RECURRENCE RELATIONS BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANGEABLE VARIATES

By H. A. DAVID AND P. C. JOSHI

University of North Carolina at Chapel Hill

Let $X_{i:n}$ $(i=1, 2, \dots, n)$ be the order statistics obtained by re-arranging in non-decreasing order of magnitude the variates X_i having common marginal cdf P(x). Denote by $F_{i:n}(x)$ and $\mu_{i:n}$ the cdf and expected value of $X_{i:n}$. Recurrence relations for moments and other functions of the $X_{i:n}$ have been derived by many authors, usually on the assumption that the X_i are independent continuous variates. The most basic of these relations states that for $r=1, 2, \dots, n-1$,

$$n\mu_{r:n-1} = r\mu_{r+1:n} + (n-r)\mu_{r:n}.$$

In a paper which has appeared since a longer version of this note was submitted for publication, Young [6] shows (in effect) that (1) and hence results deducible from (1) continue to hold if the X_i are exchangeable, continuous or discrete variates, i.e., if $\Pr\{X_1 \leq x_1, X_2 \leq x_2, \dots, X_n \leq x_n\}$ is symmetric in x_1, x_2, \dots, x_n . In this note we point out a simple argument which establishes (1) and multivariate generalizations thereof for exchangeable variates. Also, we give an application of the result

(2)
$$F_{n-1:n}(x) = nF_{n-1:n-1}(x) - (n-1)F_{n:n}(x),$$

which is just the special case r = n - 1 of the counterpart of (1) for cdf's.

We illustrate our argument on the bivariate case. Let $F_{r,s:n}(x, y)$ denote the joint cdf of $X_{r:n}$ and $X_{s:n}$ ($1 \le r < s \le n$; $x \le y$) and let $\mu_{r,s:n} = \mathcal{E}(X_{r:n}X_{s:n})$. Now of the n variates X_i drop one at random and let $Y_{i:n-1}$ ($i=1,2,\cdots,n-1$) denote the ith order statistic in the reduced set of n-1 exchangeable variates. Then according as the variate dropped is one of the (a) first r, (b) next s-r, (c) last n-s, of the $X_{i:n}$ ($1 \le r < s \le n-1$), we see that $Y_{r:n-1}$, $Y_{s:n-1}$ are distributed jointly as (a) $X_{r+1:n}$, $X_{s+1:n}$ or (b) $X_{r:n}$, $X_{s+1:n}$ or (c) $X_{r:n}$, $X_{s:n}$. Since the events (a), (b), (c), have respective probabilities r/n, (s-r)/n, (n-s)/n, it follows that for any x, y ($x \le y$)

(3)
$$nF_{r,s:n-1}(x,y) = rF_{r+1,s+1:n}(x,y)$$

$$+ (s-r)F_{r,s+1:n}(x,y) + (n-s)F_{r,s:n}(x,y).$$

Differentiating or differencing, multiplying by $e^{itx+iuy}$ and integrating or summing, we obtain the same relation between pdf's, characteristic functions, and

Received 2 February 1967; revised 14 August 1967.

¹ Supported by the Army Research Office (Durham).

TABLE 1									
Upper 5 and 1% points of $X_{n-1:n}$, the	ie secon	d largest an	iong n equi-	-correlated	standard normal				
variates	with	correlation	coefficient						

n	2	3	4	5	6	7
5%	1.100	1.400	1.569	1.685	1.773	1.843
1%	1.713	1.981	2.134	2.242	2.324	2.390
n	8	9	10	11	12	
5%	1.901	1.950	1.993	2.031	2.065	
1%	2.443	2.490	2.532	2.569	2.597	

hence raw moments of any order (provided these moments exist). In particular, this gives the result

(4)
$$n\mu_{r,s:n-1} = r\mu_{r+1,s+1:n} + (s-r)\mu_{r,s+1:n} + (n-s)\mu_{r,s:n},$$

established by Govindarajulu [3] for independent identically distributed continuous variates. For the equi-correlated multivariate normal case (with common marginal cdf). (4) may also be proved with the help of expressions for the moments of order statistics given by Owen and Steck [5].

As an application of (2) consider the problem of testing n "treatment" means against a control "mean" (Dunnett [1]). Let Z_{ij} and Z_{0h} ($i=1, 2, \dots, n$; $j=1, 2, \dots, k$; $h=1, 2, \dots, l$) be mutually independent normal variates, Z_{ij} and Z_{0h} being respectively $N(\mu_i, \sigma^2)$ and $N(\mu_0, \sigma^2)$, with σ^2 assumed known. In order to test simultaneously whether any of the treatment means \bar{Z}_i differ from the control mean \bar{Z}_0 we may use the statistic

(5)
$$X_{n:n} = \max X_i = \max_{i=1,2,\dots,n} (\bar{Z}_i - \bar{Z}_0) / \sigma (1/k + 1/l)^{\frac{1}{2}}.$$

Here the X_i are equi-correlated standard normal variates with $\rho = k/(k+l)$. The cdf of $X_{n:n}$ for various ρ has been tabulated by Gupta [4] whose tables may therefore be used to obtain $F_{n-1:n}(x)$ and hence percentage points of $X_{n-1:n}$. For the case k=l, i.e., $\rho=\frac{1}{2}$, upper 5 and 1% points are given in Table 1. Young [6] also tabulates upper percentage points of $X_{n-1:n}$ for $n \leq 8$ but we disagree with some of his values. The more general statistic, in which σ is replaced by an estimator S such that $\nu S^2/\sigma^2$ is distributed as χ^2 with ν d.f., independently of the numerator in (5), can now be handled by studentization. As pointed out by Fisher [2] in connection with harmonic analysis a test of the second largest variate becomes of special interest when the test on the largest is inconclusive, that is, close to the chosen level of significance.

REFERENCES

 Dunnett, Charles W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Amer. statist. Assoc. 50 1096-1121.

- [2] FISHER, R. A. (1940). On the similarity of the distributions found for the test of significance in harmonic analysis, and in Stevens's problem in geometrical probability. Ann. Eugen. 10 14-17.
- [3] GOVINDARAJULU, Z. (1963). On moments of order statistics and quasi-ranges from normal populations. Ann. Math. Statist. 34 633-651.
- [4] GUPTA, SHANTI S. (1963). Probability integrals of multivariate normal and multivariate t. Ann. Math. Statist. 34 792-828.
- [5] OWEN, D. B. and STECK, G. P. (1962). Moments of order statistics from the equicorrelated multivariate normal distribution. Ann. Math. Statist. 33 1286-1291.
- [6] YOUNG, D. H. (1967). Recurrence relations between the P.D.F.'s of order statistics of dependent variables, and some applications. *Biometrika* 54 283-292.