SOME RESULTS RELATING MOMENT GENERATING FUNCTIONS AND
CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS

By D. L. Hanson

Unaversity of Missours

1. Introduction and summary. Let Xy for N = 1, 2, --- be an independent
sequence of random variables with finite first absolute moments; let
ay = {aN,k:k= 1,2, } for N = 1,2, ;Iet Ay = 1/NZ]€’=1 (X/., —EXk),
and let Sy = D _ra axvx(Xs — EX3). Early work in probability dealt with the
convergence (almost everywhere and in probability) to zero of the sequence Ay .
More recent work has dealt with the convergence to zero of sequences of the
form Sy under various assumptions on the coefficients ay , and the distributions
of the Xy’s. In most cases the assumptions made about the Xx’s have been not
much stronger or weaker than the assumption of a finite upper bound on their
vth absolute moments for some v = 1.

The classical result giving exponential convergence rates in the law of large
numbers was established by Cramér [6] (see also [4]) and states that if the X’s
are identically distributed, and if their common moment generating function is
finite in some interval about the origin, then for each ¢ > 0 thereexists 0 < p < 1
such that P{|Ay| = ¢ = 2o". Baum, Katz, and Read [3] investigated this ex-
ponential convergence further. However, their investigation was restricted to
sequences of the form Ay . Koopmans [17] dealt with averages of the form
1/N X om, > wa;Xij. In[11] the exponential rate was obtained for sequences
Sy provided D lavs| £ M < « for all N and maxy |axi| < O(1/N). A cor-
responding result was obtained for continuous time stochastic processes in[12].
More recently Chow [5, Section 2] obtained similar results under stronger as-
sumptions on the moment generating functions involved. The results obtained
here generalize and unify the results of [11], [12], and [5, Section 2].

The results are stated in Section 2 and proved in Section 3. Corollaries and
details of the relationships between these results and previous results are con-
tained in Section 4.

2. Statement of the main results. Let a = {a; : k = 0, &1, - - -} be a sequence
of real numbers. Let p and ¢ be numbers in [1, «] satisfying 1/p + 1/¢ = 1.
Define |[af.. = sups {|ax|} and for p & [1, » ) define |[a]l, = [D_ |as|"]"%.

TueoreM A. Let { X, :k = 0, =1, - - -} be a sequence of independent real valued
random variables with finate first absolute moments. Suppose
(1) there exist positive constants M, v, and 1 < p £ 2 suchthat for0 < z <

andk =0, £1, .-

P{|X, — EX)| = 2} < [s Me7"" dt.
" Received 10 August 1966.
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GENERATING FUNCTIONS AND CONVERGENCE RATES 743

Assume ||al|z and ||a||, are finite. Then
T = lima,s o bote le::a an( Xy — EX})

exists as an almost sure limit, and there exist positive constants Cy and C: depending
only on M, v, and p such that for every ¢ > 0
(2) P{T z ¢ = exp (—min {Ci(¢/]|all2)’, Ca(¢/l|alls)})

Now suppose u is a measure on the real line. If f is a real valued function onthe
real line we define ||f]| = inf [\ £ [0, «]| u{z:|f(z)| > A} = 0land forp £ [1, =)
we define ||f]l, = [f |f|* du]'’?. We use the notation u(a, b] = p{z|a < z < b}.

TurEOREM B. Let {X,: —0 < t < =} be a real-valued stochastic process with
independent increments. Suppose u is a measure on the real line such that for all

—o < 8§ £t < o either
(3a) p = 1 and there exists T > 0 such that for all I)\I =T

Eexp (N(X, — X,) — E(X, — X,)]} £ exp {N'u(s, ]}

or else
(3b) 1< p £ 2and for all values of N

Eexp (N(X, — X,) — B(X, — X))} £ exp {(N* + NDu(s, ]}

(4) Assumethat ||f]|: < = and ||f]|q < «© and that for every n > 0 there exists a
stmple function h = D, Cixa, such that ||f — hllz < nand ||f — hllq < 7
where the A ’s are disjoint intervals of the form (a, b]. x4, ts the set charac-
teristic function of the set A ; and the sum is finite.

Then there exist positive numbers Cy and Cy depending only on p and T such that

[ f(t) dIX: — EX.] is well defined as a limit-in-the-mean of order 2, and for every

e>0

(5) P{Jf(t) dIX, — EX{] Z ¢ < exp [—min {Ci(¢/|[f]]2)’, Co(e/||f]l)"}].

3. Proofs of Theorems A and B

Lemma 1. | — 1 — b] £ b%"

Lemma 2. If 1 < p £ 2M>O'y>0E’X—OandP|X| x} =
f°° M dt for 0 < & < o, then there exists a constant C > 0 such that for all

values of t

EetX < ec(zLHth).
Proor.
Ee™ = [2,¢%dP =1+ [2, (e — 1 — tX) dP
1482 X% dP < 1 + & [7 MaPe' "¢ ™™ du
1 4+ ME{supoge<e [exp [t & — va*/2]}} [T @ exp [—va*/2] dx
1+ Mefexp [l X (1/q) X (2/pn)"" ) [T 2" exp [—v2"/2] do
=1+ M*M",

A 1IA
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744 D. L. HANSON

where \ and M * are positive constants depending on M,p,andy.Let C = M A
and obtain

Ee™ < (1 + M*®)M" < exp [M* + M) = exp @ + 149

Lemva 3. If M > 0,y > 0, EX = 0, and P{|X| 2 2} = {2 Me™" dt for
0 < z < o, then there exist positive constants C and 7 such that for |¢| < T we have
Ee'™ < .

Proor.
Ee* =14 [Z,(e™ — 1 —tX)dP
14 [, X% ™ dP < 1 + M [T 2'eVe ™ da
1+ ME/(y — ) [e a6 de = 1 + 2ME(L/ (v — [t))’
for || < v. Let 7 = v/2 and € = 16M/y". Then for it <,
Be™ < 1+ 2ME(2/v)" = 1 + Cf < .

ReMARE. Lemmas 2 and 3 show that from the exponential behavior of the
tails of a distribution one can deduce a certain type of bound on the associated
moment generating function. The converse is also true. If Ee™ = ¢ for
lt| £ 7, then for [f < rand z > 0,

P{X2 1) =P{X —22 0} < B!™ " g6 =

IIA

Il

e-—t(z—ct) .

Thus

1 ifzx é 2Cr Ccr2y —rzl2
P{X g x} é {6—13:/2 if 207_ é x}é [1 + e ]6 .

The same bound holds on P{—X = x} so
P{X|za = [7+(1 + e )e ™ ds
which is of the proper form. Similarly, if 1 < p < 2and
Ee™ < exp {C(& + |t1)},
then for allt = 0

P{|X| = 2} £ 2exp[—tz+ c(f + 9]
< 2exp[—i(z — C — 20t ™))
<2 0=z

< 2exp [—t(x/2 — 20¢™)], 20 £ .
Minimizing with respect to ¢ gives
P{|X| z 2} = 2, 0<w
< 2 exp [—1/2p(1/4Cq)"“Pa?] = 267,  2C £ x.
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For ¢t = 0 we have MPe™® < 1 o that for z = max {2C, (2/N\)"?} we have
P{X| =z 2 267
J2 1 (2p/01N"e ] dt
< [22p(N/2)"7e7 7 dt.
If we let § = max {2C, (2/N\)"?} and
M = max {2p(\/2)"?, 2[[7 exp (—N/2) df] 7},
then

I\

P{|X|za} <M [7e™adt

for 0 < x < . The last expression is of the desired form. These relations be-
tween the form of the moment generating function of X and the tails of the
distribution of X have been observed before when p = 1 and [14; p — 75, prop-
erty 4] when p = 2.

Lemma 4. Under the conditions of theorem A,

(a) T exists as an almost sure limat

(b) if 1 < p £ 2, then ¢(t) = liMas—wo pre 1. E
values of t and Be'" = 0

(c) if p = 1 and E exp [t(X, — EX))] £ ¢ for |t| < 7/||al|» and for all values
of k, then ¢() = liMas_u poce | 1w B exp [ast( X — EXy)] exists for |¢| < 7, and
Ee'™ = ¢(t) for |t] < 7.

ProoF. The method of proof is essentially the same as that used in the lemma
of Section 2 of [11]. The reader should refer to [11] for more details. Using Lemma
2 we see that

H(X .
B! E=EXD onists for all

E exp [t(X, — EX3)] < exp [C(& + 9]

foralltif1 < p < 2.Leto = {2z =t + 4s:|t| <N} whereAis arbitraryif 1 < p < 2
and\ = 7/||a]|. if p = 1. We see that the functions [ [3—s E exp [axz(X; — EXk)]

(i) are analytic in ¢

(ii) are uniformly bounded in o, by exp [C(la||2\* + [la||AN)]if 1 < p £ 2,
and by exp [C||a||sN"] if p = 1 and

(iii) |Hk_.,E exp [awz(Xx — EXi)] — [Ii——~ E exp [awz(Xi — EXy)]| for
real z € o, g < —N, N £ b is bounded by exp [C(]|a]|\* + ||al|?A)][exp {CN-
D okisy @ + O\ me lax|?} — 1] for 1 < p £ 2, and is bounded by

exp [C]al[3N]lexp {ON’ 2o jusw @’} — 1]

forp = 1.

Thus {]]}=c E exp [akz(X » — EX})]} is Cauchy for real z and has some limit,
say ¢(z) By Vitali’s theorem [20, p. 168], the limit ¢(2) exists for all z £ ¢ and
¢ is analytic in . By the equivalence theorem and its Corollary 1 on page 251
of [18] it follows that T exists as an almost sure limit and that ¢(és) is its charac-
teristic function. Because N was arbitrary when 1 < p £ 2, we have shown that
the limit ¢(¢) exists for all real t when 1 < p = 2, and for all real ¢ satisfying
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|t| < 7/|lallo when p = 1. It remains to show that ¢(t) = Ee'” for these values
of ¢; this can be done by comparing coefficients in the expansions of ¢(4s) and

o(3).
Proor or THEOREM A. Putting together Lemmas 2, 3, and 4, we see that the

limit 7' exists almost everywhere and has moment generating function ¢(t)
bounded, when p = 1 by exp {C||a||3} for all |t| < 7/||all» , and when1 < p < 2
by exp {C[l|al|3® + [|a||%¢|4]} for all ¢. For ¢ = 0 we have

P{T 2 ¢ = P{T — e = 0} < Ee" " = ¢7¢(4).
If p = 1, we get for [t| < 7/||a«
P{T = ¢ = ¢ “ exp [C|a|3"].
We see that this last expression is minimized when ¢t = ¢/2C|a||;. Letting
to = min {¢/2C||al|3, 7/||a]|~} we get when p = 1
P{T z ¢ = exp [—to(e — Clalf3t)] < ¢ "
= exp (—¢/2 min {¢/2C]jall3, /| all})
= exp (—min {Ci(¢/[lall2)’, Ca(e/|[a]l=)"}).
If 1 < p £ 2, we have for all non-negative values of ¢
P{T z ¢ < ¢ exp [C(Jla]t" + |lal|3t")]
= exp {—t[(¢/2 — Cllall3) + (¢/2 — Cllalit®™)]}.
Let {0 = min {¢/4C| a5 , [¢/4C|a]d"“™}. Then
PIT 2 ¢ < ¢ @20
exp (—(¢/2) min {e/4C(1/lal3), (¢/4C)"V(1/||al|?)})
exp [—min {Ci(e¢/[lall2)’, Ca(e/|lal)"}].

Note that C and = depended only on M, v, and p so the same is true for C;

and C, .
Proor or THEOREM B. For notational convenience we assume that

EX,—X,)=0
for all —» < s £t < o, i.e. that the mean of the process has already been
subtracted off.

Letf, = Y Cn,ixn,s be a sequence of simple functions such that ||f, — f ||z — 0
and ||f» — flle = 0. Here xa,; is the set characteristic function of A, ; =
(@n,i-1, Gn,;] Where —0 < v0 < Gppa < Gnpp < Guprn < -+ = 0. We
see that C, ; is the value of f, on A, ; and note that all but a finite number of
C.,; can be taken equal to zero for each n. (We can always approximate f by
simple functions f, such that ||f, — fll: — 0 and ||f» — f]l — 0. It takes more
(more even than u o-finite) to assure that the sets involved in the definition of
the f.’s can be taken to be of the form (a, b]. It is sufficient for the latter part

Il

Il
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of assumption (4) to assume that either f is continuous or to assume that
(—w, o) = D I, where each I is of the form (a, b] and has finite measure.
The problem of the existence of approximating simple functions of this special
form was overlooked in [12].)

For each n we form the stochastic integral

Vo= [falt) dX: = D2 CuilXan; — Xapi -

(See [7; pages 426-428] for a reference on stochastic integrals.) Fix n and m
and suppose the partitions of the real line used in the definitions of f, and f.
have been merged so that @,,; = am,; for all <. Then by the assumption of in-
dependent increments

B(Ya = V)" = 2 (Cai = Oni)"BlXa,; — Xopi I
Note that ’
2 + NE(Xa,; — Xap )" < Eexp M Xe,; — Xopi_y)]
+ E exp [—N(Xa,; — Xo,,_1)]
2 exp {(\" + NDu(@n,ia, and}, 1 <p

< 2exp (Nu(@n,i1,and} for N ST, p=1

An,

I\
IIA
»

In either case, if u(@n,i-1, @n,;] < o, then for sufficiently small values of N we
have

2 + NE(Xap; — Xapi_1)' S 2{1 + 3Nu(n,i1 , @n,il}
so that
E(X

An,i

— Xopii)' < 3u(@ayicty Gndl

This last inequality clearly holds when u(@s,i-1, @, = . Thus
E(Y, — Y2)' £ 82 :(Cnyi — Cni)’u(@n,ica 5 @nd]

3|lfa — Full3 -

However [[fa — fulls < [Ifa — flls & [If = fullaf’ = 0asn, m — © so that {Va)
is a cauchy sequence in L, . This implies that its L, limit f f(t) dX, exists and
that E[f f(t) dX, — Y, — 0, so that for every real number e

I

P{Sf(t) dX: = € < limpw i SUPpaw P{Ys = € — 1/m)}.
For\ = 0,¢ > 0, and m > 1/¢, we have
P{Y, 2= ¢ — 1/m} < exp [—N(e — 1/m)]Ee'""
= exp [-Me — 1/m)IJI. E exp M\CoilXa,; — Xopiill.

When p = 1 we may assume that |C,,i| = ||f]|~ for allz and z. Then forX £ T/||f]«
we have
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P{Y, 2 e— 1/m} < exp [N — 1/m)] exp N'D_; Ch n{An,i}]
= exp [—N(e — 1/m)] exp [N||ful[3].
This is minimized when X = (e — 1/m)/2||fa|2 . If we set
Mo = min {T/[flle , (e= 1/m)/2||fall3}

we get

P{Y, = e — 1/m} < exp [—No(e — 1/m)/2]
. exp [(—(me — 1)/2m) min {T/||f]l , (me — 1)/2m|fu]|2}].
Taking “limu., lim sup,..” of the above expression gives

P{(Jf(t)dX, = ¢ = exp [—min {3(¢/Ifll2)% T/2(e/lfll«)"}]-
When 1 < p £ 2 we obtain for all X = 0,
P{Y, = e— 1/m}

< exp [-M(e — 1/m)] exp [N D_sCni 4+ N2 i |Coi|UnfAn, ]
exp [—N(e — 1/m) + (N'[[fullz 4+ Nlfall$)]
exp { —M[((me — 1)/2m — N|full2) + ((me — 1)/2m — N7|f|D]}.
If we set Ao = min {(me — 1)/4m||fa]l5, ((me — 1)/4m|f.]|9)" 9™}, then

P{Y, = ¢ — 1/m} = exp [—No(me — 1)/2m]
= exp [~min {§((me — 1)/m|fal2)?, 2(3)"((me — 1)/m|fallo)”]-

Again, taking “limy,.. lim sup,..’’ in the above expression gives

P{[f()dX, =z ¢ = exp [—min {F(¢/[fll2)*, 2(3)*(¢/Ifll)"]-

4. Corollaries and relationships between these theorems and previous results.
Hypothesis (3) of Theorem B could have been given in terms of upper bounds
on the probabilities in the tails of the distributions of the stochastic increments
(X; — X,) — E(X: — X,) to obtain a condition similar to hypothesis (1) of
Theorem A. However, doing so would tend to obscure the nature of the theorem.

Inequality (2) of Theorem A can be obtained from Theorem B via Lemmas
1 and 2 if one defines the process {X,*: —w < ¢t < »} by

Xt* = ZOékéth - Zt<k<0Xk

and sets u(a, b] equal to a constant times the number of integers in the interval
(a, b]. A generalization of Theorem A can, in fact, be obtained from Theorem
B. The constants obtained in Lemmas 2 and 3 depend on M, v, and p from
hypothesis (1) of Theorem A. If M and v were allowed to vary with & when
1 < p £ 2 (allow only M to vary when p = 1), then these constants would de-
pend on k. Then we let u{k} take this value, say di , and change our definition
of [|al|, to [lall, = [D_ lax|” di]'? for 1 < p < » and to |||« = sup {|ax| : dw > 0}
forp = .

Il

Il
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Since ||all; = [lalli]lall», we see that Theorem 1 of [11], which states that
P{T = ¢} £ exp {—C/||al|«} when ||a|: is bounded and the X}’s satisfy a con-
dition equivalent to condition (1) with p = 1, is a corollary to our Theorem A.
Theorem A is actually more general than Theorem 1 of [11] since ||a||; need not
be finite to use Theorem A.

Let {Xx : %k = 0, =1, ---} be a sequence of independent random variables;
let a™ = {@ni:k =0, %1, --+} forn = 1,2, --- be a sequence of sequences
of real numbers; and define T, = D n x(Xi — EX;:). We obtain the following
corollaries to Theorem A.

CoroLLARY 1. If the sequence {Xi} satisfies condition (1) of Theorem A, if
1 < p = 2,4 |[a™]|2 and ||a™||, are finite for all n, and if the sums

n-exp (—t/[a®™|f) and 25 exp (—¢/[la”|F)

are finite for every t > 0, then T, exists as an a.e. limat for each n and for every
e> 0,

DIPT. 2 d< »

80 that lim, . T, = 0 a.e.
CoroLLARY 2. If { X} satisfies condition (1) of Theorem A, if 1 < p
if @™z and ||a™ ||, are finite for all n, if either

[a™]|3 = o(1/logn) and [a™|? = o(1/log n)

IIA

2,

or if the sums
maexp (—t/[[a®(3) and o exp (—t/]a™][?)

are finite for every t > 0, and if C,, = >k 0n B X, converges for each n and C,—C,
then Tw* = Dk 01Xy exists as an a.e. limit for each n and lim, .o T * = Cae.
These are extensions of Theorems 1 and 2 of [5]. Their proofs are Very simple
applications of Theorem A and are essentially the same as the proofs given by
Chow in [5].

Note that one can not gain anything using these methods by assuming that
p > 2, or even by assuming that the X’s are uniformly bounded. The bound
provided when p = 2 seems to be very closely related to the workings of the
central limit theorem.
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