OPTIMAL SEQUENTIAL PROCEDURES WHEN MORE THAN
ONE STOP IS REQUIRED!

By Gus W. HagasTROM
University of California, Berkeley

1. Introduction. Let {Y,, m = 1,2, ---} be a (possibly finite) sequence of
random variables having a known distribution. These random variables can be
observed sequentially, perhaps at some cost, by a statistician who must decide
when to stop. If he stops after having observed Y™ = (Yy, --- , ¥,.), he is then
presented with an optimal stopping problem that depends on Y™, i.e., he starts
taking observations on another sequence of random variables { Yo, , k = m + 1,
m + 2, ---} and his gain if he stops after observing Y™™ = (Vy,--- Y,
Yomit, 5 Youn) 18 Zn = fun(Y™™), where foun is a known real-valued func-
tion of all the observations up to that stage. The statistician’s problem is to
choose a procedure to maximize his expected gain.

This formulation provides a model for studying some extensions of optimal
stopping problems that were first considered by Mosteller and Gilbert in [5].
The model is specifically intended to include their two-stop problems (see the
examples in Section 3) but can be extended to include their r-stop problems.

The formulation above also applies to some statistical situations in which a
preliminary sample can be taken before a sequential decision procedure, or per-
haps the design, is decided upon for a second stage. As an example, consider the
situation of a man who is going into business for at most 40 years. Suppose that
at the end of each year he can choose to continue his operation or he can stop,
in which case his net gain is the sum of the profits (perhaps negative) for each of
the preceding years. It may be plausible to assume that these yearly profits
have a joint distribution that depends on a parameter 6, which in turn can be
assumed to have a certain prior distribution. Before starting the business, he
may be able to gather information about the value of § by making observations
on random variables (perhaps the profits of similar businesses) at some cost per
observation. The problem of maximizing the expected net gain falls under the
general formulation above. Other examples are given in Section 3.

2. General solution. The following structure will be assumed throughout:
(i) a probability space (2, F, P) with points w; (ii) a non-decreasing sequence
{Fm,m = 1} of sub-fields of F; (iii) for each fixed m = 1,2, - - , a stochastic
Process { Zmn , Foun , 1 > m} such that Fr, C Frp C Fpp s © Fforalln >m = 1.

In terms of the informal discussion at the beginning of Section 1, F,, and F,,
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are the o-fields generated by the vectors of observations Y™ and Y™™ re-
spectively. The conditional expectation operators relative to these o-fields will be
denoted below by E., and E,, respectively.

Although it is implicit in the notation above that all the sequences {F.. ,m = 1}
and {Zmn , Fn , n > m} are infinite, the theory below will still apply with only
minor notational changes if some or all of these sequences are finite.

DeriniTioN. A compound stopping variable (csv) is a pair of rv’s (s, t) with
values in {1, 2, --- , «} such that

(a) s <t < o ae;

(b) {s =m} e Fyforallm = 1;

(¢) {s=m,t =n}eFpforalln >m = 1.

For any csv (s, t), the rv Z,, , also denoted by Z(s, t) below, is defined by

Z(0) = Zm(w) if s(w) = m, Hw) =n, n >m
= —ow if s(w) > Hw) or fw) = o.

The following additional restriction on the rv’s Z,., will be assumed through-
out:

Hyporumsis A. If U = sup Zny and U, = E,U form = 1, 2, --- , then
E(sup U,,) < .

Let T, denote the class of esv’s (s, t) such that s = m, and let 7', denote the
class for which s = m and ¢ = n. A csv (o, 7) will be said to be optimal in T, (or
Twn) if EZ(6,7) = Um (O Um,) where

Um = SUP(s,t)eTp, EZst , Umn = SUP(s,t)eTpy EZS‘ .

As a preliminary to the general case, let us tentatively assume that the statis-
tician always stops for the first time after taking exactly m observations. Then
the problem of finding an optimal esv (m, 7) in T w1 is clearly equivalent to
finding an optimal stopping variable (sv) for the sequence {Zmn , Fnn , n > m},
and the “value of the game” is v, mi1 . (For general summaries of optimal stop-
ping theory, see [4] and [6], which are based upon the earlier work of Arrow,
Blackwell, and Girshick in [1] and Snell in [7]). The following sequences of rv’s
play a key role in the solution:

(1) Xomn = esssup EmnZ (s, t), (s, t) &€ Tun

(2) Xm = Eme,m+1 .

[Given a family of rv’s {Y,, te T}, we define ess sup Y, te T, as a rv X such
that (a) X = Y,a.e.foreach¢in T, and (b) if Z = Y, a.e. for each ¢ in T', then
Z = X a.e. Such a rv X always exists and can be taken as the supremum of some
countable subset of {Y,, te T}; thus, the rv X,., in (1) can be taken to be

F,-measurable.]
From results in optimal stopping theory (see [2] and the references cited there ),

the X.u.-sequence satisfies
(3) Xomn = Max [Zomn y BvinXmpn1] aee.
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Moreover, if (m, Tm,) is defined by setting 7., = the first & = n such that
Xk = Zm (or o if no such & exists), then (m, Tm,) is optimal in Ty if 7 < 0
a.e., and in this case

(4) Xom = EmnZi(m, Tms)  av.e.
The condition that 7,,, < <« a.e. holds whenever an optimal ¢sv in T, exists and,
in particular, when lim, Z,,, = — « a.e. From (2) and (4), if Tmmu < ® a.e.,
(5) Xm = EmZ(m, Tm,m+1) a.e.

Thus, after the first m observations become known, X, can be interpreted as the
statistician’s conditional expected gain if he always stops for the first time at this
stage and uses an optimal sv for the second stage. [Even if an optimal esv in
Tmmy1 does not exist, there is a sequence {(m, ), k =1} in Tm,mp such that
E.Z(m,t) 1 Xnae ask— o.]

Now consider the application of optimal stopping theory to the sequence
{Xm, Frn, m = 1}. It follows easily from Hypothesis A that E(sup Xn) < .
For each m = 1, define

(6) Vi = esssup EnX;, seSnm,

where S,, denotes the class of sv’s s relative to {F., m = 1} such that s = m.
Then, as above,

(7 Vi = max [Xo , EnVau) ae, EV, = sup EX,, $&8m.

Moreover, if an optimal sv in S,, exists for {Xm , Fr, m = 1} then o,, = the first
k = m such that X, = V; (or o if no such k exists) is an optimal sv in S,, and

(8) Vi = EnX(om) a.e.

If an optimal sv does not exist in S,. , the V,.-sequence can be used to construct
an e-good sv by setting s, = the first ¥ = m such that X, = V; — ¢ (or « if no
such k exists) ; then s, is a sv and

(9) E,X(sn) = Vu — € ae.

TuroreM 1. Let ¢ = the first m = 1 such that X» = V. (or « if no such m
exists). On {o = m}, let v = the first n > m such that Zn, = Xuma (0r © if no such
n exists);on {o = o}, set v = ., If (0, 7) is finite-valued a.e., then (a) (o, 7) s
an optimal csv, i.e., EZ(s, 1) = v1 ;and (b) Vi = EiZ(o, 7) a.e.

Proor. It suffices to show that V1 = EiZ,; a.e. for any csv (s, ¢) with equality
holding for (s, t) = (s, 7). For any esv (s, t), define the sequence of sv’s
{tw,m = 1} by t,, = Lt + (m + 1)(1 — I,,) where I,, is the indicator function of
{s = m}. Then (m, tn) € Tmmn so that by (1), (2), and (4), I.Xun =
I.E.Z(m, tn) a.e., and there is equality here if (s, {) = (o, 7) because, on
{o“= m}, T coincides with the sV 7m,m41 of (5). Next note that if U and U, are
defined as in Hypothesis A, then X,, < U, a.e. for each m; also, E,U, = U, = E,U
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a.e. for any sv s relative to {F,, , m = 1}. Thus,
EX, = ByU, — By > et In(Up. — X)
= BU — By 3 omea In(BnlU — BuZ(m, t))
= BU — Y oma BsEn (U — Z(m, tn))
= BU — By 2omea In(U — Z(m, tw))
= EZ, a.e.,

with equality holding for (s, t) = (o, 7). Since V1 = EiX, a.e. with equality for
= ¢ by (6) and (8), this completes the proof.

Clearly, the pair (o, 7) defined above cannot be finite-valued a.e. if an optimal
csv does not exist. Unfortunately, one can also construct examples in which an
optimal csv does exist, but (o, 7) is still not finite-valued a.e. Sufficient conditions
for (o, 7) to be finite-valued a.e. will be given later.

THEOREM 2. Given ¢ > 0, let s = the firstm = 1 suchthat X = Vm — €/2 (or
if no suchm exists). On {s = m}, lett = the firstn > m such that Znn = Xmn — €/2
(or o if no such n exists); on {s = =}, sett = . Then (a) (s,t) is a csv; (b)
EZ,=2V,—eae;and (c) EZy = EV, — e

Proor. (a) The finiteness of (s, t) follows from the corresponding result in
optimal stopping theory (see Theorem 3.6 of [7]).

(b) By (9), E1X, = V1 — €¢/2 a.e. Similarly, if 7, = the first n > m such that
Zovn = Xmn — €/2, then 7, is a sV for {Zmn , Fun , 0 > m} and EppaZ(m, tm) =
Xmmr — €/2 a.e. By (2), this implies that EnZ(m, 7m) = Xn — €¢/2 a.e. Now
define tw = Int + (m + 1)(1 — I,,) for each m = 1 where I,, denotes the indi-
cator function of {s = m}; then ¢ coincides with ., on {s = m}, and by the same
type of proof as in Theorem 1 it follows that EiZ,, = EiX, — ¢/2 2 Vi — ea.e.

(¢) This follows by taking expectations in (b).

TuEOREM 3. Let { V., m = 1} be defined as in (6). Then

(a) Vi = esssup EnZs, (8,8) € T s

(b) EVm = Un

(¢) if (o, 7) is any optimal csv in T , then Vi = EnZ(o, 7) a.e.

Proor. (a) It was shown in the proof of Theorem 1 that Vi = EiZ,, a.e. for
any csv (s, t). This combines with Theorem 2(b) to prove (a) for the casem = 1,
and the proof for arbitrary m follows immediately.

(b) Since EiZ,; < Vi a.e. for any csv (s, t), v = sup EZ,; < EV:. The
opposite inequality follows from Theorem 2(c¢).

(¢) By (a), Vm = E.Z(o, 7) a.e. Contrary to the assertion, suppose there is an
e > 0 such that EnZ(c, 7) £ Vmu — eon a set A in F, for which P(4) > 0.
By a proof analogous to that given in Theorem 2(b), there is a csv (s, ¢) in T
such that E,Z(s,t) = V. — ¢/2 a.e. Now consider the csv (s*, ¢*) which coin-
cides with (s, t) on A and with (o, 7) on A°. Then (s*, t*) & T\ and it is easily

,seen that EZ(s*, t*) > EZ(s, 1), thus yielding a contradiction.
If optimal csv’s exist in each of the classes T’ (as in the “truncated case” be-



1622 GUS W. HAGGSTROM

low or under the conditions of Theorem 4 below), then by (7) and Theorem 3(¢),
Vi = max (X, , EnZ(om , Tm)] a.e. for each m = 1 where (0, , 7») is any optimal
csv in T'nys . Thus, stopping at the first m such that X, = V,, (as in Theorem 1)
is equivalent to stopping at the first m such that X, = EnZ(om , 7).

Now suppose that the collection {Z,., , m Z 1,n > m} is finite, say of the form
{Zmn,1 Em = M,m <n = N(m)} where M, N(1), --- , N(M) are positive
integers. The above theory clearly applies to this case with only minor notational
changes. As in the corresponding optimal stopping theory for the truncated case
(see [6]), the sequences {X..,} and {V.,} can be determined (at least in theory)
by backward induction using the following relations:

(10) X = Zmymy for 1 <m £ M;

(11) Xpw = max [Zon , BvnXmpma] for m < n < N(m), 1 £ m £ M,
(12) Vu = Xu;

(13) Vo = max (X, ExVmy] for 1 =m < M.

Examples illustrating the calculations necessary to carry out a solution using
these relations will be given in Section 3.

The esv (o, 7) of Theorem 1 is clearly finite-valued, and therefore optimal, in
the truncated case above. For sufficient conditions in the non-truncated case, the
following theorem appears useful, especially for possible statistical applications
in which Z,, = —(Tn + ¢m + d,) Wherec, T © asm— o,d, T © asn— «,
and 7., = K for all m and n.

TareoreM 4. Suppose that

(a) limy, Zp, = —» a.e. for each m = 1, and

(b) limy, sup, Zm, = — » a.e.

Then an optimal csv (o, 7) exists and can be defined as in Theorem 1.

Proor. It suffices to show that the pair (o, 7) of Theorem 1 satisfies: (i) ¢ <
a.e.,and (ii) 7 < « a.e. on {¢ = m} for each m = 1. Condition (ii) follows from
(a) and Snell’s condition for the existence of an optimal sv (see Corollary 3.1 of
[6]). Similarly, (i) will hold if we can show that lim,, X, = — « a.e. Set

Y = SUDt2m SUPn Zin -

Then Y,, | — a.e. asm — « by (b), and, since X,, < E,Y. a.e. by (1) and
(2), it suffices to show that lim,, E,Y» = —  a.e. From Hypothesis A we have
that E(sup Z,) < « so that EY," < o« for each m = 1. Thus, since
E.Yn = E,Y, whenever n > m, it follows from Theorem 2.4 of [7] that for any

m =1 ,
(14) E.Y, = lim, E,Y,, = lim sup,-» E.Y, a.e.

where E, denotes the conditional expectation operator relative to the o-field
generated by Us— F, . The result now follows by taking the limit in (14) as

m.—> oo,
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3. Examples. a. An investment problem. Let Yy, Yy, - - - , Y be independent,
each uniformly distributed on [0, 1]. These rv’s can be interpreted as prices of a
commodity that a statistician observes sequentially. He must make two stops,
buying at the first stop and selling at the second; thus, if his stops are at stages
mandn(m <n = N), his gainis Zp, = ¥V, — Vi .

Let F,, and Fo, be the o-fields generated by Y™ and Y™ respectively where
Y® = (1vy, .-, Yi). Then choosing a procedure to maximize the expected
gain amounts to choosing an optimal csv. By the independence of the ¥’s , equa-
tions (10)-(13) become

Xwn = max (Y, — YV, 00 — V) = max (Y, , ay) — YV
where ay = 0, and a1 = Emax (Y, , &) = (1 + «,’)/2forn £ N;
Vi = max (Xm, Bn) = max (am — Y, Bm) for m < N
where By—1 = ay-y — 1 = —% andform < N
Bns = Emax (am — Yo, Bn) = Bm + $(an — Bn)".

It follows from these relations and Theorem 1 that an optimal procedure is to
stop at the first m such that o — Y = B, (or YV, £ @, — Ba) and thereafter
at the first n such that Y, = «,. The expected gain using this procedure is
Bo = B + 2(aa — B1)% A short table of the o’s and B@’s is in Table 1.

TABLE 1
k ay _ g By - & k aN - K By - K
1 .5000 —.5000 7 .8203 .5287
2 .6250 .0000 8 .8364 5712
3 .6953 .1953 9 .8498 .6064
4 L7417 .3203 10 .8611 .6360
5 L7751 .4091 11 L8707 .6613
6 .8004 .4761 12 .8791 .6833

b. Dowry problem with two choices. This problem was originally posed by
Mosteller and Gilbert in [5]; their solution used a heuristic argument that can
now be made precise by appealing to the results in Section 2. Let
(w1, wy, --+, wy) denote a random permutation of the integers 1, 2, --- , N
where all N'! permutations are equally likely. Let Y; denote the relative rank of
w; among (w1, we, +++, ws); i.e., ¥; = 14 (number of terms wy, -+, wiy
less than w;). Then Yy, ---, Yy are independent, and P(Y,; = j) = 1/ for
J =1, -+, 4. A statistician observes the relative ranks ¥, , - - - , ¥y sequentially
and is permitted two stops. If his stops are after stages m and n, he wins one unit
if either w, = 1 or w, = 1. Finding a stopping procedure to maximize his prob-
ability of winning amounts to finding an optimal csv given that F,, and F,., for
m,< n = N are the o-fields generated by Y™ and Y™ respectively, and

Zmn = P(wn = 1|Y™) + P(w, = 1|Y™) = Qun + R., say.
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Here, R, = n/N or 0 according as ¥, = 1 or >1. By the independence of the
Y /s, equations (10) and (11) become
Xon = Qun + max (R, , a,)
where ay = 0, and forn < N
a1 = Emax (R, @) =1/N 4+ (n — Da/n if n/N = o

(15) .

= oy if n/N <a,.
Solving this difference equation for the ,’s gives o, = nL,/N fors — 1 =n < N
and @, = a,1 forn < s — 1, where L, = ) i 1/7 and s is the largest integer

for which L, < 1. By Theorem 1, on {¢ = m}, 7 is the first n > m such that

R, = «,. Note that R, = o, if and only if n = s and Y, = 1. Since
Xn = E(Xpmir| Y™) = R + an for m < N, equations (12) and (13) become

Vi = max (Rm + am, Bn) for m < N
where By—y = ay1,andforl S m < N
Bn = E max (Bn + on , Bn)
= (m/N + an)/m + Bu(m — 1)/m if m/N + om = Bn

= Bm otherwise.

By Theorem 1, o is the first m = r such that Y., = 1, where r is the first integer for
which /N + a, = .. (The sequence m/N + a, is increasing with m by (15),
whereas 8, decreases with m.) The pair (7, s), called “starting numbers” in [5],
completely characterize the optimal procedure. To find r, Mosteller and Gilbert
compute the probability of winning for all such procedures that use a pair of
starting numbers (g, s) where ¢ < s; then r is the minimizing value of ¢. Table 3
in [5] gives these pairs (r, s) [denoted by (r*, s*) there] for many values of N.

c. The burglar problem. Let 6, , 0, , - - - be independent, positive rv’s having a
common distribution with finite second moment. Here 6,, represents the mean
yield of burglaries executed successfully in the mth city on a burglar’s list. By
traveling from city to city, the burglar can observe the rv’s 6, , 6z, - - - sequentially
at a constant cost ¢ per observation. If he stops after observing 6,. , he must
restrict his burgling to the mth city in which case the successive yields from
burglaries in that city are rv’s Ymi, Yma, « - - . These rv’s are assumed to be con-
ditionally independent given 6,, , each having conditional cdf pI + qH(6,) where
0<p<1l,q=1—p,Iisthecdf of a degenerate distribution at 0, and H(9) is
the cdf for a negative exponential distribution with mean 6. We shall say that the
burglar “gets caught” while observing Y.,; if Y,,; = 0. Thus, there is a constant
probability p of getting caught on each burglary. If he stops before getting
caught, he gets to keep all the yields from the jobs performed successfully.If he
gets caught, he loses all his earlier gains.

" To formulate this as a compound stopping problem, let F,, and F., be the
o-fields generated by (61, ---, 0n) and (61, -+, O, Ymi, -+, Ymum) Te-
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spectively, and set
Timn = Z:‘_—In mi — Cm if H:&:{n Yii # 07
= —cm otherwise.

To assure that Hypothesis A is satisfied, we now suppose that Y = 0nY
where Yy, Y3/, - - - are mutually independent (and independent of the 6/’s), each
having cdf pI + ¢H(1). Then if N is the first integer n such that ¥, = 0,
Zomn < 0.Sy — cm where S, = Yy + --- + Y,/; hence, U = sup Zt. < Q where
Q = sup (6.8y — cm)™. However, EQ < « by Corollary 2 of [3], because
E0/8x = (E07)(ESy") < . Therefore,

Up = BnU < supizm (0:8y — &)™ + E supisn (0:Sy — ci)* = Q + EQ

so that E(sup Un) = 2EQ < =

For fixed m, the sequence {Zn, , Fmn , n > m} satisfies the conditions of the
“monotone case” considered in [3]. To see this, set B, = {E(Zmnnt1| Fmn) = Zma}
forn > m; then it follows that B, = {Zm, = —cm Or Zpy Z bn — cm} where
b = EnYm/D = @On/D, 50 that Buys C Buia C -+ - . By Theorem 1 of [3], an
optimal ¢SV 7m,mt1 i T w1 is given by stopping the first time that B, occurs or,
equivalently, the first time that Ym,m = 0 or SEMY: = bn. By (5),
X, = EnZ(m, Tmms1) a.e., because, as is easily seen, any two optimal csv’s in
Tmmt yield the same X, .

Computing the X,,’s entails solving the following random walk problem. Let
Y:,Ys, - - - be independent, each having edf pI + ¢H(6), and let N be the first k
such that ¥, = Oorw + 2.5 Y = bwhereb > 0, u < b. We want to find f(0) if
f(u) = BES(u) where S(u) = u + 2.1 Yiif Yy > 0,8(u) = 0if Yy = 0.Itis
easily seen that f satisfies the functional equation

(16) fu) = qlUfs™ f(u + y)ho(y) dy + [ (u + y)ho(y) dy]

where hs(y) = (1/6)¢*"®. After a change of variable on the right in (16) to
y + u, one can differentiate both sides to obtain f'(w) = pf(u)/8, so that
f(u) = Ce™". Since f(b—) = ¢(b + 6) by (16), it follows that f(u) =
q(b + 0)e"“ " 50 that, if b = ¢8/p, f(0) = ¢b/pe”.

Applying this result to the computation of the X.-sequence gives us that
X,, = 16, — cm for m = 1 where r = ¢/pe’. Let G denote the common cdf of
76y, 765, - - - , and let « be defined by [t - o)TdG(t) = c. Then (see [3]), an
optimal sv for { X, , Fn , m = 1} is given by ¢ = the first m such that 76 = «,
and EX, = a. Thus, an optimal csv is given by (s, 7) where 7 is defined on
{c = m} as the first n such that Y nm = 0 or D" Yo 2 0n/p. Moreover,
EZ(s, 7) = a. The computation of a becomes particularly simple if the common
distribution of the 6/s is negative exponential with mean X and rA = c; in this
case, a = 7A In (rA/c).
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