

Since (¥s, 7s,0,) = 0and g e H(f) imply f(s) = g(s), it follows by an argument
like that of the preceding paragraph that Az* = 0,1 < ¢ < N. Thus since §¥ > 0
and AyY = 0, we have from (23) that Az" > 0 so Az > 0. This completes the
proof.

b. Another criterion for optimality. The vector of total expected returns in
periods 1, 2, - - - , n starting from each state and using the policy = is

V"(,’r) = ::;)1 Qi(”r)r(fi+1).
A policy =* will be called optimal if
(26) lim infyae N2 2o [V*(x™) — V()] 2 0

for all =.
Observe from the definitions of z(f) and y(f) that

y(f) = r(f) — =(f) + Q(Ny()
== LN — =N+ @N"y(S)

V() — n2(f) + QN "y(f).
Summing both sides fom 1 to N, dividing by N, letting N — <, and using

It
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Q*(Ny(f) = 0, we get

(27) y(f) = limy.o N7 2205 V() — na(f)].

Thus [y(f)]. may be interpreted as the average amount by which the total ex-
pected return for n periods starting from state s exceeds that starting with the
stationary probability vector [Q*(f)],, the sth row of Q*(f). We may rewrite
(27) in the form

(28) N7V = (N + 1)/21(f) + y(f) + o(N, /)

where limy,., o(N, f) = 0. The next theorem is an immediate consequence of
the representation (28).
TaEOREM 7. f& F” if and only if

limess N7 S V(%) = V7(6™)] 2 0

forallgeF.
It follows from this theorem that if f~ is optimal, then f* is 1-optimal. We
conjecture that the converse is also true.
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