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PATRED COMPARISONS FOR PAIRED CHARACTERISTICS!

By P. K. SEx? anp H. A. Davip
University of North Carolina, Chapel Hill

Summary. The present investigation is concerned with the proposal and study
of a class of nonparametric paired comparison tests for the hypothesis of no
differences among several objects with respect to a pair of characteristics.

1. Introduction. Let there be ¢(= 2) objects which form (i) pairs, and let the
1th object have n.;;( =0) encounters with the jth object, forz < 7 =1, .-, ¢
(conventionally, n;; = ny; for ¢ > 7). We let

(1.1) N = 2icimni = § 2 bujm M

For each of the n;; encounters, it is judged whether the 7th object is preferred (or
not) to the jth object for each of the two characteristics («, 8), and the order of
preference is indicated by > (e.g., @; > o; = the 4th object is preferred to the
jth object for the characteristic «). Thus, each encounter results in one of the
following four mutually exclusive and exhaustive outcomes (the probability of

ties being neglected) :
2)

(1.2) AFras > a;,8: > Bi,  Afies > a5, B < By,
Afrar <, Bi > Bi, Af i < oy, B: < By,

foralli# j=1,---,t and we let

(1.3)  miju = P{A®} for £k =1,2,3,4 and i#j=1,---,t

Thus, the n.; encounters (assumed to be stochastically independent) result in
the following multinomial distribution

(1.4) {ns !/Hi=1 Nijr 1) H}t=1 ik,

where n4;. is the observed frequency of the event A, for k = 1, 2, 3, 4 and
1< j=1,---,t It may be noted that by definition

(15) Wijke = Tjib—k and Nije = Njis—k
for k=1,---,4, i<j=1+--,¢

The null hypothesis to be tested relates to the equality of preference of all ¢ ob-
jects with respect to both (a, ). This will imply that

(1.6) Tijx = m for k=1,~",4 andall 2#j5=1,---,¢
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where by virtue of (1.5), we have

(1.7) mtm=mtm=mtm=m+ =3
Equivalently, (1.7) can be written as
(1.8) T = T4 = 11“(1""0), 7I‘2=7r3=;ji(1 —0),

where 8(—1 < 6 =< 1) is a real parameter which we shall term the association
parameter. Thus, for convenience of discussion, we shall specify the null hypothe-
sis by

(1.9) Hoimy = 21 4+6), if k=14,
=2311—-6), if k=23, for 1 <7 =1---,t

The object of the present investigation is to consider some nonparametric tests
for Hy in (1.9) which may be regarded asnatural extensions of some well-known
tests for a single criterion only (cf. David [2, pp. 30-31]). Various properties of
the proposed tests are also studied.

2. The likelihood ratio test and the spurious degrees of freedom. By (1.4),
the unrestricted maximum of the likelihood function comes out as

(2.1) L(©) = ILicica Unis VITEa nign B} TTima (nin/mar)™54°%],

(where we adopt the convention that z° = 1 for z = 0). Under H, in (1.9), the
likelihood function is

(2.2) OIi<ias fnss /T Tia i 31471 + 6)™(1 — )™,
where Ny = 2 iciz1 (Rij1 4+ nija). Thus, the maximum likelihood estimator of
6 is
(2.3) ‘ by = (2N, — N)/N.
Hence, the maximum of the likelihood function under H, is
(24) L) = i< {ni /T Tkm1 nia JI(NY/N)V(N — Ny)/NJV
Thus, the likelihood ratio (L.R.) criterion is
(2.5) v = L(6)/L(Q)
= NY{NM(N — No) @™} TLicia {nd/TToa nliiet).
Now, under H, in (1.9), the distribution of N; is given by
(2.6) (3271 +6)"(1 —6)"™:0 = N1 £ N,
and hence, under Hy , the likelihood function conditional on N or by is

(2.7) (Zl)“2‘” Hf~<,-,1 {ni !/HI:=1 Nijr 1.
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Let us now consider the following randomized test function corresponding to
significance level ¢(0 < ¢ < 1)

6=1, >\,
(2.8) = a(be), = Mlbw),
=0, M < Ae(Bx),
where A\(fy) and a.(dy) are so chosen that
(2.9) E{¢|Ho, by} = e

Since E{¢ | Ho} = Eiy[E{¢ | H,, bx}], (2.9) implies that ¢ isasize e similar test for
H, . [A non-randomized test (of size =<¢) can be constructed by letting ¢ be 1 or
0 according as Ay> or <\.(fy).] For large n./’s, using the results of Wald [7] we
conclude that under H, in (1.9), —2 log Ay has asymptotically a x* distribution
with 3(3) — 1 degrees of freedom. Thus, asymptotically

(2.10) —2log M(By) = xit.e

where x2. is the upper 100¢% point of a x* distribution with r df.

The L.R. test considered above is really a test for the identity of (5) multi-
nomial laws in (1.4) under the further specifications in (1.9), and hence carries
3(3) — 1 df. In actual practice, we are often not interested in such a broad class
of alternatives but rather in a comprehensive test for an analysis of variance
problem posed below. Let us define

(211)  my(e) = Pla: > o} = wija + mija,
(2.12)  7i(B) = P{B: > Bi} = mija + wijz, iFEj=1,--- L

Under Hoin (1.9), mij(a) = 7:(B) = 3 foralli # j =1, - -+ | t. Thus, if we want
to test for the homogeneity of 7;;(a)’s and of 7;;(3)’s, the number of df cannot
exceed 2[(5) — 1]. Further, preference behavior is frequently stochastically
transitive, i.e. if m;(a) = % and 7x(a) = %, then 7a(a) = %. Indeed, stronger
restrictions on the preference probabilities are often reasonable and the ()
quantities 7;;(«) may be expressible in terms of only ¢ parameters, say (),
i =1,---,¢% In a similar manner, we may proceed with =;;(8)’s. Thus, for the
homogeneity of the parameters in (2.11) and in (2.12), we can have alternative
tests carrying only 2(# — 1) df. To sum up, the L.R. test will have a much
broader scope, but, for the specific purpose of testing homogeneity of the param-
etersin (2.11) and (2.12), it carries many spurious df. [It is well-known (cf.[4])
that in x° tests the effect of increasing the degrees of freedom is to reduce the
power of the test unless the noncentrality parameter increases at a sufficiently
fast rate to compensate; in the present situation, the spurious df may not con-
tribute much to the noncentrality parameter.]

The alternative test to be proposed is a natural generalization of the paired
comparison test for a single characteristic (cf. David [3, pp. 30-31]) and will be
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appropriate if the characteristics (e, 8) can be related to an underlying bivariate
trait or random variable (X, Y') in whose locations we are interested. Fortunately
this is possible in a wide range of problems involving paired comparisons. In
such a setting, the feasibility and: optimality of an appropriate L.R. test requires
knowledge of the underlying bivariate distribution. This in turn limits the scope
of the inferences and usually renders quite complicated the solution of the likeli-
hood equations necessary for the evaluation of the L.R. criterion. On the other
hand, our proposed methods appear to be quite simple and reasonably efficient

3. A permutationally distribution free test. We rewrite (2.7) as

oo [ AL LG 0 ) 0T

1 2. . .
where n$? = nijq + N, 12 = Nije + Nujs, fors < j = 1, --- , t. Thus, the

first factor of (3.1) is a (generalized ) hypergeometric distribution, while the secend
factor is the product of {(¢ — 1) independent binomial distributions; all these
distributions are simple and well-tabulated. Let us now define

(32) Uij = [nij,l + Nij.2 — Nij.3 — nij.,;]/n%j y if Nyj > 0,

= 0, otherwise;

(3.3) Vij = [Nija — Nija + Nijz — nijui]/ni‘jy if n; >0,
= 0, otherwise, for ¢#j=1,---,¢
Also let
(34) it = =1, Wiz o = Zf‘=1,¢i vi;, for 1=1,.--- ¢

It may be noted that by definition
(3.5) ST =0, for k=1,2.

[If n;; = nforalli <j=1,---,¢ we may simplify (3.4) a little further. On
characteristic a(B), denote the score of the ith object in its n encounters with
the ]th object by az’j(b,’j), so that Ai;; = Ngja + ni,-.z(bi,- = Ngij1 + ni,-.s), for
i1#j=1---,t Let

(3'6) a; = ngl,;éi aij a:nd bz = Z;‘,l,;éi b“ y Z = 1’ LRI t
be the total scores. Then

(37) T = w20 — n(t — 1)], D= 072 — n(¢ — 1)],
for 7=1,.---,t

Thus, the Ty,.’s are related to standardized deviations of the total scores from
their expectations].
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To formulate the test in a convenient way, we further define

(3.8) B = 1T+ TH) = 2hern 05 (nijr — Majoa),

(3.9) 79 = LT — TE) = Z§=1,;£i 1} (Mg — Mijez),

fori =1, --- ¢t From (3.1), we get after some simple manipulations that
(3.10) E{Z® | Hy, by} =0, for k=1,2; di=1-",¢
(3.11) E{Z$E 738 | Ho , by} = dug( 8t — 1)N/N,

fork,q=1,2;4,j =1, - -+ , t, where 8, is the Kronecker delta and N, = N — N1.
Thus considering the linearly independent set of random variables
(Z¥,  k=1,2;4=1,---,t— 1}, taking the reciprocal of the covariance matrix
as a suitable discriminant of their quadratic form, and finally symmetrizing, we

obtain an appropriate test statistic as
(312) Dy =1{" Zz=1 - (N/Nk)[zl(vk.ﬂ2
(t(1 — 05") ™ {2k [(TR2)" — 28w TiT: + (TRDN),

where §y = (N1 — N,)/N. Since Dy is a positive semidefinite quadratic form, it
will increase stochastically with increasing heterogeneity among the T and/or

TH(i =1, -+, t). Hence, it seems natural to consider the following test function
v =1, Dy > D.(by),
(3.13) =a’(by), Dy = Ddbx),
=0, Dy < D(by),

where D.(8y) and a.*(fy) are so chosen that E{¥|H,, 0y} = e. As for the test
6 in (2.8) and (2.9), ¥ will have unconditional significance level e. For small
values of n;;’s, we may use (3.1) directly to construct ¥ in (3.13), while we formu-
late the following approach for large n;;’s.

For the asymptotic theory we assume that

(3.14) limy.o, N 'y = pi:0 < pi; < 1, forall ¢<j=1,---,¢
(3.15) 6l < 1, where 6 is defined by (1.8).

First, we consider the limiting distribution of the following random variables.
Let Vy = N¥(6y — 6) = NY[(N1 — N:) — N6] and
(316) UL = (UX, -, US~), US: = (N/NW'ZV,
i1=1---,t—1;k=12,
where Z§, is defined by (3.8) and (3.9). Now, under (1.9), (3.14) and (3.15),
NN —p 31 + (=1)*%), k = 1,2, and 1 =+ 6 = 0. Let Zy*® =

(ZE -, 28, k = 1, 2. Then (Uy®, Uy®) and ([3(1 + 0)]7'Zx",
51 — 0)I'Zy®) have the same limiting distribution, if any. Now,
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Z® =1, ,t — 1, k = 1, 2, and Vy are all linear functions of (3) inde-
pendent sets of multinomial variables. Hence, under (1.9), (3.14) and (3.15), as
N — o, ([3(1 + 0)]7Zy®, 3(1 — 0)]Zy®, V) converges in law to a multi-
variate normal distribution with a null mean vector and a dispersion matrix

-1 0 0

(3.17) 0 a—1 0 s T = ((86))im1,e i1,
!
O O (1_02> 1 - (1)'.‘)]')'

Consequently, [Uy®, Uy®, V] also converges (under (1.9), (3.14) and (3.15))
in law to a multinormal distribution with a null mean vector and the dispersion
matrix in (3.17). This implies that Vy is bounded in probability. Combining
these results with that of Theorem 2.4 of Steck [6], we arrive at the following.

TuaroreM 3.1. Under (1.9), (3.14) and (3.15), (i) the conditional distribution
of (Ux®, Ux®), given Vy converges in probability to a multivariate normal dis-
tribution with a null mean vector and dispersion matrix given by the cofactor of
(1 — 6% in (3.17), and (ii) the unconditional distribution of (Ux®, Ux®) also
converges to the same multinormal law.

Noting that the reciprocal matrix of I — 1l is t (I + 11'), and rewriting Dy in
(3.12) as

(3.18) Dy = D i Up®[H I 4 1)U,

we obtain from Theorem 3.1, (3.18) and some simplifications, the following.

Tueorem 3.2. Under (1.9), (3.14) and (3.15), the conditional distribution of
Dy , given Oy converges (as N — o) in probability to a chi-square distribution with
2(¢t — 1) degrees of freedom. Also, the unconditional distribution of Dy (under Hyin
(1.9)) asymptotically reduces to a chi-square distribution with 2(t — 1) degrees of
freedom.

Remark. The condition (3.14) can be replaced by the following. We denote
the incidence matrix by ((n:;))q,j=1,...,t, where n;; = 0 for¢ = 1, --- , ¢, and
ny = njfore <j =1, ...t A sufficient condition for Theorems 3.1 and 3.2 to
hold is that each row (or column) of this matrix contains at least one non-zero n;;
and only the set of non-zero n;;’s satisfies (3.14). The proof of this follows on the
same lines. This extension covers some incomplete block designs where not all
possible pairings are made.

It follows from Theorem 3.2 that under (3.14) and (3.15),

(3.19) Ddby) — X3¢ny,c and a. (6y) — 0, in probability, as N — o,

Also, it follows that if we consider an asymptotically distribution-free size € test
function

~(3.20) ¥* =1, if Dy = x3¢-1).e
=0, if Dy < Xsu-1.e
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then under H, in (1.9), and granted (3.14) and (3.15), ¥ in (3.13) and ¥* are
asymptotically equivalent.

4. Performance characteristics of the tests. We shall now prove the consistency
of the tests against appropriate alternatives and also study their power properties.
When the (;) multinomial laws of the type (1.4) are not all identical, let us
define

(41) ﬁ'k,N = (1/2N) Ei#i=l N T ik fOI' k = 1, 2, 3, 4,
where m;;.+’s are defined in (1.3) and (1.5). (1.5) and (4.1) imply that
(4.2) #ix = Tan,Ton = T34, and @y + Ton = Ty + Tay = 3,

whatever be the (;) multinomial laws. Let us therefore write
(4.3) fiw = Ty = (1 4+ 0y),  Fon = Fan = §(1 — By).
Like 0 in (1.8), 8y also lies in the interval (—1, 1).

TuEOREM 4.1. Whatever be the wij’s (1 < j=1,---,t, k =1,2,3,4), by in
(2.3) is the MV U estimator of 8x in (4.3).

Proor. Writing 8y in (2.3) equivalently as
(4.4) (1/2N) Zf-,sj:l (nij.l — M2 — N3 + nij~4),
the unbiasedness of 8y as an estimator of 8y , follows readily. Also, for multi-
nomial distributions of the type (1.4), (41 — Nuje — Nujz + Nijs) /Ns; is the
MVU estimator of (mijq — i — w3 + miju), foralle < j =1, --- , ¢ and these
estimators are all independent. The rest of the proof is simple and is omitted.

Hence, the theorem.
Since the multinomial law in (1.4) carries 3 df, we may write

(4.5) mija = (1 4+ Ai)(1 + €5) + (8v + i),
(4.6) mije = (1 4+ Ai)(1 — ;) — (Bx + i),
(4.7) mijs = (1 — Ai)(1 + ;) — (v + nis)],

(4.8) mija = (1 — Ay)(1 =€) + (Oy +ni)], for ij=1,--- 4

where (A.;, €;, 1) are all real parameters. The A’s and €’s account for heter-
ogeneity of locations and the »’s for heterogeneity of association. Thus, from
(1.5) and (4.3), we have Aj»i = "‘Aij, €j; = €, Nij = MNji, SO that

(49) (1/2N) Zi’#j=l Nl
= (1/2N) 2t nie; = (1/2N) 2iganinyg = O.

Using (3.17), let us then define

(4.10) Ai = Dliiipbdy, e = Dlaiphes, for i=1,---,¢
and let

(4.11) A= DAL, =i,
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TaEOREM 4.2. The test based on Dy is consistent against the set of alternatives
A’ + &> 0.

Proor. We rewrite Dy in (3.12) in the alternative form
(412) Dy = 7 {20 [TWF + (1 — 6") 7 2ia [TV} — 6w AT,

where (k, ¢) is any permutation of (1, 2). Now, using (3.2), (3.3), (3.17), (4.5)
through (4.11), it can be shown that

(4.13) N2 TR = AN 2 [T —5 &

Thus, if A* 4+ € > 0 it follows from (4.12) and (4.13) that Dy can be made
stochastically indefinitely large as N — o. Hence, the theorem follows from
(3.13) and (3.19).

In view of the consistency of the test, we shall consider alternatives infinitely
close to the null hypothesis to study its asymptotic power. By an adaptation to
the categorical situation of Pitman’s [4] types of alternatives, we let in (4.5)
through (4.8), 8y = 6 and

(4.14) Hy:Ay; = N_%/J:ij , € = N_%Vij and 9 = N-%Sij ,
where u;j, vi;and £ (¢ £ 7 = 1, -+, ¢) are all real and finite. Further, as in
(4.10), we write

1 .
(4.15) i = D je1pei Pithis Vi = Dbt i Pivii s for ¢=1,---,1t.

Then we have the following.
THEOREM 4.3. Under {Hy} in (4.14), Dy has asymptotically a noncentral x* dis-
tribution with 2(¢ — 1) df and the noncentrality parameter

(4.16) (1 = 6") 7 20im [ — 20pavs 4+ ¥i ]},

Proor. Under {Hy} in (4.14), the joint distribution of (u;, vs;), defined by
(3.2) and (3.3), can be shown to be asymptotically bivariate normal with means
(phimss p?,-v“), variances unity, and correlation coefficient equal to 6, for all
1<j=1---,tThus (T}, T$) with¢ = 1, --- , ¢ — 1 (defined by (3.4)),
will have asymptotlcally a 2(¢ — 1) variate normal distribution with means
(us. , v:.), defined by (4.15), variances equal to (t — 1), covariances between

TS, T equal to (8,4 — 1)6, for4,§ = 1, — 1, and finally, covariances
between Tffl , TS, equal —1forallz % j = 1 ,t — 1,k = 1,2, where §;; is

the usual Kronecker delta. Consequently, by routine methods we see that
= (41 — )DL (TS — 20TETE: + (TE)) has asymptoti-
cally a noncentral x* distribution with 2(¢ — 1) df and the noncentrality param-
eter in (4.16). Finally, by Theorem 4.1, 85 converges to 8 (under {Hy}), in
probability, and hence Dy~p Dy*. Hence the theorem follows.
Finally, as compared to the parametrically optimum paired comparison test
(for bivariate normal distribution) based on Hotelling’s T’-statistic, the efficiency
of the proposed paired comparison test will be the same as that of the bivariate
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median test (cf. Chatterjee [1] and Chatterjee and Sen [2]). For brevity, these
results are not reproduced again.

5. A further remark. We have so far considered the case of paired character-
istics only. The general case of p-tuple characteristics (', - -+, «'®) for some
p = 1, can be tackled in a similar way. In this case, there will be 2” possible out-
comes (as compared to 4 in (1.2)), and there will be (§) two-way marginal tables.
For (¢®, a?) the same structure holds as in (1.8), (1.9); the corresponding 6 is
denoted by 6x,, k # ¢ = 1, ---, p, and the estimators by Oy, (defined as in

(2.3)),fork # q =1, ---, p. We write
(5-1) 0 = ((0kq))k.q=l.---.p7 (:)N = ((éN.kq))k.q=1.'--.p7

where conventionally 6 = Oy = 1 forallk = 1, ---, p. Let ®y " be the
reciprocal matrix of © y and define T as in (3.4), forallk = 1, ---, p, 7 = 1,
---, t. Then the test statistic will be

(5.2) Dy = e Zlg;l 25;1 B Z$=1 TJ(vszz(qu .

It can be shown that under H, of homogeneity of the ¢ objects, Dy will have a
known permutation distribution which asymptotically reduces to x* distribution
with p(¢ — 1) df. Hence, a test procedure essentially similar to (3.13) can be
proposed. Because of the similarity of approach, the details are omitted.

Acknowledgment. Thanks are due to the referee for his useful comments on
the paper.
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