ON THE NON-EXISTENCE OF A FIXED SAMPLE ESTIMATOR OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVING A PRESCRIBED PROPORTIONAL CLOSENESS

By S. Zacks

Kansas State University

In Section 2 of [2] a heuristic argument is given for the non-existence of a fixed sample procedure which can guarantee the prescribed closeness condition. This argument is however unsatisfactory, and we give here a rigorous proof. We first remark that the problem of estimating the mean, ξ , of a log-normal distribution in a manner which guarantees a prescribed closeness condition is equivalent to the problem of estimating $\mu + \sigma^2/2$, in the case the observations have a $\mathfrak{N}(\mu, \sigma^2)$ distribution law, with an interval estimator of a fixed width, 2δ say. Generalizing, we wish to prove that there is no fixed sample interval estimator procedure for $\mu + f(\sigma)$, $f(\sigma)$ being any finite real-valued function of σ , which can guarantee a prescribed confidence level for a system of intervals of a fixed width. Let Y_1, \dots, Y_n be iid random variables, having a $\mathfrak{N}(\mu, \sigma^2)$ distribution law. Let $\psi(Y_1, \dots, Y_n)$ designate a midpoint statistic for a system of confidence interwals for $\mu + f(\sigma)$, of width 2δ . We show that for every ψ ,

(1)
$$\inf_{\mu,\sigma} P_{\mu,\sigma} \{ | \psi(Y_1, \dots, Y_n) - \mu - f(\sigma) | < \delta \} = 0$$

Indeed, for a given value of σ , the minimax mid-point statistic for fixed width interval estimator of $\mu + f(\sigma)$ is $\bar{Y}_n + f(\sigma)$, where $\bar{Y}_n = n^{-1} \sum_{i=1}^n Y_i$ (see J. Wolfowitz [1]). Hence,

$$\inf_{\mu,\sigma} P_{\mu,\sigma}\{|\psi(Y_1, \dots, Y_n) - \mu - f(\sigma)| < \delta\}$$

$$\leq \lim_{\sigma \to \infty} \sup_{\psi} \inf_{\mu} P_{\mu,\sigma}\{|\psi(Y_1, \dots, Y_n) - \mu - f(\sigma)| < \delta\}$$

$$= \lim_{\sigma \to \infty} P\{|U| < \delta(n)^{\frac{1}{2}}/\sigma\} = 0,$$

where U is a random variable having a $\mathfrak{N}(0,1)$ distribution law.

Acknowledgment. The author wishes to acknowledge Professor C. M. Stein of Stanford University and Professor R. A. Wijsman of the University of Illinois for their helpful comments and advice.

REFERENCES

- [1] Wolfowitz, J. (1950). Minimax estimates of the mean of a normal distribution with known variance. Ann. Math. Statist. 21 218-230.
- [2] ZACKS, S. (1966). Sequential estimation of the mean of a log-normal distribution having a prescribed proportional closeness. Ann. Math. Statist. 37 (December issue, No. 6).

Received 14 September 1966; revised 5 December 1966.