SOME INVARIANT LAWS RELATED TO THE ARC SINE LAW

By. J. P. IMHOF

University of Geneva

1. Introduction and summary. Let $\{X_i : i = 1, 2, \dots\}$ be a sequence of random variables such that X_1, \dots, X_n are exchangeable and symmetric (n = $1, 2, \cdots$). Suppose that ties occur with probability zero among the partial sums $S_0 = 0$, $S_k = \sum_{i=1}^k X_i$. We study the laws of the variables

 J_k , the index of the kth positive sum in the sequence S_1 , S_2 , \cdots (k = $1, 2, \cdots),$

 N_n' , the number of positive sums among S_0 , S_1 , \cdots , S_{L_n} , where L_n is the index of max $\{S_0, S_1, \dots, S_n\}$.

Brief attention is given to J_k in [2], where the simple form of its law in the symmetric case is however not mentioned. The variable N_n does not seem to have been considered before. Setting

$$a_k = 2^{-2k} {2k \choose k}, \qquad k = 0, 1, 2, \cdots (a_0 = 1),$$

we find the probabilities

$$(1.1) \quad q_k(n) = P[J_k = n] = (k/n)a_k a_{n-k}, \qquad n = k, k+1, \cdots,$$

$$(1.2) \quad p_n(i) = P[N_n' = i] = (2ia_i)^{-1}a_n, \quad i = 1, 2, \dots, n \ (p_n(0) = a_n).$$

Let $\{X_t, 0 \le t \le T < \infty\}$ be a measurable, separable stochastic process which is continuous in probability and has exchangeable, symmetric increments. Relative to the bounded time interval $0 \le t \le T$, introduce the variables

(1.3) U = "time spent in the positive half plane up to the moment when the process reaches its maximum,"

V = "time elapsed until the process reaches its maximum." Asymptotic evaluations lead to

THEOREM. U/V is independent of V/T, and for $0 \le \alpha, \gamma \le 1$,

$$P[U < \alpha V] = 1 - (1 - \alpha)^{\frac{1}{2}}, \qquad P[U < \gamma T] = \gamma^{\frac{1}{2}}.$$

2. The discrete laws. The result (1.1) follows from a formula of Andersen. Using $\binom{1}{2} = (-1)^{j-1}a_{j-1}/2j$, $\binom{-1}{j} = (-1)^{j}a_{j}$, the identity (5.16) of [1] becomes $\sum_{s=n-m+1}^{n} (2s)^{-1} a_{s-1} a_{n-s} = (m/n) a_m a_{n-m}, \qquad 0 < m \le n.$

If
$$N_n$$
 is the number of positive sums among S_1, \dots, S_n , then from the arc sine

law it is known that $P[N_n = i] = a_i a_{n-i}$. Since the event $[J_k > n]$ is equivalent to $[N_n < k]$, it follows that

$$P[J_k > n] = \sum_{i=0}^{k-1} a_i a_{n-i},$$

$$P[J_k = n] = \sum_{i=0}^{k-1} a_i (a_{n-i-1} - a_{n-i}) = \sum_{i=0}^{k-1} (2n - 2i)^{-1} a_i a_{n-i-1}$$

$$= \sum_{s=n-k+1}^{n} (2s)^{-1} a_{s-1} a_{n-s} = (k/n) a_k a_{n-k}.$$

Received 11 April 1967; revised 19 September 1967.

258

Notice that (1.1) is equivalent to saying that, conditionally on $N_n = k$, the probability is k/n that S_n be one of the k positive sums. The divergence of $\sum_{0}^{\infty} a_n$ implies $EJ_k = \infty$, $k = 1, 2, \cdots$

In order to establish (1.2), we first show that

$$(2.2) a_n = ia_i \sum_{j=i}^n j^{-1} a_{j-i} a_{n-j}, 0 < i \le n.$$

When i = 1, this coincides with (2.1) in which m = 1. We must only check that $R_n(i)$, the right-hand member above, does not depend on i. Using the equality $(2i + 2)a_{i+1} = (2i + 1)a_i$, one has

$$(2/a_{i}) [R_{n}(i) - R_{n}(i+1)] = 2i \sum_{j=i}^{n} j^{-1} a_{j-i} a_{n-j}$$

$$-(2i+1) \sum_{j=i+1}^{n} j^{-1} a_{j-i-1} a_{n-j}$$

$$= 2a_{0}a_{n-i} + 2i \sum_{j=i+1}^{n} j^{-1} (a_{j-i} - a_{j-i-1}) a_{n-j}$$

$$-\sum_{j=i+1}^{n} j^{-1} a_{j-i-1} a_{n-j}$$

$$= 2a_{n-i} - i \sum_{j=i+1}^{n} (j(j-i))^{-1} a_{j-i-1} a_{n-j}$$

$$-\sum_{j=i+1}^{n} j^{-1} a_{j-i-1} a_{n-j} .$$

Grouping the last two sums and putting s = j - i, it follows from (2.1) that

$$a_i^{-1}[R_n(i) - R_n(i+1)] = a_{n-i} - \sum_{s=1}^{n-i} (2s)^{-1} a_{s-1} a_{n-i-s} = 0.$$

Consider now the joint law of (N_n', L_n) . For $0 < i \le j \le n$, the event $[N_n' = i, L_n = j]$ occurs if and only if (a) i of the sums S_1, \dots, S_j are positive, (b) all sums S_0, S_1, \dots, S_{j-1} are less than S_j and (c) $S_k - S_j < 0$ for k = j + 1, \dots , n. The probability of simultaneously having (a) and (b) is, according to Baxter's generalized arc sine law [3], $(2j)^{-1}a_{j-i}$. The probability of (c) is a_{n-j} . If X_1, \dots, X_n are independent, one has therefore

$$(2.3) p_n(i,j) = P[N_n' = i, L_n = j] = (2j)^{-1} a_{j-i} a_{n-j}, 0 < i \le j < n.$$

For exchangeable variables, the same result would be obtained by "counting paths", as in [3]. Finally, $p_n(i) = \sum_{j=i}^n p_n(i,j)$ gives, according to (2.2), the result (1.2).

If
$$i > 1$$
, one has $p_n(i-1)/p_n(i) = (2i-1)/(2i-2)$, so that $a_n = p_n(0) = p_n(1) > p_n(2) > \cdots > p_n(n) = (2n)^{-1}$.

It is easy to verify that $EN_n' = \frac{1}{2} + (2n-1)(2n)^{-1}EN_{n-1}'$. The general solution of this difference equation is $EN_n' = \frac{1}{3}(n+1+ca_n)$, and $EN_1' = \frac{1}{2}$ gives c = -1:

$$EN_n' = \frac{1}{3}(n+1-a_n).$$

When $n \to \infty$, one obtains $EN_n' \sim \frac{1}{3}(n+1)$. If T_n is the number of ladder sums among S_1 , \cdots , S_n , this can be compared [4] with $ET_n = (2n+2)a_{n+1} - 1 \sim 2[(n+1)/\pi]^{\frac{1}{2}}$.

3. Asymptotic results. Using a standard argument, one deduces from $a_n \sim$

260 J. P. IMHOF

 $(\pi n)^{-\frac{1}{2}}$ that for $0 < \gamma < 1$, if [x] is the integral part of x,

$$P[N_n' < \gamma n] = a_n + \sum_{i=1}^{\lceil \gamma n \rceil} (2ia_i)^{-1} a_n \sim \sum_{i=1}^{\lceil \gamma n \rceil} (i/n)^{-\frac{1}{2}} (2n)^{-1}.$$

It follows that

(3.1)
$$\lim_{n\to\infty} P[N_n' < \gamma n] = \frac{1}{2} \int_0^{\gamma} t^{-\frac{1}{2}} dt = \gamma^{\frac{1}{2}}.$$

In the same fashion, if $0 < \alpha, \beta < 1$, we derive from (2.3) the asymptotic evaluation

$$P[N_n' < \alpha L_n, L_n < \beta n] \sim (2\pi)^{-1} \sum_{j=1}^{\lceil \beta n \rceil} \sum_{i=1}^{\lceil \alpha j \rceil} j^{-1} [(n-j)(j-i)]^{-\frac{1}{2}}$$

$$= (2\pi)^{-1} \sum_{j=1}^{\lceil \beta n \rceil} \sum_{i=1}^{\lceil \alpha j \rceil} (j/n)^{-1} (1-j/n)^{-\frac{1}{2}} (j/n-i/n)^{\frac{1}{2}} (1/n)^2.$$

It follows that

$$\lim_{n\to\infty} P[N_n' < \alpha L_n, L_n < \beta n]$$

$$= (2\pi)^{-1} \int_0^\beta dx x^{-1} (1-x)^{-\frac{1}{2}} \int_0^{\alpha x} dy (x-y)^{-\frac{1}{2}}$$

$$= [1 - (1-\alpha)^{\frac{1}{2}}] 2\pi^{-1} \text{ arc sin } (\beta^{\frac{1}{2}})$$

$$= \lim_{n\to\infty} P[N_n' < \alpha L_n] P[L_n < \beta n].$$

Now, let t denote time and $\{X_t, 0 \le t \le T < \infty\}$ be a measurable, separable stochastic process which is continuous in probability and has exchangeable, symmetric increments. For the variables U and V defined in (1.3), (3.1) implies that $P[U < \gamma T] = \lim_{n \to \infty} P[N_n' < \gamma n] = \gamma^{\dagger}$, while (3.2) shows that $P[U < \alpha V] = \lim_{n \to \infty} P[N_n' < \alpha L_n] = 1 - (1 - \alpha)^{\frac{1}{2}}$, $P[V < \beta T] = 2\pi^{-1}$ arc $\sin(\beta^{\frac{1}{2}})$, and U/V is independent of V/T. This proves the theorem stated in Section 1. It provides an illustration to Theorem 1 of [5], relative to products of independent beta variables which have again a beta distribution.

4. Acknowledgment. We had initially derived (1.1) and (1.2) from recurrence relations, which can be obtained much like is done in [3] for Baxter's generalized arc sine probabilities. We thank the referee who drew our attention to Andersen's formula (2.1), showed how it implies (1.1) and suggested obtaining (1.2) from it.

REFERENCES

- Andersen, E. Sparre (1953). On the fluctuations of sums of random variables. Math. Scand. 1 263-285.
- [2] BAXTER, GLEN (1961). An analytic approach to finite fluctuation problems in probability. J. Analyse Math. 9 31-70.
- [3] HOBBY, CH. and PYKE, R. (1963). Combinatorial results in fluctuation theory. Ann. Math. Statist. 34 1233-1242.
- [4] IMHOF, J. P. (1967). On ladder indices and random walk. To appear in Z. Wahrscheinlichkeitstheorie und Verw. Gebiete.
- [5] Jambunathan, M. V. (1954). Some properties of beta and gamma distributions. Ann. Math. Statist. 25 401-405.