A NOTE ON THE BIRKHOFF ERGODIC THEOREM

By D. G. Austin

Northwestern University

We prove the maximal and pointwise ergodic theorem by a method that postpones measure-theoretic concepts to the last. The proof leans heavily on existing proofs (see F. Riesz [3], Kolmogorov [2], Yosida and Kakutani [4] and Gnedenko [1]) but it is simpler and the combinatorial part of the proof has been completely separated from the rather transparent measure-theoretic part.

Let Ω be a set of points, T an invertible transformation from Ω onto itself and $x_0(w)$ any real valued function on Ω . Define $x_i(w) = x_0(T^i(w))$ and $y_{ij} = (x_i + \cdots + x_j)/j - i + 1$; $y_j = y_{0j}$; fix a constant c and consider the sets $E_j = [w: y_k(w) < c, k < j; y_j(w) \ge c]$ and $G_j = \bigcup_{k=0}^j E_k$ (so that $w \in E_j$ means that the first time the averages $y_k(w)$ reach or exceed c occurs at time k = j and w in G_j means that the averages have reached or exceeded c by time j).

LEMMA 1. The set G_j decomposes into disjoint sets H_{pn} , $p = 0, \dots, n$; $n = 0, \dots, j$, where $y_n \ge c$ on H_{0n} and $TH_{pn} = H_{p+1.n}$.

PROOF. Let $H_{0j} = E_j$ and $H_{pj} = T^p H_{0j}$, $p = 0, \dots, j$; then the $\{H_{pj}\}$ are disjoint, since if $j \geq p > q \geq 0$ then $y_{-q,-p+j} \geq c$ on the set H_{pj} while this inequality cannot hold on H_{qj} . Let $H_{0,j-1} = E_{j-1} - \bigcup_{p=0}^{j} H_{pj}$ and $H_{p,j-1} = T^p H_{0,j-1}$; $p = 0, \dots, j-1$; the $\{H_{p,j-1}\}$ are disjoint from each other as before. If $0 \leq q and <math>w \in H_{qj}$ then $y_{-q,-p+j-1} < c$ while $w \in H_{p,j-1}$ implies $y_{-q,-p+j-1} \geq c$ so that $H_{p,j-1} \cap H_{qj} = \emptyset$, on the other hand if $q \geq p$ then $T^{-p}[H_{p,j-1} \cap H_{qj}] = H_{0,j-1} \cap H_{q-p,j} = \emptyset$, thus $H_{p,j-1}$ is disjoint from the aggregate $\{H_{q,j}\}$. The lemma follows by a finite induction.

Now assume that we have a (not necessarily σ -finite) measure space $(\mu, \mathfrak{F}, \Omega)$: Theorem 1. If x_0 is in L_1 and T is also bimeasurable and measure-preserving then

(1)
$$\int_{G_j} x_0 \ge c\mu G_j \quad (maximal \ ergodic \ theorem),$$

(2)
$$\lim_{n} y_{n} \text{ exists a.e. } [\mu] \text{ and is integrable.}$$

Proof. To see (1) we note that $\mu G_j = \sum_{n=0}^j (n+1) \mu H_{0n}$ hence

$$\int_{G_j} x_0 = \sum_{n=0}^j \sum_{p=0}^n \int_{H_{pn}} x_0 = \sum_n \int_{H_{0n}} (x_0 + \cdots + x_n)$$

$$= \sum_n (n+1) \int_{H_{0n}} y_n \ge c\mu G_j.$$

To prove (2) we observe that if w is in $E = [w; \limsup y_n \ge c + \epsilon, \liminf y_n \le c]$ then TW is also in E hence we may apply (1), and its obvious counterpart with \limsup 's replaced by \liminf 's, to the space $(\mu, \mathfrak{F} \cap E, E)$ to conclude

$$c\mu E \geq \int_E x_0 \geq (c + \epsilon)\mu E.$$

Received 6 November 1964; revised 16 February 1966.

Thus $\mu E = 0$ and $\lim y_n$ exists a.e.; integrability of $\lim y_n$ follows from uniform integrability of the x_i 's.

REFERENCES

- [1] GNEDENKO, B. (1962). The Theory of Probability. Chelsea, New York.
- [2] Kolmogorov, A. (1937). Ein vereinfachter Beweis der Birkhoff-Khintchinschen Ergodensatzen. Recuel Math. 44 366-368.
- [3] Riesz, F. (1945). Sur la theorie ergodique. Commentarii Math. Helv. 17 221-259.
- [4] YOSIDA, K. and KAKUTANI, S. (1939). Birkhoff's ergodic theorem and the maximal ergodic theorem. Proc. Imp. Acad. Tokyo 15 165-168.