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SOME INVARIANT LAWS RELATED TO THE ARC SINE LAW
By. J. P. Imuor

Undversity of Geneva

1. Introduction and summary. Let {X,:7 = 1,2, --- } be a sequence of ran-
dom variables such that Xy, ---, X, are exchangeable and symmetric (n =
1,2, ---). Suppose that ties occur with probability zero among the partial sums
So = 0,8, = 2 _1X:.We study the laws of the variables

Ji , the index of the kth positive sum in the sequence S, S, -+« (k =
),
N/, the number of positive sums among Sy, S, -+ , St,, where L, is

the index of max {So, Si, -+, Sa}.
Brief attention is given to Jj in [2], where the s1mp1e form of its law in the
symmetric case is however not mentioned. The variable N,” does not seem to
have been considered before. Setting

a = 277G, k=10,1,2 - (a = 1),
we find the probabilities
(1.1) q(n) = PlJy = n] = (k/n)ax@nr , n==Fk=t+1,---,
(1.2) pa(d) = PN, =14] = (2a)"an, 4 =1,2-,n(p.(0) = au).

Let {X,,0 <t £ T < »} be a measurable, separable stochastic process which is
continuous in probability and has exchangeable, symmetric increments. Relative
to the bounded time interval 0 < ¢ < T, introduce the variables

(1.3) U = “time spent in the positive half plane up to the moment when
the process reaches its maximum,”
V = ‘“time elapsed until the process reaches its maximum.”

Asymptotic evaluations lead to
TraeoreM. U/V is independent of V/T, and for 0 = o,y £ 1,

PlU<aV]l=1—(1—a), PlU<~T] =+
2. The discrete laws. The result (1.1) fpllows from a formula of Andersen.
Using (}) = (—=1)""a;_1/2j, (G°) = (—1)’a;, the identity (5.16) of [1] becomes
(2.1) > ot (28) T @ealny = (M/N) WG 0<m = n.
If N, is the number of positive sums among S;, - - - , S., then from the arc sine
law it is known that P[N, = 4] = @.@._; . Since the event [J, > n] is equivalent
to [N, < kJ, it follows that
PlJy > n] = Zk;(l, @in_i ,
PlJ: = 1) = 2 .00h 0i(tnoics — @) = 26 (20 — 20) 7 Giaing
= > (28) 7 @iy = (k/N)kOns .
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Notice that (1.1) is equivalent to saying that, conditionally on N, = k, the prob-
ability is k/n that S, be one of the k positive sums. The divergence of D7 an
implies EJ; = 0,k =1,2, ..

In order to establish (1.2), we first show that

(2‘2) a, = 10; Z};,-j‘la,-_ian_j, 0<7 = n.

When ¢ = 1, this coincides with (2.1) in which m = 1. We must only check that
R.(7), the right-hand member above, does not depend on 7. Using the equality
(26 + 2)ai11 = (2 + 1)a;, one has

(2/a:) [Ru(3) — Ru(G+ 1)] = 26 D 0 f " Qjslu_y
— (2 + 1) 21 Gjmims Guej
= 200 + 2 Dfois J(@j — Giit);
— D i1 it
i = & 2feint (GG — )70 a00
DAY e T N
Grouping the last two sums and putting s = j — 1, it follows from (2.1) that
0 [Ra(2) — Ra(i 4+ 1] = ui — 205 (28) @es@nis = O.

Consider now the joint law of (N,', L,). For 0 < ¢ < J = n, the event [N, =
t, Ln = j] occurs if and only if (a) ¢ of the sums S;, -+ -, S; are positive, (b)
all sums So, Sy, -« -, 8;1 are less than S; and (¢) Sy — S; < Ofork = j + 1,
-+, n. The probability of simultaneously having (a) and (b) is, according to
Baxter’s generalized arc sine law [3], (2j) "a;—;. The probability of (c) is a._; .
If Xy, -+, X, are independent, one has therefore

(23) pa(6,5) = PN =4, Lo = 4l = (2) 7000y, 0<i<j<n

For exchangeable variables, the same result would be obtained by “counting
paths”, as in [3]. Finally, p.(3) = D 7 pa(4, j) gives, according to (2.2), the
result (1.2). :

If i > 1, one has pa(¢ — 1)/pa(¢) = (20 — 1)/(2¢ — 2), so that

an = pa(0) = pa(1) > Pa(2) > o0 > pa(n) = (2n)"'1.

It is easy to verify that EN,’ = 1 + (2n — 1)(2r)'EN n_1. The general solu-
tion of this difference equation is EN,” = %(n + 1 + ca,), and EN, = 1 gives
c = — 1

EN, = $(n + 1 — a,).

When n — o, one obtains EN,’ ~ &(n + 1). If T\, is the number of ladder sums
among S, -+, S, this can be compared [4] with ET,, = (2n + 2)ap — 1 ~
2[(n + 1)/’

3. Asymptotic results. Using a standard argument, one deduces from a, ~
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(wn)_* that for 0 < v < 1, if [2] is the integral part of z,

PN, <] = an + 22120 (2i0)7an ~ 228207 (i/m) 7 (20)7
It follows that _
(3.1) limyw PN, < yn] = } [ethat =+~

In the same fashion, if 0 < «, 8 < 1, we derive from (2.3) the asymptotic
evaluation

PN, < aLn,L, < Bn] ~ (2m)” 2208 3504 7l(n — )G - DI
= (2n)” X X G/ = /)G — i) /)’
It follows that
limy.e PN, < aLy, L, < Bn]
= @207 [z (1 — 2) [ dyz — y)?
(3.2) =01 — (1 — a)})27" are sin (8}
= liMpew PN, < aL.P[L., < Bn].

Now, let ¢ denote time and {X,,0 < t < T < «} be a measurable, separable
stochastic process which is continuous in probability and has exchangeable,
symmetric increments. For the variables U and V defined in (1.3), (3.1) implies
that P[U < 4T] = lim P[N,) < yn] = ~}, while (3.2) shows that P[U < aV] =
lim PN, < ala] = 1 — (1 — )}, P[V < BT] = 2« " arc sin (8*), and U/V
is independent of V/T. This proves the theorem stated in Section 1. It provides
an illustration to Theorem 1 of [5], relative to products of independent beta
variables which have again a beta distribution.

4. Acknowledgment. We had initially derived (1.1) and (1.2) from recurrence
relations, which can be obtained much like is done in [3] for Baxter’s generalized
arc sine probabilities. We thank the referee who drew our attention to Ander-
sen’s formula (2.1), showed how it implies (1.1) and suggested obtaining (1.2)
from it.
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