ON TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES

By N. GIRI

Indian Institute of Technology, Kanpur

0. Introduction. Let $X=(X_1,\cdots,X_p)'$, $Y=(Y_1,\cdots,Y_p)'$ be independently and normally distributed column vectors with unknown means $\xi=(\xi_1,\cdots,\xi_p)'$, $\eta=(\eta_1,\cdots,\eta_p)'$ and unknown positive definite covariance matrices Σ_1 , Σ_2 respectively. We are interested here to test the null hypothesis $H_0:\Sigma_1=\Sigma_2$. This problem remains invariant under the group G of affine transformations (linear transformations together with translations) of the form $X\to AX+b_1$, $Y\to AY+b_2$ where A is a $p\times p$ non-singular matrix and b_1 , b_2 are p-dimensional column vectors. Let X_1,\cdots,X_{N_1} be the samples of sizes N_1 and N_2 from X, Y respectively. Writing

$$\begin{split} & \bar{X} \; = \; \sum_{1}^{N_1} X_i / N_1 \; , \qquad \bar{Y} \; = \; \sum_{1}^{N_2} Y_i / N_2 \; , \\ & S_1 \; = \; \sum_{1}^{N_1} \left(X_i \; - \; \bar{X} \right) \left(X_i \; - \; \bar{X} \right)' \quad \text{and} \quad S_2 \; = \; \sum_{1}^{N_2} \left(Y_i \; - \; \bar{Y} \right) \left(Y_i \; - \; \bar{Y} \right)'; \end{split}$$

a set of maximal invariants in the sample space with respect to G (with sufficiency and invariance reduction in either order, see Hall, Wijsman and Ghosh (1965)), is R_1, \dots, R_p , the characteristic roots of $S_1S_2^{-1}$. The corresponding set of maximal invariants in the parametric space under G is $\theta_1, \dots, \theta_p$, the characteristic roots of $\Sigma_1\Sigma_2^{-1}$. In terms of maximal invariants our testing problem can be reduced to that of testing the null hypothesis:

$$(0.1) H_0: \theta_1 = \cdots = \theta_n = 1$$

We will consider here the following alternative.

$$(0.2) H_1: \sum_{i=1}^{p} \theta_i > p.$$

The dual alternative $\sum_{i=1}^{p} \theta_{i} < p$ is reduced to (0.2) by interchanging the roles of the X's and Y's.

For this problem several invariant tests are known to us (i) a test based on $|S_2|/|S_1|$, (ii) a test based on tr $S_1S_2^{-1}$, (iii) Roy's test based on the largest and the smallest characteristic roots of $S_1S_2^{-1}$, (iv) Kiefer and Schwartz's test (1965) based on $|S_1 + S_2|/|S_2|$.

From Anderson and Das Gupta (1964) it follows that the power of each of the above tests for testing H_0 against H_1 is a monotonically increasing function of each θ_i . Kiefer and Schwartz's test is admissible for this problem. We will suggest here another test based on tr $S_2(S_1 + S_2)^{-1}$ which is locally best invariant.

1. Locally best invariant test. Let \mathfrak{X} be the space of maximal invariant R in the sample space and Ω be the space of corresponding maximal invariant θ in

Received 11 January 1966; revised 12 September 1967.

276 N. GIRI

the parametric space where R and θ are diagonal matrices with diagonal elements R_1, \dots, R_p and $\theta_1, \dots, \theta_p$ respectively. For each point θ in Ω suppose that $p(\cdot;\theta)$ is a probability density function of R with respect to the Lebesgue measure μ . For fixed α (level of significance), $\theta < \alpha < 1$, we shall be interested in testing the hypothesis $H_0: \theta = \theta_0 = (\theta_1^0, \dots, \theta_p^0)$ against the alternative $H_1: \theta = (\theta_1, \dots, \theta_p) \neq \theta_0$ such that $\sum_{i=1}^{n} (\theta_i - \theta_i^0) > 0$.

For notational covenience we will write θ as vector.

Assumption. Suppose that

(1.1)
$$p(r;\theta)/p(r;\theta_0)$$

$$= 1 + \sum_{i=1}^{p} (\theta_{i} - \theta_{i}^{0}) \{ g(\theta_{i}, \theta_{0}) + K(\theta_{i}, \theta_{0}) U(r) \} + B(r; \theta_{i}, \theta_{0})$$

where $g(\theta, \theta_0)$ and $K(\theta, \theta_0)$ are bounded for θ in the neighborhood of θ_0 , $K(\theta, \theta_0) > 0$, $B(r; \theta, \theta_0) = o(\sum_i^p (\theta_i - \theta_i^0))$ and U(r) is bounded and has continuous distribution function for each θ in Ω .

DEFINITION. If the assumption is satisfied we shall say that a test is locally best invariant for testing H_0 against H_1 if its critical region is given by $U(r) \ge C$ (C depending on α and θ_0).

In our application we will take θ_0 to be an identity matrix. The probability density of the maximal invariant R is given in James ((1964), Equation 65) from which the probability ratio is given by (writing $N_1 - 1 = N_1$ and $N_2 - 1 = N_2$)

(1.2)
$$f(r;\theta)/f(r;I)$$

$$= |\theta|^{-N_1/2} {}_{1}F_{0}((N_1 + N_2)/2; -\theta^{-1}, R)/{}_{1}F_{0}((N_1 + N_2)/2; -I, R)$$

where

$$(1.3) {}_{1}F_{0}((N_{1}+N_{2})/2; -\theta^{-1}, R) = \int_{O(p)} |I + \theta^{-1}HRH'|^{-(N_{1}+N_{2})/2} dH$$

and dH stands for the Haar measure on the orthogonal group O(p). From (1.2) simple calculation yields.

$$f(r;\theta)/f(r;I)$$

$$(1.4) = 1 + \frac{1}{2} \sum_{i=1}^{p} (\theta_{i} - 1) \{ N_{2} - K \sum_{i=1}^{p} (1 + R_{i})^{-1} \} + B(\theta, R)$$
$$= 1 + \frac{1}{2} \sum_{i=1}^{p} (\theta_{i} - 1) \{ N_{2} - K \operatorname{tr} S_{2}(S_{1} + S_{2})^{-1} \} + B(\theta, R)$$

where K is a positive constant and $B(\theta, R) = o(\sum_{i=1}^{p} (\theta_{i} - 1))$. Hence we have the following theorem.

THEOREM. For testing H_0 against H_1 the test, which rejects H_0 if tr $S_2(S_1 + S_2)^{-1}$ is less than constant, is locally best invariant.

It is easy to see that the acceptance region tr $S_2(S_1 + S_2)^{-1} \ge \text{constant}$, satisfies the condition that if (R_1, \dots, R_p) is in the region so is $(\bar{R}_1, \dots, \bar{R}_p)$ with $\bar{R}_i < R_i$ for all *i*. Hence from Anderson and Das Gupta (1964) it follows that the power of the test with the above acceptance region is monotonically increasing function of each θ_i $(i = 1, \dots, p)$.

REFERENCES

- [1] Anderson, T. W. and Das Gupta, S. (1964). A monotonicity property of the power functions of some tests of the equality of two covariance matrices. *Ann. Math. Statist.* 35 1059–1063.
- [2] James, A. T. (1964). Distribution of matrix variates and latent roots derived from normal spaces. Ann. Math. Statist. 35 475-501.
- [3] Kiefer, J. and Schwartz, R. (1965). Admissible Bayes character of T²-R²- and other fully invariant tests for classical multivariate normal problems. Ann. Math. Statist. 36 747-770.
- [4] Roy, S. N. (1958). Some Aspects of Multivariate Analysis. Wiley, New York.
- [5] Hall, W. J., Wijsman, R. A. and Ghosh, J. K. (1965). The relationship between sufficiency and invariance with applications in sequential analysis. Ann. Math. Statist. 36 575-614.