ALTERNATIVE PROOFS FOR CERTAIN UPCROSSING INEQUALITIES
By RaravL Panzons'
Unaversity of Illinors

1. Introduction. The purpose of this paper is to give different methods of proof
for certain upcrossing and downcrossing inequalities that appear in martingale
theory and to obtain sometimes improved inequalities. They include the funda-
mental one, due to Doob for martingales, and others due to Bishop, Dubins,
Hunt and Snell. Except for the last two sections, the paper deals with an inductive
approach which is exhibited first to show the main idea in the case of Snell’s
extension to submartingales of Doob’s inequality. Foi the other cases fewer
details will be given. For the sake of completeness we shall repeat some definitions.

Given a finite sequence of points € = {¢1, -+, ¢,} in the two-point com-
pactification of the real line and two real numbers @ < b, we say that @ up-
crosses (downcrosses) [a, b] at least m times if there exist m pairs of integers:
A<k < -+ <Jm<knsuchthatc,, < a,c, = b, (¢;; = b, cx; = a). We say
that @ upcrosses m times the interval [a, b] if @ upcrosses it at least m times but not
m —+ 1. A finite sequence of measurable functions in a probability space (£, Z, P),
{fi, -+, fa}, is said to be a submartingale if they are integrable and [ » ;fidP =
fr,- fiva dP, for any j and any F;e ®(f1, -+, fi), the least s-algebra making
measurable fi, ---, f;. It is said to be a supermartingale if their negatives con-
stitute a submartingale, and is called a martingale if it is simultaneously a sub
and a supermartingale.

We want to prove the following inequality (cf. [1], [6], [2]):

(1) E(U) £ (b~ a) El(f» — a)"],

where U = U,spr(w) denotes the number of times the submartingale
R = {fi, -+, fa} upcrosses [a, b] at w. The finite sequence S = {(fi — a)*/
(b—a), -+, (fa — a)t/(b — a)} is also a submartingale, and everywhere, we
have:

Uo,l,s(w) = Ua,b,lz(w)-
Therefore, it is sufficient to prove (1) in case of a nonnegative submartingale
and a = 0,0 = 1:
(2) E(Uos) = E(fa)-
(In general, we shall drop superfluous indices without comment.) When n = 2,
(2) follows immediately :

(3) P(fi=0,f22 1) = B(U) £ [y,=0 f2dP.
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Assume it is true for n = 2. Given the submartingale S = {fi, - -+, fu, fas1},
let us consider the sequence T' = {f;, -+, fa—1, g} Where g = f, on the sets
E, = {fn = 1},E2 = {fn = O} On E; = {0 < fn, < ].} deﬁneg = fn+1. T

is a submartingale. In fact: .
JrsfoadP £ [, fadP =[5, miymn fn P + [, 5, fas1 dP = [5,_, g dP.

Since by inductive hypothesis we suppose the theorem true for 7', it only remains
to estimate |Ug1,s — Uoa,7|.On By, f» = 1, and therefore f, 1 does not contribute
to any upcrossing for S. Then, Us(w) = Up(w) f we B, .On E;,0 < f, < 1,
therefore, f, does not contribute to any upcrossing for S and since g(w) = fr1(w)
for w £ E; , we have in this case: Ug(w) = Ur(w).On E:, S has one upcrossing

more than T exactly on the set By = Epn {f,41 = 1}. Then, Ug = Uy + I, , and,

(4) EUs = EU, + PE, < Eg + PE; .

On the other hand we have:

(5) Eg = .[Elfn dP + fEsfn+1 dP = fEluzsan;
(6) PE,=P(f £0,fara = 1) £ fE2fn+1 dP.

From (4), (5) and (6), (2) follows. Q.E.D.

We have considered first the case n = 2 and not the trivial one n = 1, be-
cause it permits a guess of the form of the final inequality.

Observe that (2) can be strengthened as follows:

(7) EU+ Efi* = P(hz1,i=0) + [y50/1dP = Efs.
Then, fpllowing the same pattern of proof, we would get instead of (1):
(8) (b — a)BU + E(fy — a)" £ E(f, — a)™.

Moreover, assume that o and b are random variables ®(fi)-measurable and
a(w) < b(w) everywhere. Let U denote the number of upcrossings of the random
interval [a, b], where, by definition, @ and b are integrable. The same proof that
gives (8) applied directly to the process {(f» — a)¥} proves the following in-
equality:

(9) E((b — a)U) + E(fy — a)" = E((fa — a)'T0),

where G = {fo1 > a} U {fu < a, f» = b}, (cf. [2] and Section 3). The integra-
bility condition of the random interval could be relaxed but we shall not enter
into this sort of detail.

Professor J. L. Doob pointed out to the author that the induction could be
made on the first variables instead of the last ones, which, in a sense might be a
more natural procedure when dealing with a submartingale.

2. Downcrossing inequalities. Analogous formulae to (1) and (7) of Sec-
tién 1 could be obtained for downcrossings of an interval. Moreover, a slightly
more delicate argument provides more precise estimations as shown in the next



UPCROSSING INEQUALITIES 737

theorem which is a generalization of certain results due to L. E. Dubins, [4].
To avoid subscripts we write I[A] instead of I,.

Tumorem 1. Let {fi, -+, fa} be a submartingale and D(w) the number of
downcrossings at w of the random interval [a( w), b(w)]. Then,
(1) E((b— a)IID > k) < E((fa = b)IID =k, far > a]), k=0,1,--".

Proof. Reasoning as in the introduction, we see it is sufficient to prove (1)
for a nonnegative submartingale and a random interval [0, 5(w)]. Whenn = 2,
{D > 1} = ¢ and:
E(ID > 0]) = B(I[fi = b, f» = 0]) = EAIlfi 2 b, f» = 0])

< E((fi — f)IIfr 2 b, f2 = 0]).

By submartingale property the last integral is not greater than:

E((f — f)Ilfi 2 b, o > 0]) = E((f: — b)*IID = 0, fi > 0D),
from where next inequalities follow (n = 2):
(2) EID > k) < E((fa — 0)'IID =k far > 0, & =0,1,2 ---.

Given the nonnegative submartingale S = {fi, ---, fasa}, n > 2, consider the
nonnegative submartingale T = {fi, -+, fa1, g} where g = foon Ey = {fn = b}
andon Ep = {fo = 0},9 = fapon By = {0 < fu < b}. Call By = {fora = 0}. If
D" and D7 are the number of downcrossings for S and T respectively, it is easy to
see—considering the different cases w e B, 7 = 1, 2, 3, and then summing up on
j—that:

(3) (D°=j} = (D" =j} — EiBy) + (D" = j — 1}E:E, for j > 0,
(4) (D> K C{D*> k) + (D" =k} -ExBy for k=0

By inductive hypothesis, it is legitimate to use (2) for the submartingale T' and
therefore from (4) we get:

(3) EQID® > k) < E((g — b)'IID" = k) + E(I[AD,

where A denotes the auxiliary set {D" = k}E\E, . Since in Es, (fa — nHt=0
and in E;, D* = D®, we obtain:

(6) E(g — b)*IID” = k| £ E(fua — b)'I[{D° = k}Fy]
+ E(fa — b)'I[{D" = Kk} E].
The sum of the last expectations on (5) and (6) is equai to:
BfI[(D" = k}Ex} — BYI[D" = k}(Ex — Eo)
(1) £ Efund[{D” = k}Ey] — EoI[D" =k, fo Z b, fan > 0]
= E(fan — O)ID" = k, fu 2 b, farr > 0]
< B(fan — b)IID° = B ).
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From (5), (6) and (7), (2) follows for the submartingale S. Q.E.D.
When a and b are constants, Theorem 1 takes the form:

) PO>K)=0—a) [o,(f —b)"dP, G = {D =k, fou > a}, k20,
and summing up on & (cf. [1], [4]):

(9) BD = (b = a)7 fypoa (fa — B)YdP = (b — a)7[(fa — D)W,
where J is the set of points where f,—1 > a and f, > b.

As another application (cf. [3]) assume that b — a = yand (f, — )" = d < «
almost surely; d and y are constants. Call A = {D > 0} and (4, the complement
of A. Then, from (1) it follows: PA =< (d/y)P({A). Therefore P(f4) > 0
and PA/P([A) =< d/y. Observe now that exp [(z —1)/z] <zfor0 <z< 1
When z = P({A) and PA > 0, we have:

(10) PA =1 — P(A) < 1 — exp [-PA/P((4)] = 1 — exp [—d/y].
If0 = f. = 2 < »,2zaconstant, ¢ = 0,b = y, (10) becomes:
(11)  P(D>0) <1 —exp[—PA/P(fA)] £ 1 — ¢ exp [—2/y).

3. Upcrossing inequalities. The analog of (1), Section 2, for upcrossings in-
stead of downcrossings is discussed next because of its different behaviour.

TueoreM 1. If U(w) denotes the number of upcrossings at «, under the hypothe-
sis of Theorem 1, Section 2,

(1) E(( — o)I[U 2z k) = E((fs — )'IU = k), & = 1,2, -

Proor. As in Section 2, it is sufficient to prove (1) for nonnegative sub-
martingales, @ = 0. The case n = 2 is analogous to the inequality (2), Section
1, and is trivial. Given S, T, E1 , E» , E; as in the proof of Theorem 1, Section 2,
define By = {fay1 = b}. If the random upcrossing variables for S and 7' are
represented by U® and U” respectively, it is easy to obtain the analogues to
(3) and (4) of Theorem 1, Section 2:

(2) {U=jt=U" =4} — EE) + (U =j — BB, j=1,
(3) {USzk} C{U" 2k} + {U" =k — 1}-E.E,, k=1
Defining A = {U” = k — 1}E:E, , and making use of the inductive hypothesis
we finally obtain for k = 1:

(4) EbI[U® z k] < E(gIU" = k] + bI[A]) = E(gI[{U" = k}(Es]) + EbI[A]
(5) EBIIA] = BGINU" =k — 1}{fa = OH{farr 2 b)) < Bfon[{U° = K} Ei).

On the other hand, we (B: = E; + E; implies {U” = k} = {U® = k} and
besides E1-{U" = k} e ®(fi, -+, fa), then the first expectation in the last
member of (4) is not greater than:

(6) E(fanll{U° = k}CED).
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From (4), (5) and (6), (1) follows. Q.E.D.

Summation on k gives:
(7) J (6 —a)UdP £ [&(fa — a)" dP,
where H = {U > 0} is the set where some upcrossing occurs.

4. Application. In this section we want to draw some consequences of the

two preceding theorems (cf. [2], [3], [4)). For a submartingale {fi, ---, fa}
and the interval [a, b), a, b constants, we have:

(1) (b= a)P(D > k) S [1pmts (fu — b)* P, k20
(2) (b —a)P(U 2 k) £ [w—ny (fa — a)* dP, kz1

where the first inequality is due to Dubins [4].
Suppose now that a and b are negative numbers and the submartingale is non-
positive. From (1) we get P(D > k) = (—=b/(b — a))P(D = k) and therefore:

(3) P(D > k) = (b/a)P(D = k), k=0
Analogously, from (2), P(U =2 k) £ —a-P(U = k)/(b — a), and then:
(4) P(U > k) = (b/a)P(U = k), k=1

(However, in (1) > cannot be replaced by =, because this would imply in case
of a nonpositive submartingale that (b — a)P(D > k) < (a — 2b)P(D = k)
and therefore, a contradiction, since the second member could be strictly nega-
tive). From (3) and (4), (5) and (6) follow for k = 0:

(5) PD=k+1)=PD>k) = (b/a)P(D = k)
< - 2 (b/a)*P(D > 0).
(6) P(UZk+1) < (b/a)P(U =2 k) £ --- £ (b/a)*P(U > 0).

(The submartingale {—Iw,1, —2l0sn, —Iosn, —2l0yp}, defined in the unit
interval, shows that fora = —2,b = —1: P(D = 2) = (b/a)P(D > 0) and
therefore that the exponent k in (5) cannot be replaced by k + 1.) From (5) and
(6), we finally obtain (cf. [5], [2], [3]):

(7) E(D|{D > 0}) £ |a/(b —a)| 2 E(U|{U > 0}).
From (7), Section 3, we obtain, in general:
(8) BE(U{U > 0}) < [[(fa — )|/ (b — a).
5. A separation inequality. A set of points of R>, T = {u', o"; --- ; ", v"}

will be called a finite system of pcm‘s (fsp) if the second coordinates satisfy:
v’ > uy’, and the first ones: v’ = us* < u""" = v, Consider two straight lines,
A, B, with slopes @ and b passing through z ¢ R*. Call w(z, a, b, T') the number
of pairs of T' with first coordinate greater than x; and separated by 4 and B,
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ie., if u*, o*, is such a pair, the straight line joining & with »*(+*) has slope less
(greater) than or equal to a(b).

THEOREM 1. Let T be a fsp and a and b as above. If w(t) = w(t, T)=
SUps,—: w(x, a, b, T'), then,

[w()dt £ 20 (' — us')/(b — a).

This theorem is analogous to a lemma due to E. Bishop, (cf. [0], p. 2). We
have no restrictive hypothesis on I' but our definition of w is different.

Proor or THEOREM 1. The function w(¢) is a step function. Let Iy, --- , I,
be nonoverlapping, left closed, right open intervals that cover the support of
w and such that:

(i) w is constant on each I, = [c;, d:),

(ii) given 7, I; € [us®, w"™] for some k.

Consider all the triangles A® with vertices %’, v°, and the intersection ¢ of the
straight line with slope b passing through »* with the straight line with slope a
passing through ‘. We shall consider such triangles “right open,” that is,
without its vertical side. Let V, be the vertical line of points with abscissa ¢.
Since separation from x of exactly k pairs of T' is equivalent to that x belongs
exactly to k triangles A®, and precisely those determined by the separated points,
it follows that on V., there is a set of points belonging exactly to w(I;) triangles
where w(I;) is the common value of w on the points of I; . Pick one of these points:
s*. If m* and M°* are the intersections of V4, with the straight lines through s*
with slopes @ and b, then by (ii) the (right open) triangle 8 = (m’; M*; %)
consists of points 2 such that w(x, a, b, T) = w(I;). That is, 8 lies in exactly
w(I;) triangles A”. Then, if B* represents the interval (m*, M*), we have:

(1) [Jw®)dt = Zew)|L = 2 wl)B/(b — a)
= 22 mncan [BY/(b — a).
Since the §"’s contained in a A’ have nonoverlapping projections on the z-axis,

the sum of the lengths of their vertical bases is not greater than the length of
the basis of A’. Therefore, the last sum of (1) is not greater than:

> (v’ — w’)/(b — a). Q.E.D.

Assume now that the points of I' are located on straight lines making an angle
v with the z-axis and such that a # v # (3, where « and $ are the angles with
tgo = a,tg8 = b, —7/2 < a, 8, v < 7/2. If d; denotes the distance between
u* and v*, we obtain with the same proof.

@)jmoag@mw—emmw+ymmm—ammw2gm.

6. Remarks. Let T be a fs of n pairs and w(f) the function defined in the
preceding section. Assume that @ = 0, b = 1 (the general case could be treated
with formula (2), Section 5). There exists a finite, nonnegative submartingale S
defined on the support of w, I = {t; w(t) # 0}, and with respect to Lebesgue measure,



UPCROSSING INEQUALITIES 741

such that:
(1) f Upr,sdt = fw(t) dt = f last element of S.

In fact, put E; = {t; w(t) = ¢},4= 1,2, -+, k = max w(t). From the proof of
Theorem 1, Section 5, one can see that w(¢) actually takes all the values 1 to
% on sets of positive measure. Then, for ¢ ¢ I, it is easy to check that the follow-
ing submartingale satisfies our claim:

S: X; =04 X, =1; Xojy1= X2 on Eyu Bau -+ u By
0 on Ejpu---UBy,=1+ p(Biav -+ v E)/u(E;) on Ejj
Xojye = Xojn v 1, 1=sj=sk
As a matter of fact, S upcrosses [0, 1] exactly j times on E; and
[ Xudt = w(Ey) + 2u(B) 4+ - 4 ku(Be) = [ Uspdt = f wdt.

In the preceding section and in this one, is implicit the formula that relates
the sum of measures of nonoverlapping sets with the sum of measures of the
subsets that cover a point the same number of times. That this is quite natural
is shown by the following consideration. If {f, -, fa} is a nonnegative sub-
martingale and fi = 0, U = Uo,, define:

Bi = {w; (Xpnn A D)™ — (X A 1)" 2w 1.

Then, it is easy to see that U (w) coincides with the number of sets By ‘conta.in-
ing w.
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