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THE ASYMPTOTIC ERROR OF ITERATIONS!

By PerER FRANK
Syracuse University

0. Iterative methods appear in many mathematical investigations. The
theorem concerning contraction mappings is a well known fact about iterations;
it is useful for existence theorems and for estimates of error in numerical work.
This paper investigates iterative processes in the presence of random errors;
it is shown that these errors stabilize.

In Section one, a general theorem is formulated and proven for the case the
basic space is the real numbers. In Section two, the theorem is generalized to
Banach spaces. In Section three, connections with Markov processes and non-
linear integral equations are pointed out. )

1. In the statement and proof of the following theorem, we use the notation
|lz|| instead of |z| to anticipate the generalization to Banach spaces.

TarorREM 1. Let

(a) T(x) be a real function of a real variable satisfying

(1) IT(z) — Ty < K ||z — yl|, forall z and y, where K < 1;

(b) [e]i=1 be a sequence of independent and identically distributed random vari-
ables with E(||ei]|) < «;

(¢) [6:)i=1 be a sequence of random variables with D i—y K™ ||| converging to
zero tn probability (or, equivalently, in distribution);

(d) the sequence [D,(X)]n= be defined by the following relations for each random
variable X :

(2) Dy(X) = X,
D,(X) = T[Dpa(X)] + e&n + 8, for n = 1.

Under these conditions, the random variables D,(X) converge in distribution; the
limiting distribution 1s determined by the function T and the common distribution
of the random variables e; and thus does not depend on X and the random variables §; .

In the proof of the theorem, the following lemma, is needed.

Lemma. Let Xy, -+ , Xn, - - - be a sequence of random variables with E(|X,|) =
H < . Let K be a real number with |K| < 1. Then the series ) ney K"X, con-

verges absolutely almost everywhere.
Proor. This follows directly from the inequalities:

E(D nalK"X,|) £ 2 WalK|"H < |K|-H/(1 — |K|) for every N.

Proor or TaE THEOREM. The case with 6, ## 0 can be reduced to the case
8, = 0 as follows: Define C,(X) by
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(3) Cy(X) = X,

Ci(X) = T[Coaa(X)] 4+ & for n = 1.
It is easy to establish by induction that [[D.(X) — Co(X)|| £ Xty K™ 7*||54].
By (d), Dn(X) — Ca(X) converges to zero in probability. Thus, if we can show
that the sequence C,(X) has a limiting distribution not depending on X, it will
follow that D,(X) has the same limiting distribution and the proof will be com-
pleted. The remainder of the proof consists of three steps.

Step 1. A sequence of random variables [Z,(X)] is constructed with the prop-
erty that for each n, Z,(X) has the same distribution as C.(X).

StEP 2. A proof that the sequence [Z,(X)] converges with probability one.
(This is not true of the sequence [C.(X)].)

SteP 3. A proof that lim,.. Z,(X), which exists by Step 2, does not depend
on X; that is, if X; and X, are any two random variables then lim, .. Z.(X,;) =
lim,., Z,(X,) with probability one.

Steps one and two imply that the sequence C,(X) converges in distribution;
Step three establishes that the limiting distribution does not depend on X.

Proor or Step 1. For each n = 1 define

(4) Zno(X) = X and
Zni(X) = TlZnpa(X)] + enis for 1<k <.

Let Z,.(X) = Z,.(X). Comparing (4) with (3), it is seen that Z,(X) is the
same as Cn(X) except that &, ---, e have been taken in the reverse order.
Since the ¢’s are independent and identically distributed, their joint distribution is
invariant under such a permutation; thus Z,(X) has the same distribution as
C.(X).

When the dependence on X is unimportant, the notations Z, and C, are used
instead of Z,(X) and C,(X) respectively.

Proor or Step 2. To show that the sequence Z, converges with probability
one, it is sufficient to show that the series Y mes (Z, — Zn_y) converges with
probability one. To show this, the following inequality is first established:

1Zo = Zoa|| < K" T(X) — X|| + [leanlll.
By (4), |Zy — Znall = |(TZpps + &) — (TZnyns + &)
= TZnna — TZnansl
< K|\ Znns = Znnl, by (1).
If this procedure is followed (n — 2) times, it is seen that
1Zn = Zassll < K" Zn2 — Znaall
= K" Y (TZns + en1) — (TX + e)|, by (4),
= K"|TZ,, — TX||
< K" NZ.1 — X|, by (1),
= K"(TX + &) — X[, by (4),
< K" ITX — X|| + llelll, by the triangle inequality.
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The series s K" '|TX — X|| converges with probability one because it is
a geometric series. The series D s K" ||| converges by the lemma and as-
sumption (b). The series D nws(Z, — Zn_1) converges with probability one be-
cause each term (Z, — Z,_1) is bounded in absolute value (norm) by the term
of a series which converges with probability one.

Proor or Step 3. For any two random variables X; and X, ,

1Z0(X1) = Zn(X2)|| = |TZ0na(X1) — TZnpa(Xo)l], by (4),
< K| Znpi(X1) — Znna(Xo), by (1).
By repeating this procedure n times, it is seen that
1Za(X1) — Za(Xo)|| < K" X1 — Xl
Thus, limy.e [Z.(X1) — Z.(X2)] = 0 everywhere. Q.E.D.

It is interesting to note that it is not assumed that E(¢;) = 0; thus the system
has a stable asymptotic behavior even though a bias may be present at each step.
The assumption that E(||e]]) < « was only used to insure that >, K*|]| con-
verge with probability one; this is not a necessary condition for convergence
and undoubtedly can be weakened.

2. In this section, Theorem 1 is generalized to the case that T is a transforma-
tion from a real Banach space M into itself, and the random variables §; and e;
are M-valued random variables (called M-random variables). General defini-
tions and properties of these random variables can be found in E. Mourier [5]
and [6]. Let M™ be the dual of M; by definition, if X is an M-random variable
and m* ¢ M™* then m*(X) is a random variable in the ordinary sense. If the fol-
lowing additional definitions are adopted, Theorem 1 is valid.

DeriniTION (2). Two M-random variables X and Y have the same distribu-
tion if and only if for all m* & M*, the random variables m*(X) and m*(Y) have
the same distribution.

DeriniTioN (b). A sequence [X;] of M-random variables converges in distri-
bution if and only if for all m* ¢ M™ the sequence [m*(X;)] converges in distribu-
tion.

It is well known that these definitions are equivalent to the usual definitions
in n-dimensional space; easy proofs are available using characteristic functions.

In the case of a general Banach space, the proofs of Steps one, two and three
are identical. Since [Z,] converges with probability 1, m*(Z,) converges with
probability 1 for all m* ¢ M*, and thus m*(Z,) converges in distribution. This
proves the assertion for C,,(X) and the assertion for D,(X) follows as before.

3. This section is devoted to a few remarks concerning the fact that the ran-
dom variables C, = Cn.(X)(n = 0) form a Markov process. (Attention is re-
stricted to the case that M is the set of real numbers; this avoids some technicali-
ties.)

Let the common distribution function of the ¢’s be E(z); that is

E(xz) = Prob [e¢; £ z].



THE ASYMPTOTIC ERROR OF ITERATIONS 269

It is clear that
Prob [Coy1 S 2| Ch = y] = Elx — T(y)] for n = 0.

Let H(z) be the distribution function of the limiting distribution; then H satis-
fies the equation

(5) H(z) = [15El — T(y)]dH(y).

In the case that the ¢’s have a density function e(z), the limiting distribution
has a density function A(z) which satisfies

(6) h(z) = [*2elx — T(y)Ih(y) dy.

Theorem 1 shows that if E(z) is a distribution function with [ |z| dE(z) < o
and T'(z) satisfies (1) then equation (5) has a unique solution which is a distri-
bution function; a similar statement can be made about Equation (6).

ReMARKS. 1. Theorem 1 does not seem to be a consequence of the known facts
about Markov processes whose state space is the set of real numbers.

2. The only cases in which an explicit solution to (5) is known are for 7T linear;
the limiting distribution may be singular with respect to Lebesgue measure.

The expected value of the limiting distribution may not be the fixed point
even when Fe; = 0. For more information about estimates of the first two
moments of the limiting distribution, see Frank [1].

3. In the method of “stochastic approximation” the random variables con-
verge in probability (and sometimes with probability one) in contrast to the
processes discussed in this paper.
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