NOTES

ESTIMATING THE TOTAL PROBABILITY OF THE UNOBSERVED OUTCOMES OF AN EXPERIMENT¹

BY HERBERT E. ROBBINS

Columbia University

An experiment has the possible outcomes E_1 , E_2 , \cdots with unknown probabilities p_1 , p_2 , \cdots ; $p_i \ge 0$, $\sum_i p_i = 1$. In n independent trials suppose that E_i occurs x_i times, $i = 1, 2, \cdots$, with $\sum_i x_i = n$. Let $\varphi_i = 1$ or 0 according as $x_i = 0$ or $x_i \ne 0$. Then the random variable $u = \sum_i p_i \varphi_i$ is the sum of the probabilities of the unobserved outcomes. How can we "estimate" u? (The quotation marks appear because u is not a parameter in the usual statistical sense.)

Suppose we make one more independent trial of the same experiment, and that in the total of n+1 trials E_i occurs y_i times, $i=1,2,\cdots$, with $\sum_i y_i = n+1$. (Each $y_i = x_i$, except for one value of the subscript.) Let $\psi_i = 1$ or 0 according as $y_i = 1$ or $y_i \neq 1$. Consider the statistic $v = (n+1)^{-1} \sum_i \psi_i$, which is the number of "singleton" outcomes of the n+1 trials, divided by n+1. In contrast to u, v is observable. The idea of using something like v to estimate u goes back to A. M. Turing according to [1], where the problem is discussed from a somewhat different point of view. We shall show that v is a good "estimator" of u in the sense that setting w = u - v we have always

$$Ew = 0, \quad Ew^2 < (n + 1)^{-1}.$$

In fact,

$$Ew = \sum_{i} (p_{i}q_{i}^{n} - (n+1)(n+1)^{-1} p_{i}q_{i}^{n}) = \sum_{i} 0 = 0,$$

and a little algebra shows that (n + 1) Ew^2 is equal to the expression

(1)
$$\sum_{i} p_{i} q_{i}^{n} (1 + (n-1)p_{i}) - \sum_{i \neq j} p_{i} p_{j} (1 - p_{i} - p_{j})^{n}.$$

Hence since $1 - x \le e^{-x}$.

$$(n+1)Ew^2 \leq \sum_i p_i e^{-np_i} e^{(n-1)p_i} = \sum_i p_i e^{-p_i} < \sum_i p_i = 1.$$

In the special case in which some k of the p_i are equal to 1/k and all the others are 0, the expression (1) reduces to

$$(2) \qquad (1+(n-1)k^{-1})(1-k^{-1})^n-(1-k^{-1})(1-2k^{-1})^n.$$

Set

$$a_n = \sup (1)$$
 for all probability vectors (p_1, p_2, \cdots) ,

$$b_n = \sup (2) \text{ for all } k = 1, 2, \cdots;$$

Received 21 August 1967.

¹ This research was sponsored by the Office of Naval Research under Contract Nonr-4259(08) at Columbia University.

then $b_n \leq a_n \leq 1$. Putting $k = n/\lambda$, keeping λ fixed, and letting $n \to \infty$, we have

$$(2) \to (1+\lambda)e^{-\lambda} - e^{-2\lambda} \le (1+\lambda^*)e^{-\lambda^*} - e^{-2\lambda^*} = b \cong .61,$$

where $\lambda^* \cong .85$ is the root of $\lambda = 2e^{-\lambda}$. Hence $b_n \to = b$ as $n \to \infty$. We do not know if $a_n = b_n$, $a_n \leq b$, or $a_n \to b$. In any case, the universal inequality $Ew^2 < (n+1)^{-1}$ can certainly be improved, and can be used together with the Chebyshev inequality to obtain "confidence intervals" for u. (Similar inequalities for higher moments of w may yield shorter intervals.) There are many other statistics v based on the v 1 trials such that always v 2. We do not know which is best in the sense of minimizing v 2.

REFERENCE

Good, I. J. (1953). On the population frequencies of species and the estimation of population parameters. Biometrika 40 237-264.