SOME REMARKS ON CONTINUOUS ADDITIVE FUNCTIONALS!

By R. K. Geroor
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1. Introduction. In recent years several authors have introduced the concept
of “process on the boundary” or, equivalently, ‘“a local time” for a closed set.
See, for example, [3], [5], [6], [7], [8], and [2], V-4. If X is a standard process and
D is a subset of the state space E for X, then we define a local time for X on D
to be any nonnegative continuous additive functional (CAF) A of X whose fine
support is D and such that for each ¢ < «, A; < o« almost surely. If D consists
of a single point z,, then it is known [2], V-3, that a local time exists if and only
if zy is regular for D and that a local time is unique:up to a multiplicative con-
stant when it exists. For a general set D a necessary condition for a local time to
exist is that D be a finely closed nearly Borel set and that each point in D be
regular for D. If, in addition, D — D is polar, then a local time does indeed exist.
See [5] or [2], V-4. The purpose of this note is to diseuss to what extent a local
time is unique in the general case. The situation is roughly as follows: Suppose
A and B are two local times for X on D and let 7 and ¢ denote the inverse fune-
tionals of A and B respectively. Subject to secondary assumptions it is easy to
see that ¥, = X(7;) and Z; = X(o:) have the same hitting distributions. It
then follows from a theorem of Blumenthal, Getoor, and McKean [1] (see also
[2], V-5) that Y can be “time changed” into Z and this induces a time change
between A and B. Thus a local time for X on D is unique up to a (continuous)
time change. We will make this precise and give a very simple proof which avoids
using the (rather deep) result of Blumenthal, Getoor, and McKean. Section 2
contains some preliminary remarks and the main result appears in Section 3.

2. Preliminaries. Let X = (Q, ¥, &, X;, 0;, P°) be a standard process with
state space (E, 8). See [2] for terminology and notation. In particular, if 4 is a
continuous additive functional, CAF, of X, then Supp (A4) denotes the fine sup-
port of A(see [2],V-3). The following result is an easy consequence of known tech-
niques and hence we will only sketch its proof.

(2.1) ProrositioN. Let A and B be CAF’s of X with bounded o-potentials for
some o = 0 and suppose that Supp (B) < Supp (A). Then for each initial (prob-
ability) measure, u, there exists a sequence {g,} of nonnegative bounded nearly Borel
measurable functions such that if B"(t) = fé gn(X;) dA; then almost surely P*,
B"(-) > B(-) on [0, ), the convergence being uniform on each compact subinterval.

Proor. For simplicity we assume that & = 1. Let f(x) = us'(z) = E° [§ ¢ 'dB,

be the one potential of B. Let r be the functional inverse to A. (We use 7, and
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7(t) interchangeably, similarly A; and A(¢), X, and X(¢).) Define
Fu(z) = nlf(z) — B f(Xeam)}].

Then f, is nearly Borel measurable, bounded by f, and nonnegative since f is a
bounded one excessive function. Moreover

Udfa(z) = E° [§ € fu(X:) dA,
= B [T e X 0] dt
= n [i" B¢ f X0} dt
1 E*{e X, 0]} asn — .

But f = us and Supp (B) < Supp (4); consequently this limit is just f().
(Recall that 7, is the hitting time of Supp (A) almost surely). Therefore,
Ui, 1 fasn— . Now fix p and let V" = ¢ UYfn(X,). Clearly {Y/", 5. P"}
is a bounded potential in the sense of Meyer [4]. If

Atn = fé e_sfn(Xs) dAs
then
, B (AL |5) = A"+ Y,
and so (Y.") is the potential generated by the continuous increasing process
(A/"). On the other hand Y,;" T ¢ 'us'(X,) which is the potential generated by
B,* = [4e°dB,. It now follows [4], VII-T36, that
B*{(As" — Bo")} =0
asn — o, and this in turn implies that there exists a subsequence {nz} such that
almost surely P*
(2.2) limyo SUPo <t <o A — Bf =0
(see the proof of (VII-T37) in [4] or the proof of (IV-3.8) in [2]). As usual denote
the sequence {ny} by {k}. Let gx = fn, and let
Bi(t) = [4€ dA"(s) = [ogi(X.) dA,.

Integrating by parts we obtain

BYt) = e'A¥(t) — [$eA"(s) ds,

B(t) = e'B*(t) — [$€B*(s) ds,
and combining this with (2.2) yields the conclusion of (2.1).
(2.3) Remarks. Note that for each u the sequence {ga} is a subsequence of
{f.}. Consequently when X has a reference measure, [2], V-1.1, each g, is Borel
measurable. Clearly when o = 0 the desired convergence is uniform on [0, «].
IfA, = (1 A ¢) and X has a reference measure, then it is known that B = >, C

where each C* is such that when (2.1) is applied to C* the corresponding sequence
of functions may be chosen independently of p. See the proof of V-2.1 in [2].
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Finally any CAF of X is a countable sum of CAF’s with bounded one potentials
[2], TV-2.21.

3. The main result. Let X = (@, &, 5., X;, 6:, P°) be a standard process
with state space (E, §). We assume. that X has a reference measure; consequently
we may, and do, assume that any CAF of X is perfect and §° measurable. A
CAF, A, of X is said to be finite if A; < o almost surely for each ¢ < . This is
equivalent to requiring that almost surely ¢ — A. is finite on [0, « ). Let 4 be a
fixed finite CAF of X. We assume, as we may, that t — A;(w) is continuous and
finite on [0, ) for all w and that 4, ,(w) = A«(w) + As(6:w) for all finite ¢, s
and all w. Let D = Supp (A) be the fine support of A and let r be the inverse
functional of A. Then D is a finely closed Borel set and each point in D is regular
for D. The most important situation for applications is when D is, in addition,
closed and, for convenience, we assume that D s closed. (This is not necessary,
but it serves to simplify certain statements.) Let X = (Q, &, Fry , Xrry , Oty , P7)
denote the time changed process. We write X; = X, and 8, = 6,y . The symbols
§ L and %, , have their usual meanings relative to X. Note that () = o since
t — A, is finite on [0, »). Under the present assumptions X may, and will,
be regarded as a standard process with state space (D, &(D)). Here ®(D) is
the s-algebra of Borel subsets of D. Moreover X has a reference measure[2],
V-4, and so we may, and do, assume that any CAF of X is perfect and &°
o(X: ;¢ = 0) measurable. Since D is the state space of X the fine support of any
CAF of X is a subset of D. Of course, when discussing X, z is always assumed to
be in D U {A}. Observe that § = A(¢) is the lifetime of X. Finally it will some-
times be convenient to denote the time changed process by (X, A) as well as by
X in order to display its dependence on A. If 7(#) < o then A[r(¢)] = ¢ On
the other hand if T is any {F.} stopping time, then 7[A(T)] = T almost surely
on {Xr e D}. See [2], V-3.43. More generally it is not difficult to check that

(3.1) 7A(T)] = T + 790 6r
provided A(T) < . Since 4 is finite, T' = o« if A(T) = « and so (3.1) holds
also on {A(T) = o}. The following lemma is the key observation of the present

note.
(3.2) Lemma. If Y is§° = o(X,; s = 0) measurable, then Y o sy = Yoo,

orallte0, ©).
Proor. By standard considerations it suffices to show that for fixed £, s £ [0, )

one has X, 0040 = X,06,. But
Xyobary = Xotsy 0 rracnn = X[r(A:) + 7(8) © Oreap],
and using (3.1) the argﬁment of X in this last expression becomes
t 4 1000; + 750 Oiprgos, =t + 1000 + 750000,
=t¢4 (104 7500;,) 00 =t 4+ 7500;.
Here we have used the fact that 7o + 7, o Ory = 7s holds as an identity (in w) in

view of our assumptions on A. Hence X 0040 = X[t + 7500 = Xoy 00 =
X, 0 6,, completing the proof of (3.2).



1658 R. K. GETOOR

(3.3) Prorosition. There is a one-to-one correspondence between CAF’s B of
X whose fine support is contained in D and CAF’s B of X. This correspondence is
gwen by

(34) B, = Baw; B, = B,y .

If B and B correspond, then By = B, Supp (B) = Supp (B), and B and B
have the same potential in the sense that for nonnegative f vanishing off D and x
tn D
Usf(z) = B [5 f(X:) dB,
= E* [Vf(X.) dB: = Usf().

Proor. Suppose first of all that Bisa CAF of X — B is assumed to be perfect
and §° measurable. Define B, = B, . Clearly t — B,(w) is continuous for almost
all w. In view of the remarks (2.3) in ordAer to showA that B; is ¥; measurable it
will suffice to consider the case in which B, = [¢f(X,) ds where f is a bounded

nonnegative continuous function vanishing off D. But in this case using [2],
11-2.20, one obtains almost surely

Bi = Baw = [$PfIX)ds = [$f1Xounl dA, = [4f(X,) dA,,

since D is the fine support of A, 7(4,) = s almost surely on {X, ¢ D}, and
s — f[ X, is right continuous. Consequently B;i 1s ¥, measurable. Now B,
is $° measurable for each » and so by (3.2), B, 0 84y = B, 0 6, . Lettingu = A, 00,
this yields

Bi,o0,(bawy) = Ba,eo,(8:) = Ba,ob:.
Therefore using the fact that both A and B are perfect we have almost surely
Bus = Ba,,, = Bayrase0, = B, + Buaeo,(04,)
= B4, + Ba, 08, = B, + B, 0;.
Thus B is a CAF of X. Since Supp (B) is contained in D = Supp (4), it is
immediate that Supp (B) = Supp (B). Also By = By = B; Let f =2 Obea
continuous function vanishing off D and let « be in D. Then, as above,
Usf(z) = B [ f(X.)dB. = B [§flXeupl dBa, = B [§ f[Xoc0] dB,
= B [$f(X.) dB, = Usf(a),
and so B and B have the same potential.

Suppose next that B is a CAF of X with Supp (B) © D. Define B, = B,q.
Clearly ¢ — B, is right continuous and

Birs = Brtroy = Brygr ety = Bry + Brwy o by = By + Bso ;.

, Let ¢ be a strictly positive bounded function such that 4,* = [§o(X, ) d4,
" has a bounded one potential [2], IV-2.21. Since {{ > ¢} = {r(t) < »}, B, =
B, = B; on {§ £ t}. Assume for the moment that B is continuous. Then in
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order to show that B, is &, measurable it suffices to show that BiIns(t) =
B.I [o,w)(n) is &, measurable. In view of (2.1) and (2.3) it suffices to consider
the case in which B; = fof(X)dA * = [ie(X0)f(X,) dA, and hence the
case B, = [$g(X,) dA, where g is a bounded nonnegative continuous function
vanishing off D. But then if 7(¢) < «

B,y = [i9(X.) d4, = [§g(X,) ds

and hence B, I (10,000 (7¢) 18 . measurable. We must still show ¢ — B, is actually
continuous. If B is not continuous, then there exists an z in D and an ¢ > 0
such that P*(T < «) > 0 where T = inf {¢:B, — B,_ > ¢}. But almost surely
X, isnot in D O Supp (B) for any u & (+(T—), 7(T)). Therefore almost surely
u — B, is constant on [7(T—), 7(T')]. See [2], V-3.8. Now B is continuous and so
Br_ = B,sy = By.r = By almost surely on {T < o} and this contradicts the
fact that P°(T < o) > 0. Thus B is a CAF of X.

Finally to complete the proof we must show that the above correspondence is
one-to-one. If B is a CAF of X and B, = Buw , then B, = BA(,,) = B, since
A(re) = tif 7, < oo, whileif r, = o thent = A({) = fandso B,, = Biwy = B:.
Conversely if B is a CAF of X with Supp (B) < D and if B, = B,y , then
Biw = By = Biyryes, = Bi + B 006,. But B,, = 0 almost surely since
Supp (B) C D and 7o is the hitting time of D. Thus, by continuity, almost surely
Biw = B, for all t. This completes the proof of (3.2).

Remark. It is clear in view of our assumed normalizations of CAF’s and the
above proof that (3.4) holds only almost surely, that is, there exists Qo with
P*(Q) = 0 for all z such that (3.4) holds for all t and w £ Q, . The justification for
writing (3.4) without the qualifying phrase is the usual identification of equiva-
lent additive functionals.

The following corollary is the precise formulation of the statement in the in-
troduction.

(3.5) CoroLLARY. Let A and B be finite CAF’s of X with the same (closed) fine
support D, that 1s, local times for X on D. Then (X, A) may be transformed into
(X, B) by a continuous time change.

Proor. Let 7 and o denote the functionals inverse to A and B respectlvely
By (3. 3), B, = B,y defines a CAT of (X, A) whose fine support is D. As a
result B is strictly i increasing and so the inverse of B, 4, is continuous on [0, B.,).
The following statements hold for all ¢ and all w £ Q where P*( Qo) = 0 for all .
Since B; = BA(t) it follows that o(t) = 7(8:) if ; < . Let § be lifetime of
(X, A); then B = B; and B; is the lifetime of (X, B) while B} is the lifetime of
((X, 4), B)—the transform of (X, A) by the time change ¢. Finally {¢;, < o} =
{t < Bi}. Combining these observations we see that X| [e(t)] = X[r(é:)] for all
¢, completing the proof of (3.5).

Nore AppED I¥ PROOF. The following extension of the Blumenthal, Getoor,
and McKean result is another consequence of Proposition 3.3. Let X be as above
and’let D be a closed subset of E such that each point of D is regular for D. Let
X be a standard process with state space (D, ®(D)) whose hlttmg distributions
are the same as those of X when restricted to D; that is, if z is in D and F is a
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Borel subset of D then Pz(x, -) = Pg(x, ). Then there exists a CAF, B of X
whose fine support is D and such that X* = (X, B) is equivalent to X. To see
this let A be any finite CATF of X whose fine support is D and let X = (X, 4).
See Section V-4 of [2] for the existence of such an 4. Now X is a standard
process with state space (D, ®(D))- and one easily checks that X and X have
the same hitting distributions. Thus by the result of Blumenthal, Getoor, and
McKean there exists a CAF, B of X with Supp (B) = D such that (X, B)
and X are equivalent. Finally define B, = B, . It now follows from (3.3) as
in the proof of (3.5) that X* = (X, B) is equivalent to X.
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