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1. I shall establish some theorems connecting the asymptotic behavior of a
distribution function F and the local behavior of its characteristic function ¢.
TrEOREM 1. If 0 < v < 1, we have ¢ € Lip v if and only if

(L1) F(z) — F(x «) = O([¢[™), 2| — o.

Condition (1.1) is to be read as F(z) = O(|z[”") asz — — o and 1 — F(z) =
O(z™") asz— F . '

More precisely, (z) — ¢(0) = O(|z]"), or even o(z) + o(—2) — 20(0) =
O(|z|"), implies (1.1); ¢ ¢ Lipy is implied by (1.1). Hence if a characteristic
function satisfies a Lipschitz condition of order'y, 0 < v < 1, at the origin, then
it satisfies a Lipschitz condition of the same order at all points.

Theorem 1 fails for v = 1. The problem of finding something similar fory = 1
is of special interest because it is connected with the problem of the existence
of the derivative of a characteristic function at the origin. Let A* and A\* be the
classes of continuous functions ¢ such that o(x + ) + o(x — h) — 20(z) =
O(h) or o(h), uniformly in z, as h — 0 (\* is the class of smooth functions); A
or A at z means the same thing for this particular z.

TurorEM 2. We have ¢ € A* or \* if and only if

(1.2) F(z) — F(£ «) = 0(1/la]) or o(1/z]), le| = eo.

More precisely, o € A or \ at 0 implies (1.2); ¢ € A* or \* is implied by (1.2).
Hence in particular ¢ € N* if and only if ¢ is smooth at 0.
Zygmund [3] showed that ¢’ (0) exists if and only if ¢ is smooth at 0 and

(1.3) lim e fff tdF(t) exists.

Pitman [2] showed that ¢'(0) exists if and only if F(z) — F(& «) = o(1/[z|)
and (1.3) holds. By Theorem 2, we have ¢ smooth (either at 0 or everywhere)
if and only if F(z) — F(+£ «) = o(1/|z|), so that the corresponding parts of
Zygmund’s and Pitman’s conditions are really equivalent. In Section 4 I give a
short deduction of Pitman’s theorem from Theorem 2. (For another proof see
Feller [1], p. 528.) ,

If ¢ is smooth we can also show that ¢’ () exists(for a particular ) if and only if

lim e [Zr te™* dF(t)
exists.

Theorems 1 and 2 say that ¢(z + h) — ¢(x) with a specified rapidity if and
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only if F(t) approaches F(=+ ) with suitable rapidity. Another way of measur-
ing the rapidity of approach is by the convergence of an integral.
TrEOREM 3. For 1 < v < 2, we have

(1.4) [ (@ — a) " o(z) — o(a)| dz <
Sor every real a if and only if
(1.5) 2w |t|" T dF(t)  converges.

If v = 1, |t|"™" 4s to be replaced by log™ |t| . If v = 2, i.e. if the first absolute mo-
ment of dF s to exist, (1.4) s to be replaced by [s27° |p(a + ) + o(a — z) —
20(a)| dz < .

As before, (1.4) with ¢ = 0, or even

Joz" () + o(—2) — 26(0)| dz < oo,
implies (1.5); (1.5) implies (1.4) for every a.

2. We begin with Theorem 1, and prove that ¢(z) — ¢(0) = O(|z|") implies
(1.1). Our hypothesis means that

(2.1) Zo (1 — cosat) dF(t) = O(|z|"), z— 0,

whence
J3/1=1 (1 — cosat) dF(t) = O(|z]"),

[/ 221 — cos xt) /(%) dF(t) = O(|z]).

Since (1 — cosu)/u’ decreases on (0, 1), we can replace (1 — cos xt)/(2*) by
its minimum in (2.2), and get

(2.2)

L[ AR (t) = 0(Jz|"), z—0,
so that
(2.3) A(z) = [ EdF(t) = O(j«]™™), |z] = o.
Forz > 0,

1— F(z) = [7dF(t) = [ u?dA(u)
=274 (z) + 27 u A (u) du
=0(z™), T— +o,
by (2.3). For x —» — « the argument is similar.
3. To establish the sufficiency of (1.1) take A > 0 and write
Fle(z + 20) — o(2)| < 3% ™ — 1] dF(2)
[2 |sin ht| dF(t)
< W[ tdF(t) + hfyn|Y dF ()
+ [yndF(t) + [S*dF(2).

Il



34 R. P. BOAS

The last two integrals are O(h") by hypothesis. The first integral is
Rfs™ tdF(t) = hfs"™ td[F(t) — 1]
= F(1/h) — 1 + hfs™[1 — F(t)]dt
= 0(");
the second integral is estimated similarly.

4. When v = 1 we consider first o(z) + ¢(—z) — 2¢(0) = O(z) or o(z),
z — 04 (i.e., ¢ € A at 0 or ¢ smooth at 0). This means that (2.1) is replaced by

(4.1) J2o (1 — coszt) dF(t) = O(z) or o(z),

whence just as in Section 2 we get

(4.2) fﬁ £dF(t) = O(z) or o(z), T — oo,

and hence

(43) 1 — F(z) =0(1/z) or o(l/x), z— +w;
F(z) = 0(1/|z]) or o(1/z]), T— —w,

Conversely if (4.3) is satisfied then with # > 0 we have
o +h) + ol — h) — 20(z) = [2,e ™ + ™ — 2] dF(2)
= —2[2, ™ (1 — cos ht) dF(t);
lo(z + h) + o(x — h) — 2p(2)| < 2[2. (1 — cos ht) dF(t)
< W[ EdR(t) + B2 £ dF(2)
+ 2fTn dF(t) + 2f =M dF(2).

The last two integrals are O(h) or o(h) by (4.3), and so are the first two if we
show that (4.3) implies (4.2). Now if 1 — F(x) = O(1/z), x — + «, we have

[i8dr(t) = [(£dIF(t) — 1]
= 2[F(z) — 1] — 2[5 4[F(¢) — 1]dt
= 0(=) + [70(1) dt = O(z),

and similarly for £ — — o and with o replacing O. This establishes Theorem 2.
We next show that if ¢ (0) exists then

(4.4) limzse [Zrt dF(t)

exists. In fact, the existence of ¢'(0) implies in particular that ¢ is smooth at_0,
and hence that F(z) — F(& «) = o(1/|z]), [t| — «. Hence (taking 2 > 0)
we have

A = lp(x) — o(0))/z — [Xi [(e™ — 1)/at]t dF (1)

= 2 (JZ7 + [Te)(e™ = 1) dF (1) = o(1).
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But for |zt| < 1, (¢*** — 1)/at = ¢ — R with |[R| < Az |t|, so

(4.5) A = [p(z) — 0(0))/z — [25.tdF(t) + O(xf5. ¢ dF(1)).
Now

o ¢ ar(t) = [{"£dIF(t) — 1]

Pz — 1] — 2fd"F(t) — 1]dt
= o(z™") + [i70(1) dt = o(z™).
So the last term in (4.5) is 0(1) as  — 0 and the existence of (4.4) follows.
Conversely, if F(z) — F(£ «) = o(1/|z]) and (4.4) exists, the same argu-
ment shows that A — 0 and consequently ¢ (0) exists. This establishes Pitman’s
reSZl:imjlar argument shows that if F(z) — F(+ ») = o(1/]z|), i.e. if o £ A%,
then ¢'(z) exists (for a particular z) if and only if
limzae [Zr e t dF (1)
exists. Also, if ¢ € A* then ¢ ¢ Lip 1 at z if and only if
[Zre™ tdF(t) = O(1);
¢ € Lip 1 if and only if this is true uniformly in z.
6. We now prove Theorem 3. Suppose first that
L |t|" dF (1)

converges, 1 < vy < 2, or that [7 log ¢ dF(¢) and [—% log |t| dF(t) converge. We
have

20 (% — &) dF (1)]
2[Z. |sin (z — a)t| dF(2);
2[ZudF(t)[s* |x — o™ |sin 4(z — a)t| dz
2% dF () [5 4" |sin dut| du
= 2[Z t|" " dF(t) [}* 57 |sin 45| ds.
If 1 < v < 2, this converges if
Zw [t|"T dF(2)
converges, since the inner integral is a bqunded function of ¢. If v = 1,

[ s |sin 3s| ds < 2 + log Jt] ,

le(z) — o(a)]

IIA

IIA

[z — o 7" |e(2) — o(a)| dz

and the corresponding conclusion follows.
If y = 2, we have

o(a+ ) + o(a — z) — 20(a) = —2[ ¢™(1 — cosat) dF(t),
022 p(a + ) + o(a — z) — 20(a)| de < 2[ZdF(t)[o' 272(1 — cos xt) dz
= 2[Z t| dF (t) [ w2 (1 — cos u) du.



36 R. P. BOAS

Conversely, suppose that 27 "[p(x) + o(—2) — 20(0)] ¢ L(0,1),1 < y < 2.
We have

=) + o(—1) — 20(0)] = 277[Z, (1 — cos tu) dF (u),
57 Jo(t) + o(—t) — 20(0)| dt = 22 dF(u) [§ £7(1 — cos tu) dt < oo.
Hence

ffoo |u|"™" dF (u) fo“' s (1 — coss)ds < «,

and since everything is positive,

[T dF(u)[35 (1 — coss)ds < [Tu " dF(u)[s s (1 — coss)ds < oo.

Consequently [T u" ™ dF(u) < . A similar argument applies on the other side.
If v = 1, however, we have
J¢ s (1 — coss)ds = A logu
for large u, and so
[TlogudF(u) < .
Conversely, if 272 |o(z) + o(—2z) — 20(0)| € L(0, 1), we have
2o dF(t)[3272(1 — costz) dz < o,
2o |t dF (t) [§' u™?(1 — cosu) du < o,
J1e151 [t} dF () [5u72(1 — cos u) du < =,
and consequently [ [t| dF(t) < oo.
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