SOME RESULTS RELATING MOMENT GENERATING FUNCTIONS AND CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS

By D. L. Hanson¹

University of Missouri

1. Introduction and summary. Let X_N for $N=1, 2, \cdots$ be an independent sequence of random variables with finite first absolute moments; let $a_N = \{a_{N,k} : k=1, 2, \cdots\}$ for $N=1, 2, \cdots$; let $A_N = 1/N \sum_{k=1}^N (X_k - EX_k)$; and let $S_N = \sum_{k=1}^\infty a_{N,k} (X_k - EX_k)$. Early work in probability dealt with the convergence (almost everywhere and in probability) to zero of the sequence A_N . More recent work has dealt with the convergence to zero of sequences of the form S_N under various assumptions on the coefficients $a_{N,k}$ and the distributions of the X_N 's. In most cases the assumptions made about the X_N 's have been not much stronger or weaker than the assumption of a finite upper bound on their γ th absolute moments for some $\gamma \geq 1$.

The classical result giving exponential convergence rates in the law of large numbers was established by Cramér [6] (see also [4]) and states that if the X_N 's are identically distributed, and if their common moment generating function is finite in some interval about the origin, then for each $\epsilon > 0$ there exists $0 \le \rho < 1$ such that $P\{|A_N| \ge \epsilon\} \le 2\rho^N$. Baum, Katz, and Read [3] investigated this exponential convergence further. However, their investigation was restricted to sequences of the form A_N . Koopmans [17] dealt with averages of the form $1/N \sum_{k=1}^N \sum_{j=-\infty}^\infty a_j X_{k-j}$. In [11] the exponential rate was obtained for sequences S_N provided $\sum_k |a_{N,k}| \le M < \infty$ for all N and $\max_k |a_{N,k}| \le O(1/N)$. A corresponding result was obtained for continuous time stochastic processes in [12]. More recently Chow [5, Section 2] obtained similar results under stronger assumptions on the moment generating functions involved. The results obtained here generalize and unify the results of [11], [12], and [5, Section 2].

The results are stated in Section 2 and proved in Section 3. Corollaries and details of the relationships between these results and previous results are contained in Section 4.

2. Statement of the main results. Let $a = \{a_k : k = 0, \pm 1, \cdots\}$ be a sequence of real numbers. Let p and q be numbers in $[1, \infty]$ satisfying 1/p + 1/q = 1. Define $||a||_{\infty} = \sup_{k} \{|a_k|\}$ and for $p \in [1, \infty)$ define $||a||_{p} = [\sum_{k} |a_k|^p]^{1/p}$.

THEOREM A. Let $\{X_k : k = 0, \pm 1, \cdots\}$ be a sequence of independent real valued random variables with finite first absolute moments. Suppose

(1) there exist positive constants M, γ , and $1 \le p \le 2$ such that for $0 < x < \infty$ and $k = 0, \pm 1, \cdots$

$$P\{|X_k - EX_k| \ge x\} \le \int_x^\infty M e^{-\gamma t^p} dt.$$

Received 10 August 1966.

¹ Research partially supported by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. AF-AFOSR-746-65.

Assume $||a||_2$ and $||a||_q$ are finite. Then

$$T = \lim_{a \to -\infty, b \to +\infty} \sum_{k=a}^{b} a_k (X_k - EX_k)$$

exists as an almost sure limit, and there exist positive constants C_1 and C_2 depending only on M, γ , and p such that for every $\epsilon > 0$

(2)
$$P\{T \ge \epsilon\} \le \exp\left(-\min\left\{C_1(\epsilon/\|a\|_2)^2, C_2(\epsilon/\|a\|_q)\right\}\right).$$

Now suppose μ is a measure on the real line. If f is a real valued function on the real line we define $||f||_{\infty} = \inf [\lambda \varepsilon [0, \infty]] \mu\{x: |f(x)| > \lambda\} = 0$ and for $p \varepsilon [1, \infty)$ we define $||f||_{p} = [\int |f|^{p} d\mu]^{1/p}$. We use the notation $\mu(a, b) = \mu\{x \mid a < x \le b\}$.

Theorem B. Let $\{X_t : -\infty < t < \infty\}$ be a real-valued stochastic process with independent increments. Suppose μ is a measure on the real line such that for all $-\infty < s \le t < \infty$ either

(3a) p = 1 and there exists T > 0 such that for all $|\lambda| \le T$

$$E \exp \left\{ \lambda [(X_t - X_s) - E(X_t - X_s)] \right\} \le \exp \left\{ \lambda^2 \mu(s, t] \right\}$$

or else

(3b) $1 and for all values of <math>\lambda$

$$E \exp \{\lambda[(X_t - X_s) - E(X_t - X_s)]\} \le \exp \{(\lambda^2 + |\lambda|^q)\mu(s, t]\}.$$

(4) Assume that $||f||_2 < \infty$ and $||f||_q < \infty$ and that for every $\eta > 0$ there exists a simple function $h = \sum C_i \chi_{A_i}$ such that $||f - h||_2 < \eta$ and $||f - h||_q < \eta$ where the A_i 's are disjoint intervals of the form (a, b]. χ_{A_i} is the set characteristic function of the set A_i and the sum is finite.

Then there exist positive numbers C_1 and C_2 depending only on p and T such that $\int f(t) d[X_t - EX_t]$ is well defined as a limit-in-the-mean of order 2, and for every $\epsilon > 0$

(5)
$$P\{\int f(t) d[X_t - EX_t] \ge \epsilon\} \le \exp\left[-\min\left\{C_1(\epsilon/\|f\|_2)^2, C_2(\epsilon/\|f\|_q)^p\right\}\right].$$

3. Proofs of Theorems A and B.

Lemma 1. $|e^b - 1 - b| \le b^2 e^{|b|}$.

LEMMA 2. If 1 , <math>M > 0, $\gamma > 0$, EX = 0, and $P\{|X| \ge x\} \le \int_x^{\infty} Me^{-\gamma t^p} dt$ for $0 < x < \infty$, then there exists a constant C > 0 such that for all values of t

$$Ee^{tX} \leq e^{C(t^2+|t|q)}.$$

PROOF.

$$\begin{split} Ee^{tX} &= \int_{-\infty}^{\infty} e^{tX} \, dP = 1 + \int_{-\infty}^{\infty} \left(e^{tX} - 1 - tX \right) \, dP \\ & \leq 1 + t^2 \int_{-\infty}^{\infty} X^2 e^{|tX|} \, dP \leq 1 + t^2 \int_{0}^{\infty} M x^2 e^{|t|x} e^{-\gamma x^p} \, dx \\ & \leq 1 + M t^2 \{ \sup_{0 \leq x < \infty} \left[\exp\left[|t| \, x - \gamma x^p / 2 \right] \right] \} \int_{0}^{\infty} x^2 \exp\left[-\gamma x^p / 2 \right] \, dx \\ & = 1 + M t^2 \{ \exp\left[|t|^q \times (1/q) \times (2/p\gamma)^{1/(p-1)} \right] \} \int_{0}^{\infty} x^2 \exp\left[-\gamma x^p / 2 \right] \, dx \\ & = 1 + M^* t^2 e^{\lambda |t|^q}, \end{split}$$

where λ and M^* are positive constants depending on M, p, and γ . Let $C = M^* + \lambda$ and obtain

$$Ee^{tx} \le (1 + M^*t^2)e^{\lambda|t|^q} \le \exp[M^*t^2 + \lambda|t|^q] \le \exp[C(t^2 + |t|^q)].$$

LEMMA 3. If M > 0, $\gamma > 0$, EX = 0, and $P\{|X| \ge x\} \le \int_x^{\infty} Me^{-\gamma t} dt$ for $0 < x < \infty$, then there exist positive constants C and τ such that for $|t| < \tau$ we have $Ee^{tX} \le e^{Ct^2}$.

PROOF.

$$\begin{split} Ee^{t\mathbf{X}} &= 1 + \int_{-\infty}^{\infty} \left(e^{t\mathbf{X}} - 1 - t\mathbf{X} \right) dP \\ &\leq 1 + \int_{-\infty}^{\infty} t^2 \mathbf{X}^2 e^{|t\mathbf{X}|} dP \leq 1 + Mt^2 \int_{0}^{\infty} x^2 e^{|t|x} e^{-\gamma x} dx \\ &= 1 + Mt^2 (1/(\gamma - |t|))^3 \int_{0}^{\infty} x^2 e^{-x} dx = 1 + 2Mt^2 (1/(\gamma - |t|))^3 \end{split}$$

for $|t| < \gamma$. Let $\tau = \gamma/2$ and $C = 16M/\gamma^3$. Then for $|t| \le \tau$,

$$Ee^{tx} \le 1 + 2Mt^2(2/\gamma)^3 = 1 + Ct^2 \le e^{Ct^2}.$$

Remark. Lemmas 2 and 3 show that from the exponential behavior of the tails of a distribution one can deduce a certain type of bound on the associated moment generating function. The converse is also true. If $Ee^{tx} \leq e^{ct^2}$ for $|t| \leq \tau$, then for $|t| \leq \tau$ and x > 0,

$$P\{X \ge x\} = P\{X - x \ge 0\} \le Ee^{t(X - x)} \le e^{-tx + Ct^2} = e^{-t(x - Ct)}.$$

Thus

$$P\{X \, \geqq \, x\} \, \leqq \left\{ \begin{matrix} 1 \quad \text{if} \ x \, \leqq \, 2C\tau \\ e^{-\tau x/2} \quad \text{if} \ 2C\tau \, \leqq \, x \end{matrix} \right\} \leqq \, [1 \, + \, \mathrm{e}^{c\tau^2}]e^{-\tau x/2}.$$

The same bound holds on $P\{-X \ge x\}$ so

$$P\{|X| \ge x\} \le \int_x^\infty \tau (1 + e^{C\tau^2}) e^{-\tau s/2} ds$$

which is of the proper form. Similarly, if 1 and

$$Ee^{tX} \le \exp \left\{ C(t^2 + |t|^q) \right\},\,$$

then for all $t \ge 0$

$$\begin{split} P\{|X| \ge x\} & \le 2 \exp\left[-tx + C(t^2 + t^q)\right] \\ & \le 2 \exp\left[-t(x - C - 2Ct^{q-1})\right] \\ & \le 2, & 0 \le x \\ & \le 2 \exp\left[-t(x/2 - 2Ct^{q-1})\right], & 2C \le x. \end{split}$$

Minimizing with respect to t gives

$$\begin{split} P\{|X| \, & \ge \, x\} \, \le \, 2, & 0 \, \le \, x \\ & \le \, 2 \, \exp \, \left[-1/2 p (1/4 C q)^{1/(q-1)} x^p \right] \, = \, 2 e^{-\lambda x^p}, & 2C \, \le \, x. \end{split}$$

For $t \ge 0$ we have $\lambda t^p e^{-(\lambda/2)t^p} \le 1$ so that for $x \ge \max\{2C, (2/\lambda)^{1/p}\}$ we have

$$\begin{split} P\{|X| \geq x\} &\leq 2e^{-\lambda x^p} \\ &= \int_x^\infty \left[e^{-\lambda t^{p/2}} (2p/t) \right] [\lambda t^p e^{-\lambda t^{p/2}}] \, dt \\ &\leq \int_x^\infty 2p (\lambda/2)^{1/p} e^{-\lambda t^{p/2}} \, dt. \end{split}$$

If we let $\delta = \max \{2C, (2/\lambda)^{1/p}\}$ and

$$M = \max \{2p(\lambda/2)^{1/p}, 2[\int_{\delta}^{\infty} \exp(-\lambda t^{p}/2) dt]^{-1}\},$$

then

$$P\{|X| \ge x\} \le M \int_x^{\infty} e^{-\lambda t^{p/2}} dt$$

for $0 < x < \infty$. The last expression is of the desired form. These relations between the form of the moment generating function of X and the tails of the distribution of X have been observed before when p = 1 and [14; p - 75, property 4] when p = 2.

LEMMA 4. Under the conditions of theorem A,

- (a) T exists as an almost sure limit
- (b) if $1 , then <math>\phi(t) = \lim_{a \to -\infty, b \to \infty} \prod_{k=a}^b Ee^{a_k t(X_k EX_k)}$ exists for all values of t and $Ee^{tT} = \phi(t)$
- (c) if p = 1 and $E \exp\left[t(X_k EX_k)\right] \le e^{ct^2}$ for $|t| < \tau/\|a\|_{\infty}$ and for all values of k, then $\phi(t) = \lim_{a \to -\infty, b \to \infty} \prod_{k=a}^b E \exp\left[a_k t(X_k EX_k)\right]$ exists for $|t| < \tau$, and $Ee^{tT} = \phi(t)$ for $|t| < \tau$.

PROOF. The method of proof is essentially the same as that used in the lemma of Section 2 of [11]. The reader should refer to [11] for more details. Using Lemma 2 we see that

$$E \exp \left[t(X_k - EX_k)\right] \le \exp \left[C(t^2 + |t|^q)\right]$$

for all t if $1 . Let <math>\sigma = \{z = t + is : |t| < \lambda\}$ where λ is arbitrary if $1 and <math>\lambda = \tau/\|a\|_{\infty}$ if p = 1. We see that the functions $\prod_{k=a}^{b} E \exp\left[a_k z(X_k - EX_k)\right]$

- (i) are analytic in σ
- (ii) are uniformly bounded in σ , by exp $[C(\|a\|_2^2\lambda^2 + \|a\|_4^4\lambda^q)]$ if $1 , and by exp <math>[C\|a\|_2^2\lambda^2]$ if p = 1 and
- (iii) $|\prod_{k=a}^{b} E \exp [a_k z(X_k EX_k)] \prod_{k=-N}^{N} E \exp [a_k z(X_k EX_k)]|$ for real $z \in \sigma$, $a \leq -N$, $N \leq b$ is bounded by $\exp [C(\|a\|_2^2 \lambda^2 + \|a\|_q^q \lambda^q)][\exp \{C\lambda^2 \cdot \sum_{|k| > N} a_k^2 + C\lambda^q \sum_{|k| > N} |a_k|^q\} 1]$ for 1 , and is bounded by

$$\exp \left[C \|a\|_2^2 \lambda^2 \right] \left[\exp \left\{ C \lambda^2 \sum_{|k| > N} a_k^2 \right\} - 1 \right]$$

for p = 1.

Thus $\{\prod_{k=a}^b E \exp [a_k z(X_k - EX_k)]\}$ is Cauchy for real z and has some limit, say $\phi(z)$. By Vitali's theorem [20, p. 168], the limit $\phi(z)$ exists for all $z \in \sigma$ and ϕ is analytic in σ . By the equivalence theorem and its Corollary 1 on page 251 of [18] it follows that T exists as an almost sure limit and that $\phi(is)$ is its characteristic function. Because λ was arbitrary when $1 , we have shown that the limit <math>\phi(t)$ exists for all real t when 1 , and for all real <math>t satisfying

 $|t| < \tau/||a||_{\infty}$ when p = 1. It remains to show that $\phi(t) = Ee^{tT}$ for these values of t; this can be done by comparing coefficients in the expansions of $\phi(is)$ and $\phi(t)$.

PROOF OF THEOREM A. Putting together Lemmas 2, 3, and 4, we see that the limit T exists almost everywhere and has moment generating function $\phi(t)$ bounded, when p=1 by $\exp{\{C\|a\|_2^2t^2\}}$ for all $|t| \le \tau/\|a\|_{\infty}$, and when $1 by <math>\exp{\{C[\|a\|_2^2t^2 + \|a\|_q^q|t|^q]\}}$ for all t. For $t \ge 0$ we have

$$P\{T \ge \epsilon\} = P\{T - \epsilon \ge 0\} \le Ee^{(T-\epsilon)t} = e^{-\epsilon t}\phi(t).$$

If p = 1, we get for $|t| \le \tau/||a||_{\infty}$

$$P\{T \ge \epsilon\} \le e^{-\epsilon t} \exp\left[C\|a\|_2^2 t^2\right].$$

We see that this last expression is minimized when $t = \epsilon/2C||a||_2^2$. Letting $t_0 = \min \{\epsilon/2C||a||_2^2, \tau/||a||_{\infty}\}$ we get when p = 1

$$P\{T \ge \epsilon\} \le \exp\left[-t_0(\epsilon - C||a||_2^2 t_0)\right] \le e^{-(\epsilon/2) t_0}$$

$$= \exp\left(-\epsilon/2 \min\left\{\epsilon/2C||a||_2^2, \tau/||a||_{\infty}\right\}\right)$$

$$= \exp\left(-\min\left\{C_1(\epsilon/||a||_2)^2, C_2(\epsilon/||a||_{\infty})^1\right\}\right).$$

If 1 , we have for all non-negative values of t

$$P\{T \ge \epsilon\} \le e^{-\epsilon t} \exp \left[C(\|a\|_2^2 t^2 + \|a\|_q^2 t^q) \right]$$

$$= \exp \left\{ -t \left[(\epsilon/2 - C \|a\|_2^2 t) + (\epsilon/2 - C \|a\|_q^2 t^{q-1}) \right] \right\}.$$

Let $t_0 = \min \{\epsilon/4C \|a\|_2^2, [\epsilon/4C\|a\|_q^{q_1^{1/(q-1)}}\}$. Then

$$\begin{split} P\{T \ge \epsilon\} & \le e^{-(\epsilon/2)\,t_0} \\ & = \exp\left(-(\epsilon/2)\,\min\left\{\epsilon/4C(1/\|a\|_2^2),\,(\epsilon/4C)^{1/(q-1)}(1/\|a\|_q^p)\right\}\right) \\ & = \exp\left[-\min\left\{C_1(\epsilon/\|a\|_2)^2,\,C_2(\epsilon/\|a\|_q)^p\right\}\right]. \end{split}$$

Note that C and τ depended only on M, γ , and p so the same is true for C_1 and C_2 .

PROOF OF THEOREM B. For notational convenience we assume that

$$E(X_t - X_s) = 0$$

for all $-\infty < s \leqq t < \infty\,,$ i.e. that the mean of the process has already been subtracted off.

Let $f_n = \sum_i C_{n,i}\chi_{n,i}$ be a sequence of simple functions such that $||f_n - f||_2 \to 0$ and $||f_n - f||_q \to 0$. Here $\chi_{n,i}$ is the set characteristic function of $\Delta_{n,i} = (a_{n,i-1}, a_{n,i}]$ where $-\infty \le \cdots < a_{n,k-1} < a_{n,k} < a_{n,k+1} < \cdots \le \infty$. We see that $C_{n,i}$ is the value of f_n on $\Delta_{n,i}$ and note that all but a finite number of $C_{n,i}$ can be taken equal to zero for each n. (We can always approximate f by simple functions f_n such that $||f_n - f||_2 \to 0$ and $||f_n - f||_q \to 0$. It takes more (more even than μ σ -finite) to assure that the sets involved in the definition of the f_n 's can be taken to be of the form (a, b]. It is sufficient for the latter part

of assumption (4) to assume that either f is continuous or to assume that $(-\infty, \infty) = \sum I_i$ where each I_i is of the form (a, b] and has finite measure. The problem of the existence of approximating simple functions of this special form was overlooked in [12].)

For each n we form the stochastic integral

$$Y_n = \int f_n(t) dX_t = \sum_i C_{n,i} [X_{a_{n,i}} - X_{a_{n,i-1}}].$$

(See [7; pages 426-428] for a reference on stochastic integrals.) Fix n and m and suppose the partitions of the real line used in the definitions of f_n and f_m have been merged so that $a_{n,i} = a_{m,i}$ for all i. Then by the assumption of independent increments

$$E(Y_n - Y_m)^2 = \sum_i (C_{n,i} - C_{m,i})^2 E[X_{a_{n,i}} - X_{a_{n,i-1}}]^2.$$

Note that

$$\begin{split} 2 + \lambda^2 E(X_{a_{n,i}} - X_{a_{n,i-1}})^2 & \leq E \exp\left[\lambda(X_{a_{n,i}} - X_{a_{n,i-1}})\right] \\ & + E \exp\left[-\lambda(X_{a_{n,i}} - X_{a_{n,i-1}})\right] \\ & \leq 2 \exp\left\{(\lambda^2 + |\lambda|^q)\mu(a_{n,i-1}, a_{n,i}]\right\}, \quad 1$$

In either case, if $\mu(a_{n,i-1}, a_{n,i}] < \infty$, then for sufficiently small values of λ we have

$$2 + \lambda^2 E(X_{a_{n,i}} - X_{a_{n,i-1}})^2 \le 2\{1 + 3\lambda^2 \mu(a_{n,i-1}, a_{n,i})\}$$

so that

$$E(X_{a_{n,i}} - X_{a_{n,i-1}})^2 \le 3\mu(a_{n,i-1}, a_{n,i}].$$

This last inequality clearly holds when $\mu(a_{n,i-1}, a_{n,i}] = \infty$. Thus

$$E(Y_n - Y_m)^2 \le 3 \sum_i (C_{n,i} - C_{m,i})^2 \mu(a_{n,i-1}, a_{n,i}]$$

= 3 || f_n - f_m ||_2^2.

However $||f_n - f_m||_2^2 \le [||f_n - f||_2 + ||f - f_m||_2]^2 \to 0$ as $n, m \to \infty$ so that $\{Y_n\}$ is a cauchy sequence in L_2 . This implies that its L_2 limit $\int f(t) dX_t$ exists and that $E[\int f(t) dX_t - Y_n]^2 \to 0$, so that for every real number ϵ

$$P\{\int f(t) \ dX_t \ge \epsilon\} \le \lim_{m \to \infty} \limsup_{n \to \infty} P\{Y_n \ge \epsilon - 1/m\}.$$

For $\lambda \geq 0$, $\epsilon > 0$, and $m > 1/\epsilon$, we have

$$\begin{split} P\{Y_n & \geq \epsilon - 1/m\} \leq \exp\left[-\lambda(\epsilon - 1/m)\right] E e^{\lambda Y_n} \\ & = \exp\left[-\lambda(\epsilon - 1/m)\right] \prod_i E \exp\left[\lambda C_{n,i} [X_{a_{n,i}} - X_{a_{n,i-1}}]\right]. \end{split}$$

When p=1 we may assume that $|C_{n,i}| \leq ||f||_{\infty}$ for all n and i. Then for $\lambda \leq T/||f||_{\infty}$ we have

$$P\{Y_n \ge \epsilon - 1/m\} \le \exp \left[-\lambda(\epsilon - 1/m)\right] \exp \left[\lambda^2 \sum_i C_{n,i}^2 \mu\{\Delta_{n,i}\}\right]$$
$$= \exp \left[-\lambda(\epsilon - 1/m)\right] \exp \left[\lambda^2 \|f_n\|_2^2\right].$$

This is minimized when $\lambda = (\epsilon - 1/m)/2||f_n||_2^2$. If we set

$$\lambda_0 = \min \{T/||f||_{\infty}, (\epsilon - 1/m)/2||f_n||_2^2\}$$

we get

$$P\{Y_n \ge \epsilon - 1/m\} \le \exp\left[-\lambda_0(\epsilon - 1/m)/2\right]$$

$$= \exp\left[(-(m\epsilon - 1)/2m) \min\left\{T/\|f\|_{\infty}, (m\epsilon - 1)/2m\|f_n\|_2^2\right\}\right].$$

Taking " $\lim_{m\to\infty}$ lim $\sup_{n\to\infty}$ " of the above expression gives

$$P\{\int f(t) dX_t \geq \epsilon\} \leq \exp \left[-\min \left\{\frac{1}{4} \left(\epsilon/\|f\|_2\right)^2, T/2 \left(\epsilon/\|f\|_{\infty}\right)^1\right\}\right].$$

When $1 we obtain for all <math>\lambda \ge 0$,

$$\begin{split} P\{Y_n & \geq \epsilon - 1/m\} \\ & \leq \exp\left[-\lambda(\epsilon - 1/m)\right] \exp\left[\left[\lambda^2 \sum_i C_{n,i}^2 + \lambda^q \sum_i \left|C_{n,i}\right|^q\right] \mu\{\Delta_{n,i}\}\right] \\ & = \exp\left[-\lambda(\epsilon - 1/m) + (\lambda^2 \|f_n\|_2^2 + \lambda^q \|f_n\|_q^q)\right] \\ & = \exp\left\{-\lambda[((m\epsilon - 1)/2m - \lambda \|f_n\|_2^2) + ((m\epsilon - 1)/2m - \lambda^{q-1} \|f_n\|_q^q)]\right\}. \end{split}$$
 If we set $\lambda_0 = \min\left\{(m\epsilon - 1)/4m \|f_n\|_2^2, ((m\epsilon - 1)/4m \|f_n\|_q^q)^{1/(q-1)}\right\}$, then
$$P\{Y_n \geq \epsilon - 1/m\} \leq \exp\left[-\lambda_0(m\epsilon - 1)/2m\right]$$

Again, taking " $\lim_{m\to\infty}$ lim $\sup_{n\to\infty}$ " in the above expression gives

$$P\{\int f(t) dX_t \ge \epsilon\} \le \exp [-\min \{\frac{1}{8}(\epsilon/\|f\|_2)^2, 2(\frac{1}{4})^p(\epsilon/\|f\|_q)^p].$$

 $= \exp \left[-\min \left\{\frac{1}{8}((m\epsilon - 1)/m||f_n||_2)^2, 2(\frac{1}{4})^p((m\epsilon - 1)/m||f_n||_q)^p\right\}.$

4. Corollaries and relationships between these theorems and previous results. Hypothesis (3) of Theorem B could have been given in terms of upper bounds on the probabilities in the tails of the distributions of the stochastic increments $(X_t - X_s) - E(X_t - X_s)$ to obtain a condition similar to hypothesis (1) of Theorem A. However, doing so would tend to obscure the nature of the theorem.

Inequality (2) of Theorem A can be obtained from Theorem B via Lemmas 1 and 2 if one defines the process $\{X_t^*: -\infty < t < \infty\}$ by

$$X_t^* = \sum_{0 \le k \le t} X_k - \sum_{t < k < 0} X_k$$

and sets $\mu(a, b]$ equal to a constant times the number of integers in the interval (a, b]. A generalization of Theorem A can, in fact, be obtained from Theorem B. The constants obtained in Lemmas 2 and 3 depend on M, γ , and p from hypothesis (1) of Theorem A. If M and γ were allowed to vary with k when 1 (allow only <math>M to vary when p = 1), then these constants would depend on k. Then we let $\mu\{k\}$ take this value, say d_k , and change our definition of $\|a\|_p$ to $\|a\|_p = [\sum_k |a_k|^p d_k]^{1/p}$ for $1 \le p < \infty$ and to $\|a\|_\infty = \sup\{|a_k| : d_k > 0\}$ for $p = \infty$.

Since $\|a\|_2^2 \leq \|a\|_1 \|a\|_{\infty}$, we see that Theorem 1 of [11], which states that $P\{T \geq \epsilon\} \leq \exp\{-C/\|a\|_{\infty}\}$ when $\|a\|_1$ is bounded and the X_k 's satisfy a condition equivalent to condition (1) with p=1, is a corollary to our Theorem A. Theorem A is actually more general than Theorem 1 of [11] since $\|a\|_1$ need not be finite to use Theorem A.

Let $\{X_k: k=0, \pm 1, \cdots\}$ be a sequence of independent random variables; let $a^{(n)}=\{a_{n,k}: k=0, \pm 1, \cdots\}$ for $n=1, 2, \cdots$ be a sequence of sequences of real numbers; and define $T_n=\sum_k a_{n,k}(X_k-EX_k)$. We obtain the following corollaries to Theorem A.

COROLLARY 1. If the sequence $\{X_k\}$ satisfies condition (1) of Theorem A, if $1 \le p \le 2$, if $||a^{(n)}||_2$ and $||a^{(n)}||_q$ are finite for all n, and if the sums

$$\sum\nolimits_{n = 1}^\infty {\exp \left({ - t/{{\left\| {{a^{(n)}}} \right\|_2^2}}} \right)} \quad and \quad \sum\nolimits_{n = 1}^\infty {\exp \left({ - t/{{\left\| {{a^{(n)}}} \right\|_q^p}}} \right)}$$

are finite for every t > 0, then T_n exists as an a.e. limit for each n and for every $\epsilon > 0$,

$$\sum_{1}^{\infty} P[|T_n| \ge \epsilon] < \infty$$

so that $\lim_{n\to\infty} T_n = 0$ a.e.

COROLLARY 2. If $\{X_k\}$ satisfies condition (1) of Theorem A, if $1 \leq p \leq 2$, if $\|a^{(n)}\|_2$ and $\|a^{(n)}\|_q$ are finite for all n, if either

$$||a^{(n)}||_2^2 = o(1/\log n)$$
 and $||a^{(n)}||_q^p = o(1/\log n)$

or if the sums

$$\sum\nolimits_{n = 1}^\infty {\exp \left({ - t/{{\left\| {{a^{(n)}}} \right\|_2^2}}} \right)} \quad and \quad \sum\nolimits_{n = 1}^\infty {\exp \left({ - t/{{\left\| {{a^{(n)}}} \right\|_q^p}}} \right)}$$

are finite for every t > 0, and if $C_n = \sum_k a_{n,k} EX_k$ converges for each n and $C_n \to C$, then $T_n^* = \sum_k a_{n,k} X_k$ exists as an a.e. limit for each n and $\lim_{n\to\infty} T_n^{**} = C$ a.e. These are extensions of Theorems 1 and 2 of [5]. Their proofs are very simple applications of Theorem A and are essentially the same as the proofs given by Chow in [5].

Note that one can not gain anything using these methods by assuming that p > 2, or even by assuming that the X_k 's are uniformly bounded. The bound provided when p = 2 seems to be very closely related to the workings of the central limit theorem.

REFERENCES

- BAUM, L. E. and KATZ, MELVIN. (1963). Convergence rates in the law of large numbers. Bull. Amer. Math. Soc. 69 771-772.
- [2] BAUM, L. E. and KATZ, MELVIN. (1964). Convergence rates in the law of large numbers II. Tech. Report No. 75. Univ of New Mexico, Albuquerque.
- [3] BAUM, LEONARD E. KATZ, MELVIN and READ, ROBERT P. (1962). Exponential convergence rates for the law of large numbers. Trans. Amer. Math. Soc. 102 187–199.
- [4] CHERNOFF, HERMAN. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23 493-507.
- [5] Chow, Y. S. (1966). Some convergence theorems for independent random variables. Tech. Report No. 63. Purdue Univ., Lafayette.

- [6] Cramér, H. (1938). Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Sci. Ind., No. 736. Paris.
- [7] Doob, J. L. (1953). Stochastic processes. Wiley, New York.
- [8] Erdős, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Statist. 20 286-291.
- [9] Franck, W. E. and Hanson, D. L. (1966). Some results giving rates of convergence in the law of large numbers for weighted sums of independent random variables. Bull. Amer. Math. Soc. 72 266-268.
- [10] Franck, W. E. and Hanson, D. L. (1966) Some results giving rates of convergence in the law of large numbers for weighted sums of independent random variables. Trans. Amer. Math. Soc. 124 347-359.
- [11] Hanson, D. L. and Koopmans, L. H. (1965). On the convergence rate of the law of large numbers for linear combinations of independent random variables. Ann. Math. Statist. 36 559-564.
- [12] Hanson, D. L. and Koopmans, L. H. (1965). A probability bound for integrals with respect to stochastic processes with independent increments. *Proc. Amer. Math.* Soc. 16 1173-1177.
- [13] Jamison, B., Orey S. and Pruitt, W. (1965). Convergence of weighted averages of independent random variables. Z. Wahrscheinlichkeitstheorie. 4 40-44.
- [14] Kahane, J. P. (1963). Series de Fourier aléatoires. Séminaire de Math. Supérieures. Université de Montréal.
- [15] Katz, Melvin L. (1963). The probability in the tail of a distribution. Ann. Math. Statist. 34 312-318.
- [16] Komlós, J. and Rávész, P. (1964). On the weighted averages of independent random variables. Publ. Math. Insti. Hungar. Acad. Sci. 9 583-587.
- [17] KOOPMANS, L. H. (1961). An exponential bound on the strong law of large numbers for linear stochastic processes with absolutely convergent coefficients. Ann. Math. Statist. 32 583-586.
- [18] LOÉVE, M. (1963). Probability Theory. (3rd Ed.). Van Nostrand, New York.
- [19] PRUITT, WILLIAM E. (1966). Summability of independent random variables. J. Math. Mech. 15 769-776.
- [20] TITCHMARSH, E. C. (1939). The theory of functions (2nd Ed.). Oxford Univ. Press, Cambridge.