TESTING AGAINST ORDERED ALTERNATIVES IN MODEL I ANALYSIS
OF VARIANCE; NORMAL THEORY AND NONPARAMETRIC

By Garen R. Smorack
University of Washington

1. Introduction. In the present paper we extend Bartholomew’s (1959a) and
(1961b) results for testing against ordered alternatives in the one-way analysis of
variance to more general linear models. Theorem 1 is the fundamental result on
which the applications rely; it represents a generalization of Bartholomew’s
result.

A number of well known results are presented as special cases of the theorem:
(i) Bartholomew’s (1959a) likelihood ratio (LR) test for equality of means
against ordered alternatives in the one-way layout (Section 5). (ii) Chacko’s
(1963) rank analog of this test for equal sample sizes is presented (Section 8) and
the distribution theory is here extended to the case of unequal sample sizes.

Moreover, the following new results are presented: (i) LR tests against
ordered alternatives in the two-way layout (Section 4) and in general complete
layouts (Section 6). (ii) LR tests against ordered alternatives in incomplete
layouts are illustrated with the Latin square (Section 7) and independence of
test statistics for nested hypothesis is there observed. (iii) A rank analog of the
test of Section 4 is proposed (Section 9) and its distribution theory and Pitman
efficiency are presented. (iv) Extensions to asymptotically nonparametric tests
against ordered alternatives in the general linear model are indicated (Section
11).

In Section 10, Bartholomew’s (1961a) results for the case of partially ordered
alternatives in the one way layout are similarly extended to other layouts and
to the non-parametric case. '

The technique of the examples in Sections 4-7 illustrates an extremely simple
technique for generating LR tests against ordered alternatives in general linear
models. It should be noted that when ¢” is unknown the LR tests differ from the
tests proposed by Kudd (1963).

The examples also illustrate how (provided certain sample sizes are required
to be equal) the distribution of the LR test statistic for testing against ordered
alternatives depends in a natural manner on a two parameter family of dis-
tributions. Percentage points of these B[k, N] distributions are given in Table 1.
These play the role that F distributions fill for testing against unordered alterna-
tives.

Lemma 1 provides the bridge between the normal theory and nonparametric
results by showing that the probabilities pmx(n1, - - - , ) have identical values
for two distinet covariance matrices. While the proof is elementary in nature,
this result may be interesting in its own right.
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The relationship of Theorem 1 to Nuesch’s (1966) result is discussed in Section
12. In particular, an error which invalidates a key statement of Nuesch is
pointed out.

Section 3 merely presents notatlon to put the examples of Sections 4-7, 11 in
proper perspective.

Finally, it is felt that this paper will provide a unifying influence on the results
which have preceded it.

I—GENERAL THEORY

2. Statement of general results. Let Z; = (1/n:) 2wty Zifor i =1, -+, k
where the Z,.’s are arbltrary real numbers. Let £, < s - < £ denote the values
of &, -, & that minimize Y v_n: (Z — &)* subject to the condition
§ £--- = &. Define Zyg = (mZ; + -+ + n.Z,)/(ny + -+ + n,) for
12i<s=k '

The “amalgamation process” by which & < .-+ £ & are found is described
in Bartholomew (1959a); and is assumed well known. It yields integers
tr, -+ ,tnwitheach¢; > Oand &y + --- + t,. = k for which

ETJ‘-H- = ... = ‘ETJ'+1 = Z[7j+117j+1] for .7 = 0’ 1’ e, m o — 1

wherero =0andr; =4 + -+ 4+ ¢{;forj = 1, - - - , m. For notational convenience
we denote the m distinet £’s by Z i forj =1, -+, m. We also define N, =
(CTREEEE S o T This notation is from Chacko (1963).

LEMMA 1 Let (nZy, -+, mtZ,) have a multivariate N(0, =) distribution
where either

Case 0. = = ¢’ or

Case 1. 2 = o*|6;; — (nm;)}/N|| where N = ny + - + m.
Let ppmx(na, --+, ng) denote the probability that the amalgamation process when
applied to the Z s produces exactly m distinct £7s. Then pmi(ny, -+, ni) has the
same value for Case 1 as it does for Case 0.

Proor. Let us denote the region in the sample space leading to the m distinct

Ersof Zug, -+ 3 Zu by X(ty, -+ 5 tm). Let X*(m) = uX(ty, -+ -, tn) where the
union is taken over all regions in the sample space leading to exactly m distinct
estimates. Then ppi(ny, -+, m) = P(X*(m)) = ZP(X(ty, -+, tw)). Now
Chacko (1963) shows that the region X(#, - - - , t») is defined by the inequalities
Z-[tj] — Z-[tj+1l <0, fOI‘j =1,:--,m—1,
Z-[Tj—1+1,fj-1+i] - Z-Uj] >0, fore=1,---,¢4 —1

and j = 1, ---, m. It is straightforward, but tedious, to show that the linear
forms involved in these inequalities have the same distribution in Case 1 as in
Case 0. This completes the proof of the lemma; however, note that the first
m — 1 linear forms listed above are independent of the remaining Y 7 (t; — 1)
slinear forms. This latter fact is used in the proof of Theorem 1.

For equal n/s the probabilities pmx(n1, ---, nx) are denoted simply pm,s -
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See Bartholomew (1959a) for known values of pmx(n1, ---, n) and Chacko

(1963) for a simple general formula for p..: . See also Miles (1959).
DEeFINITION. Let xo” and 8(a, b) denote chi-square and beta random variables

respectively. Let W be a non-negative random variable. If for all ¢ > 0

P(W > 1) = 2meaPmi(na, -+, m)P(B((m — 1)/2, (N —m)/2) > t)
we say that W has the Blny, - - - , nx ; k, N] distribution. If forall ¢ > 0
P(W > 1) = 2maPmp(ma, -, m)P(xma > 1)

we say that W has the Dlny, - - -, m ; k] distribution. If n, = --- = n we call
these the B[k, N] and D[k] distributions respectively.
See Bartholomew ( 1959a) and ( 1959b) for percentage points of D[y , - - - , 7 ; k]

distributions. ) ) .
Turorem 1. Let (niZy, -+, nitZ:) have a multivariate N(0, =) distribution

where either
Case 0. = = oI or
Casg 1. = = o’||8;; — (na;)}/N||. Define
S = infgké...égl Z'f,ln,(Z'z - 51)2
and ~ _
Q = 2 iundZ:i — Zum)™
Let T be a random variable such that fl_’/a2 has a x,” distribution; and let T be in-
dependent of Zy — Zusys -+ 4x — Zyygg . Then (Q — 8)/a” has the Diny, - - -,
ny ; k) distribution and (@ — S)/(T + Q) has the Blny, « -+, i ; k, v + k] dis-
tribution.
Proor. Let %(t;, «- -, tn) and X*(m) be as in the proof of Lemma 1. Define
SS(ty, -+ ytm) = D Zii%,-_nq ni(Z: — Z[tjl)2~

Although the m, #;, - -, t» that appear in the definition of S are random vari-

ables, we stress that when they appear in X(fy, -+, tn), o**(m) and
SS(t, -+, tn), the quantities m, &, , - - - , t» are to be regarded as a set of fixed

constants. Note that SS(k) is identically equal to Q.
We now show that SS(t, -+, tn) and @ — SS(t1, -+, tn) are independent
and are distributed as o*xi—m and o”xa—_1 respectively. First let

VmX1 = (N?M]Z—[h] ) N%tm]‘Z[‘m])l
and let
Q" = |8 — (wiw)?|

where w; = Npj/N for j = 1, -+, m and 6;; is the Kronecker delta. Then
Q — SS(tr, -+, tw) = V'QV where V is N(0, ¢* Z,) with

Z = if Case 1
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or
Z, =1 if Case 0.
Let I' be an m X m orthogonal matrix with first row i, - - - , w.'. Then
00 --- 0
o1 .- 0
Q@ — 88(t, -+, tn) = VI'TQITV = (*V)' | T | (TV)
0 0 1
where I'V is N(0, ¢’T=,I'). However, we have
(000 --- 0
01 --- 0
rs,r = ' ) in Case 1
0o 0 .- 1
rzr’ =1 in Case 0.

In either case Q@ — SS(t;, -+ -, tn) is seen to be distributed as o*x%_;. That
SS8(ty, -+, tm) and @ — SS(t1, -+, tn) are independent follows as usual by
orthogonality. Hence SS(#, -, tn) has a o’xj_n distribution. Thus for all
t > 0 we have

PU(Q — 8)/0" > t) = Xangtts oty P(X(t1, -+ ,tw) and (@ — 8)/c* > 1)
= D ettty ety P(X(t, =<+, )
P((Q — 88(t1, -+, tw))/o" > 1)
= Dttty eentm) P(X(ty <, tn))P(xoes > 1)
= 22 P(X¥(m))P (s > 1)

= D me2Dmi(n1, + o+, ) P(xma > 1).

The crucial step of this argument used the independence of the linear forms
defining the region X(4, «--, tx) and @ — S8S(#1, -+, tm). See the proof of
Lemma 1.

Similarly for all ¢t > 0 we have

P((Q = )T + Q) > 1)
= 2ttt P(X(t, -+ ytw) and (@ —SS(t, -+ ,tw))/(T + Q) > 1)
= D atttyentw) P(X(0, <y ) )P(Q — 8S(tr, -+, tu))/(T + Q) > ¢)
C = Chatna(nm, o, m)P(B((m — 1)/2, (v + & — m)/2) > 1).
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This completes the proof of the theorem.

TABLE I

Upper 5% and 1% values of the B[k, N] distribution (Interpolate linearly in
1/N in the columns of the table)

¥ E=3 B=4 E=5 E=6
5% 1% 5% 1% 5% 1% 5% 1%

4 950 1.000 * * * * % *

5 811 .953 .895 086 * * * *

6 .687 .878 773 .929 .831 .960 * *
7 .590 .800 .671 .857 728 .895 769 .922
8 514 728 .590 187 .643 .828 683  .858
9 455 .665 525 724 574 764 612 .795
10 .408 .610 472 .668 518~ 708 553 738
11 .369 .563 429 .618 471 .657 504 687
12 .337 522 .392 575 .432 612 461 .641
13 .310 486 .362 537 .398 573 423 .600
14 287 455 .335 .503 .370 .538 397 .564
15 267 427 312 474 .345 506 370 .532
16 .250 .403 .292 447 .323 478 347 .503
18 .221 .361 250 .401 287 .430 308 453
20 .198 .327 .233 .364 .258 .391 277 412
22 .180 .299 211 .333 .234 .358 252 377
4 .164 287 .193 .307 214 .330 231 .348
27 .146 .246 171 .275 .190 .296 205 .312
30 .131 .222 154 .248 .170 .268 184 .283
40 .098 .168 115 .188 .128 .203 188 .215
50 .078 135 092 .151 .102 .164 110 173
® .000 .000 .000 .000 .000 .000 000 .000

II. NORMAL THEORY
3. Introduction and notation. Suppose
Q: Y™ = X’@pXI + e

where e has a N(O, ¢’I) distribution. Let S(Y, 8) = (Y — X8)"(Y — X'8).
The maximum likelihood estimates (M LE’s) of 8 and ¢ under @ will be denoted
by § and 6°. We note that 6° = S(Y, §)/n where § minimizes S(Y, 8) among all
values of 8 that are allowed by Q. Let w (}enote a set of assumptions that further
restrict the theoretical mean of Y. Let § and & denote the MLE’s of 3 and ¢
under w. Again §° = S(Y, 3)/n where 3 minimizes S(Y, §8) among all values of 8
that are allowed by w. Thus the level « likelihood ratio (LR) test of w against
@ — w rejects if

B = (& —4"/8

exceeds the upper o per cent point of its null distribution. In the usual setup
(see Scheffé (1959) ) the random vector Y takes values in n-dimensional Euclidean
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space V,, the assumptions Q restrict the theoretical mean of Y to a subspace V,
of dimension 7, and w further restricts the theoretical mean to a subspace V._,
of dimension r — ¢; thus V,—, € V, C V,,. Moreover, B has a beta distribution
with parameters ¢/2 and (n — 7)/2 under w.

If ¢* is known, the level o LR-test rejects w if

D = n(§ — &)
exceeds the upper « per cent point of its null distribution; and this null distribu-
tion is o”x,” in the Scheffé setup.
It is the purpose of this paper to consider testing hypotheses when Q restricts

the theoretical mean to a subset (not a subspace) of V., . This is accomplished by
agsuming that certain order relationships are satisfied by some of the parameters.

If 3, & and B, 6° still denote the MLE’s of § and o® under w and Q respectively,
then we still have '

(1) #=8(Y,8)/n and & = S(Y,B)/n

where é and $ minimize S(Y, 8) among all values of 8 allowed by w and Q respec-
tively. Also the level o LR-test of w against @ — w still rejects » when
(2) B=(8-46)8

exceeds the upper « per cent point of its null distribution; however, this distribu-
tion is no longer beta.
If ¢° is known, the level o LR-test still rejects w if

(3) D = n(§ — )

exceeds the upper « per cent point of its null distribution; however, this distribu-
tion is no longer o’x,".

4. Notation. Derivation of results for the two-way layout. Consider the follow-
ing model for the two-way layout with one observation per cell. Let

Yij=p+ ai+ B+ ey (¢=1--,Tandj=1,---,J)

where a. = 8. = 0 and the ¢;’s are independent identically distributed (iid)
N(0, ¢*). Now

S(Y,8) =IJ(Y..—u)? +J > (Yi. =Y. — ) + 1D ;(Y.; — Y.. — 8)°
+ i i (Y — Y. — Y+ Y2

We now indicate our notation for the present problem. No new definitions will
be given in later sections; however, the generalizations of the notation of this
section should be obvious. Let

88y = J D i(Yi. — Y.)7,
8Ss = I ;(Y.;— Y.),
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SSz = the error sum of squares,
SAS. = infaycovogard D2i( Vi — Yoo — )’
SASs = infﬁlél..éﬂ,lz,.(y.j —Y.. =8}

where SAS, is read ‘“the sum of amalgamated squares for the a effect”. We
further define

HO,a Lo
Hl,a 0
Hywg:on 5% -+ # oy

Il

- = Qr

IIA

- = ar with at least one inequality strict.

and similarly for Hoyﬂ s Hl,ﬂ , and Hz,ﬂ .
From (1), (2) and the above expression for S(Y, 3> we can immediately write
LR-test statistic for testing Hy,. against Hy,. as

(4) B = (88, — SAS.)/(8Se + 8Sa);

and by Theorem 1 this test statistic has a B[I, (I — 1)J + 1] distribution under
the null hypothesis. (Apply Theorem 1 with k = I, n; = J, Z; = Y — p,
Case0, & = ag,or g =d; — Y - +p, T =8Szgandr = (I — 1)(J — 1).

If o° is known the LR-test statistic for testing Ho, . against Hy o is

D = (88. — SAS.) /s

and by Theorem 1 this statistic has a D[I] distribution under the null hypothesis.

5. Derivation of Bartholomew’s results for the one-way layout. This section
gives a quick presentation of Bartholomew’s (1959a) and (1961b) main results.
We chose to present this example second because the introduction of notation
seemed most natural in the two-way layout. Consider the following model. Let

Y,-,-=p.+ai+e,-,- (i=1,---,Iandj=1,---,J,-)

where the e;;’s are iid N(0, ¢*) andn = J; + -+ + J;. Now
S(Y,8) = (Y — ) + XiddVe — ¥ — )’ + 2225 (Y — Vi)
From (1) and (2) and this expression for S(Y, 3) we can immediately write the
LR-test statistic for testing Ho,. against Hy, as
(5) B = (88, — SA8.)/(8Sz + S8.).
When J; = -+ = J; = J this statistic has, by Theorem 1, the B[I, 1J] distribu-
tion. For unequal sample sizes B has the B[J1, - - - , J ; I, n] distribution. (Apply
Theorem 1 withk = I, n; = J;, Z; = Y — u,Case0, & = a;, T = SSg and
v=mn—1.)

If ¢° is known the LR-test statistic for testing Ho,, against Hy,q4 is

D = (88, — SA8.)/s"
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and by Theorem 1 this statistic has a D[J;, - - -, J;; I] distribution.

6. Extension to other complete layouts. It is now clear that for other complete
layouts the LR-test statistic for testing Hy,. against H;, . (the manner in which
@, -+, ar, satisfying «. = 0, enter into the model for the complete layout
is assumed clear) is given by

B = (88, — SA8.)/(8Sz + 88.).

Moreover, an application of Theorem 1 will still show B to have a B[ny, - - - , nr;
I, v + I] distribution for appropriate choices of ny, - - - , n; and for » equal to the
degrees of freedom of SSz.

7. Derivation of results for the Latin square. Consider the following model for
the Latin square design. Let

Yijy = n + as + Bi + v + €sian (4,5, bk =1,---,m)
where . = 8. = v. = 0 and the e;;g’s are iid N(0, ¢°). We write (k) to

denote the fact that values for any two of the indices determine the value for the
third. Now

S(Y,8) = nz( Y.(.) — M)2 + nZi(YM.) - Y. - ai)2
+n02i(Yiy — Yy —B) + 020V — Y.y — w)t
+ 222 (Yim — Yoy — Yo — Yow + 2Y.0)

Again from (1), (2) and the expression for S(Y, 8) we can write the LR-test
statistic for testing Hy,, against Hy,. as

(6) B = (88, — SAS.)/(8Sz + 8S.).

By Theorem 1 this statistic has a Bn, (n — 1)* + 1] distribution under the null
hypothesis. (Apply Theorem 1 with k = n, n; = n, Z; = Y., — u, Case 0,
tg,=0a;, T =8Sgandv = (n — 1)(n — 2).)

Suppose now that we have performed the LR-test for Hy . against H; , and
that the test accepted Ho,.. Suppose we now wish to test Ho.n Hog against
Hy,n Hyp. Again from (1), (2) and the expression for S(Y, 8) we immediately
write
(7) B = (88s — SASs)/(SSx + SS. + SSp).

By Theorem 1 this statistic has a Bn, (n — 1)® 4 n] distribution under the null
hypothesis. (Apply Theorem 1 with k& = n, n; = n, Z; = Y j, — u, Case 0,
& =0;, T =88+ 8S.andv = (n — 1)(n —2) + (n — 1) = (n — 1)°)
By decomposing the sample space into (¢, - -, tn)’s for both statistics and
by using the independence of the sum and ratio of independent chi-squares, it is
easy to show that the test statistics (6) and (7) are independent, i.e., we have
independent tests for the nested hypotheses.

Similarly if we perform the LR-test of H, . against H;,, using (6) and then
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perform the LR-test of Hog n Hop against Hoo. n Hip using B = SS/
(SSg + 88, + 8S;s) the two tests would be independent.

(Finally we remark that the independence indicated here also holds for the
models of Section 6.)

III. NONPARAMETRIC

8. The one-way layout. In the one-way layout of Section 5 assume only that
the e;’s are iid random variables having continuous cdf F. Chacko (1963)
proposed the following adaptation of the Kruskal and Wallis (1952) test. Re-
place the observations by their overall ranks, apply the amalgamation process
to the average column ranks R;, and reject H,,, in favor of H;,, for large values
of

(8) 0= (12/(n(n + 1)) 27Ny Ry — (n + 1)/2)™

Chacko was able to derive the distribution theory of H only whenJ; = --- = J;.
However, the obvious asymptotic version of Theorem 1 with &k = I, n, = J;,
Z: = (12/n)(R; — (n + 1)/2), Case 1, and * = 1 shows that H is asymptot-
ically D[Jy, - - - , J1; I]. Chacko’s computation of Pitman efficiency carries over
to this case.

9. The two-way layout with one observation per cell. Let Y;; = p + a; +
Bi+Uj(i=1,---,Tandj =1, ---,J) where a. = 8. = 0 and the U;/s
are iid random variables having continuous cdf F. We propose the following
modification of Friedman’s (1937) x,’-test.

Step 1. Replace each observation Y;; by r;;, its rank in the jth row. Let
Ri= (1J) 2irs. }

Step 2. Apply the amalgamation process to the R/s to obtain m distinct
quantities Ry, -+, Ry -

SteP 3. Reject Hy,. in favor of H,,, for large values of the statistic

(9) % = (127/(I(I + 1)) 25 ti(Rup — (I +1)/2)%
Applying the asymptotic version of Theorem 1 with ¥ = I, n; = J,
Z: = (12J/(I(I + 1)))X(R: — (I + 1)/2), Case 1 and " = 1 we find that
asymptotically %> has the D[I] distribution.

Using the method of Chacko (1963), it is easy to show that the Pitman

asymptotic relative efficiency of the x.’-test with respect to the B-test for the
usual translation alternatives (see Andrews (1954)) is (I/(I + 1))1204

[f F'(¢) dF ()]
IV. EXTENSIONS MISCELLANEOUS

10. Partially ordered alternatives. Let H:" denote an alternative hypothesis
whose order restrictions specify a partial ordering of £, -+, & ; for example
bbb &S S88, -, &. Let

ISGASE = inf(gl,...,gk)egs* z’{,:lnz(Z_z -_ 21)2
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We will call the process by which the minimizing £/s are obtained the “generalized
amalgamation process”; and SGAS; we will call the “sum of generalized amal-
gamated squares for £. We define py, 1(ny, - - - , mi) to be the probability that m
distinet £7s result when the generalized amalgamation process is applied to the
Z7s; note that pmi(na, ---, m) depends on H:*. D¥n,, --- , m; k] and
B¥ny, -, m ; k, N distributions are obtained by putting *’s on the probabilities
in our old definitions.

We now present a result of Van Eeden (1958) in the form it is presented by
Bartholomew (1961a). The result requires a distinction between essential and
inessential restrictions; essential restrictions being those that remain when all
those which are redundant are struck out. Let the s essential restrictions be
labeled Ry, -- -, R, where, without loss of generality, we take R, to be R

THEOREM (van Eeden) If H,* denotes the set of essential restrictions Ry , - -+ | Ry

and if &', -+, &' is the point where Dovam(Zs — E)? ds minimized subject to
Hg*, then

(1) =8 (i=1-,k & <&

(ii) L=4§ ifh' > &

The effect of this theorem is to locate the minimum either in H. ¢* or on a bound-
ary of H:* defined by inequalities among the &’s. The problem is then solved by
obtaining the unrestricted minimum of Y4y n:(Z; — £&)? on that boundary.
This result shows that the minimizing £;’s are of the form iy Ziy + -+ +
ni, 4,,)/(n, + - + n,,) for appropriate choices of s, 41, - - -, 7, it also allows
us to use a step by step method which stops as soon as the resulting averages
satisfy certain inequalities; and note that the result of this process is independent
of the order of the steps.

THEOREM 2. Under the hypothesis of Theorem 1, both Case 0 and Case 1,
(Q — SGASy) /0" hasthe D*[n, - - -, my. ; k] distribution and (Q — SGAS) /(T + Q)
has the B*[ny, - - -, ny 3 k, v + k] distribution.

Proor. We now let x(t:, ---, t,) denote the region in the sample space
where the generalized amalgation process yields

A A 3 -
E"rj+1 = e = E"rj.,_l = (ni‘rﬂ-l Z"r,-+1 + -+ Nir; Zi‘fj.‘.l )/
(n"rj+1 + -+ n‘rj+1)7

J=0,1,---,m — 1, for some permutation (4, - - -, %) of (1, - - - , k); and let
SS8(t1, - -, tw) be the corresponding fixed sum of squares. The proof of Theorem
1 may be recopied once we show that the indicator function of the region
X(t1, -, tu) and the function @ — SS(#, ---, t,) are independent random
variables in Case 0 and 1 and that the p,(n1, - - -, nx)’s have identical values
for Cases 0 and 1 in the present situation. We use the van Eeden theorem of
this section and induction on the number s of essential restrictions to establish
tglis independence and equality of probabilities. For s = 0 %(¢#, - - -, ,) is the
whole sample space and so independence is trivial and py (7, - - - , M) = lin
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both Cases 0 and 1. We now assume that the independence and equality of
probabilities hold for the case of s — 1 or fewer essential restrictions and pro-
ceed to infer that they hold for s essential restrictions. We are still taking R,
as & < & . Now either

(i) & =& or

(i) & > & -
where these still denote the minimizing values under H;*. Each X(ti, + -+, tm)
representing case (i) is defined by a set of inequalities among Z;, - - - , Z; which
are appropriate for a problem with s — 1 essential restrictions (and which just
happen to imply &' =< &) and to this case the inductive hypothesis applies
directly yielding the desired results. Now consider an (¢, - - - , t,) representing
case (ii). In this case the van Eeden theorem tells us £ = £ . Also

n(Z — 8)2 + m(Zs — ) = (m + m)(Zp,g — £)° + terms not involving £

wheref = & = £&. Thus X(f,, - -+ , t») can be described by a set of inequalities
among Zu.y, Zs, - -+ , Zx that correspond to a problem having at most s — 1
essential restrictions. (The example at the beginning of this section shows why
we say at most s — 1 instead of simply s — 1; since letting & = & cause two
essential restrictions to be removed in that example.) When case «, a equal
0 or 1, is true, the covariance matrix of Zy, , Zs, -+, Zrisa(k—1) by (k—1)
matrix of the type considered in case a. Applying the inductive hypothesis gives
the desired results. The proof is completed. We acknowledge that it imitates
the proof of Bartholomew (1961a). It is rephrased so as to be in terms of the
regions X(f, - - , tw); and it proves three facts by induction (independence in
two cases and an equality of probabilities) rather than one (an independence).

Duphcatmg the work of earlier sections shows that the LR-test of Ho,, against
H,* under the normal theory models rejects H,™ if

= (88. — 8GAS.)/(88s + SSa)

is too large. Let H* and %" denote the obvious rank analogs of these test sta-
tistics in the one and two way layants. Then by Theorem 2, B* has the
B¥ny, -, I v+ I dlstnbutlon where v is the number of degrees of freedom
of 8Se; Whlle A* and x,”* are asymptotically distributed as Dy, -+, Jr; I
and D*[I) respectlvely Pitman are’s of these rank tests with respect to the
appropriate B*-test are the usual values. The distribution theory for all these
statistics hinges on determination of the pw (i, +++, nr)’s. This problem is
discussed in Bartholomew (1961a) where a partial solution is given. Flnally, we
remark that tests of Ho . against H," and of Ho,. n Ho,s against Ho,« 0 Hg" are
independent.

11. Asymptotically nonparametric testing against ordered alternatives. Follow
Lehmann’s (1963) approach to find nonparametric estimates of the components
of B (see the model of our Section 3) based on the Mann-Whitney test statistic.
» Instead of replacing the normal theory estimates of the components of § in the
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classic normal theory statistic by the new estimates as Lehmann does, first apply-
the amalgamation process to the appropriate components of 3 and then use these:
to replace the corresponding quantities in the statistics of our Sections 4-7.
Just as Lehmann’s test yields a Pitman asymptotic relative efficiency of
126°[ [ f* with respect to the elassical normal theory test, so the test just proposed
should have Pitman are of 12¢”[[ f*]* with respect to the appropriate test of
Sections 4-7.

12. Relation to a paper of Nuesch. A knowledge of Nuesch (1966) is assumed
in this section. Let §(C) denote that unique vector satisfying (4(C) — X)'C = 0
and min (#(C), (#(C) — X)'C) = 0; see Lemma 1.1 and Equation (2.5) of
Nuesch. The quantity § of Nuesch’s equation (3.2) is really 4(C); i.e. it is a
function of C. Thus Nuesch’s (3.4) is false; which renders his Theorem 3.1
false. Since he cannot compute the exact distribution of his statistic (3.5) in
which @ in reality denotes @(Z7™'), he derives the distribution of Ng(¥ ™)’
A7'4(27") in his Theorem 3.3. However, this quantity is unobservable. One is:
really interested in the statistic Ng(A4™")’A7"§(A4™"); and its distribution theory
is still unknown.!

However, if one assumes = = ¢°Z, with Zo known and ¢° unknown one may use
Nuesch’s technique to prove the following.

TueoreM 3. The LR test for testing H vs. K, rejects H if

B = Np(zo )20 9(20")/ 20 Xa'20 ' Ka 2 €
M oreover,
P(B z &) = 2 lw(p, k)PIB(k/2, (Np — k)/2) = ¢]

where the weights w(p, k) are computed for =, .
Proor. In Nuesch’s notation

P(8° | %) = P(N§(20") =0 (20)/ (trace (207 20 XaXo')) = ¢ | %)
= P(B(k/2, (Np — k)/2) 2 &).

Theorem 3 above and Nuesch’s Theorem 2.1 overlap our Theorem 1. However,
they do not overlap Case 1 of Theorem 1 since the w(p, k) have not previously
been evaluated for this case, they do not apply in the case of unequal sample
sizes, and they unnecessarily obscure the simple nature of the derivation of the
LR tests in the case of greatest interest when = = ¢’I.
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