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INVARIANT INTERVAL ESTIMATION OF A LOCATION PARAMETER

By R. S. VAaranD
E. B. Squibb and Sons, Inc.

1. Summary and introduction. In the general problem of statistical estima-
tion, it is possible to obtain from a random sample a single estimate, known as a
point estimate, of a population parameter. But this estimate is not very meaning-
ful unless associated with a measure of its reliability. One approach to this prob-
lem consists of giving a point estimate with its standard error, but this has a
major drawback. In using this approach, one typically fails to make an assertion
regarding the error involved in estimating the standard error.

In this paper, the problem of interval estimation is considered within the
framework of decision theory, in which the cost to the statistician depends on
the true value of the parameter and the interval chosen. For example, if 6 is
the true value of the parameter and (a, b) is the interval chosen, a typical loss
funection is

L6, (a,b)) = h(a—0,b—0) if a<6<b
=h(a —0,b —0)+1 if 6<a or >0

where h(a, b) is defined on {(a, b); @ = b}. Thus, the statistician would like to
choose the interval (a, b) small to make the payment h(a, b) small, and yet he
wants it large enough to have a good chance of containing 8 so that he will not
have to pay the “extra’ unit.

We consider two methods for finding optimal decision rules for the problem of
interval estimation. The first one uses the Bayes principal and the second uses
the invariance principle. The invariance principle is available only in decision
problems which are invariant under certain transformations. Here we find a
form of a best invariant interval estimate for the location parameter, and give
certain conditions under which the best invariant interval estimate is minimax.
In analogy of Blackwell and Girshick’s suggestions, we present a loss function
for which a best invariant interval estimate exists but is not minimax. (See the
example in Section 4)

Finally, in Section 5, we show that a best invariant interval estimate for a
scale parameter of a distribution can be found by transforming the scale
parameter problem to the location parameter problem.

2. The principle of invariance. If the decision problem is symmetric, or in-
variant, with respect to certain operations, then it may seem reasonable to
restrict the available rules to be symmetric, or invariant, with respect to those
operations also. The principle of invariance involves groups of transformations
over the three spaces; the parameter space ®, the action space @, and the sample
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194 R. S. VALAND

space X, an n-dimensional Euclidean space. For definitions and detailed dis-
cussion on the P.I. see Lehman’s Testing Statistical Hypothests.

We suppose O to be the real line and 6 to be a location parameter of the observ-
able random variable X with density function fx(z, 9), so that fx(x, 8) = f(x — 6)
for some density f. In this problem, we choose @ to be the set of all open in-
tervals; @ = {(a, b); a < b} and let the loss function be

(2.1) L(6, (a,b)) = h(a —0,b — 0) + 1 — I4p(0)

where h(a, b) is defined on {(a, b); a < b}; for example, h(a, b) = [odH(u),
where H(wu) is non-decreasing in u.

This decision problem is invariant under the group g of translations g.,(z)
=z 4+ ¢ with §.,(8) = 6 + ¢ and §.,(a, b) = (a + ¢, b + ¢1). Thus the dis-
tribution of g.,(X) given §.,(6), a location parameter is invariant. Furthermore,
the loss function )

L(§e,(0), §e(@,0)) =h(a +c1 — 0 —c1, b+ a1 — 0 —c1) + 1 — Lapey pren(0 + 1)
=h(a —0,b —0) + 1 — Iqan(0) = L6, (a, b))
and therefore is invariant.

3. Characterization of invariant decision rules. Let d(X) = (di(X), ds(X))
be an invariant decision rule; then for all X and ¢;, di(X + ) = di(X) + a
and do(X 4+ ¢1) = do(X) + ¢ . This implies that

dl(X) = X ‘I" b1 and dz(X) = X + bz
where by = di(0) and b, = dz(0). Therefore, every invariant decision rule has
(3.1) B(X) = (X +b,X + b)

for some b = (b1, by). Since the risk function for dp(X) is independent of 6
(Blackwell and Girshick)

(32) R(8,ds) = Eofh(X + by, X + b)) + 1 — Po(—b: < X < —by)}
= [rex (X + b1, X + b:)f(X/0) dX + 1 — [231£(X/0) dX.

If R(0, dy) exists for all 6, then any estimate of the form (3.1) is an invariant

decision rule.
Among all invariant rules, the rule which minimizes equation (3.2) is ob-
viously best. Suppose there exists (b;", b") such that

L0, (X 4+ b, X + b)) = infg, 5y BoL(0, (X 4+ by, X + by))

where the infimum is taken over all (b, , by) for which EoL(0, (X 4+ b1, X + b,))
exists and F), is the expectation when 6 = 0; then, the rule

. (3.3) dpo(X) = (X + 5" X + b")

is a best invariant rule. Thus, we can state the following theorem.
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TureoreM 1. In the problem of estimating a location parameter by interval
estimation, with loss function as defined in equation (2.1), if EL(0, (X + by,
X 4+ bs)) exists for some (b1, bs), and if there exists a (b, bs") such that

(34) EBL(0, (X + b, X + b)) = infe,e9 BoL(0, (X + b1, X + b))

where the infimum is taken over all (by, bs) for which EoL(0, (X 4+ by, X + b))
exists, then dw(X) = (X + b’, X + b)) 4s a best invariant rule, and has a con-
stant risk equal to BoL(0, (X + b, X + b)).

4. The minimax character of the best invariant interval estimates. One usu-
ally expects best invariant decision rules to be minimax. The theorem and lemmas
below give conditions under which a best invariant interval estimate of a loca-
tion parameter is minimax. H. Kudd has found such conditions in a slightly dif-
ferent problem of invariant set estimation (H. Kudd, Theorem 2.7) using a more
general group of transformations, rather than a group of translations. However,
he restricted himself to a loss function (specialized to a group of translations) of

the form
L(0, A) = c(A) + 1 — 1.(8)

where A is a set (not just an open interval), and ¢ > 0. His minimax invariant
decision function ¢ is

¢(A0Pt(w): .’l}) = 1) Aopt(x) = {086; p(o/x) > C}J

where p(6/z) is the conditional density of 6, given X, and with probability one
for all 0 & ®, A.pi(x) is given by p(6/x) > c.

Here we are interested in proving that these estimates are minimax for more
general loss functions similar to that found in Blackwell and Girshick for point
estimation of a location parameter. (Blackwell and Girshick, Section 11.3,
Theorem 11.3.1).

THEOREM 2. In the problem of interval estimation of a location parameter with a
loss function

(4.1) L(6, (a,b)) = h(a — 6,0 — 0) + 1 — Laup(6)
where h(a, b) = 0, if for every ¢ > 0, there exists an N such that
(4.2) JYNL(0, (X 4 by, X + by)) dF(X/0) Z Ry — ¢

for all by and b (by = by), where
Ry = Infeipy Eo{L(0, (X + b, X + b))}

then the best invariant decision rule is minimax.

Proor. Let (di(y), do(y)) be any decision rule for a location parameter of
the observable random variable Y with density function f(y — 6). We shall,
now, exhibit a sequence 7, of a prior: distributions and show that lim,.. infs r
(tn, d) 2 Ro; where d = (di(y), dx(y)). In other words, we shall show that d
is an extended Bayes rule. If a rule with constant risk is an extended Bayes
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rule, then it is minimax (Blackwell and Girshick [2]). We shall consider the
distribution of the parameter to be the uniform distribution over the interval
(=M, M), call it 7.

Let e > 0, and find N to satisfy condition (4.2). Let M > N. Then, since the
integrals may be interchanged due to the non-negativity of the integrand, we
have

(43) r(ra, d) = (2M)7 [2 [[W(du(y) — 6, d(y) — 0) + 1

— Ia,w).a,00(0)]1 dF (y — 6) dé.
Lety — 0 =z,

(i, d) = (2M)7 [ [Xy [h(di(z + 8) — 6, do(x + 0) — 6) + 1 —
= Twjwio) ayw+0)(0)] dO dF () .
Let 6 = z — z, then
r(ru,d) = M) [ [T (d(z) — 2 + @, da(2) — 2 + 2) + 1
— T4, (2 — 2)] dz dF ()
= (2M)7 [ [ZEH(d(z) — 2 + =z, da(z) — 2z + @) + 1
(4.4) — Lomdy(2) oty o0 ()] AF () d2
2 (2M)7 [Gmm [ U0, (2 4+ di(2) — 2, @ + da(2) —~ 2))]
dF(z/0)dz
2z (2M)7" [ (Ro — €) d2
2 (Ry — €)2(M — N)(2M)™.

The second inequality in equation (4.4) follows, since for ze (—(M — N),
(M — N)), the inside integral is not less than the integral in equation (4.2).
The inequality in (4.4) is true for all (including randomized) decision rules.
Therefore,

(4:.5) lim infM_m infd ’I"(TM y d)
> lim inf e (Ro — €)(2M — 2N)(2M)™' = Ry — ¢

for all ¢ > 0, completing the proof.
The following two lemmas give simple sufficient conditions in order that
(4.2) hold.
Lemma 1. If h(a, b) is bounded, then condition (4.2) is satisfied.
Proor. Let B = h(a — 6, b — 0) and find N so that
P{X| > N} < ¢/(B + 1), ie., 1 — [YydF(z) £ ¢/(B + 1).
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Then,

Yo L0, (z 4 by, + b)) dF(2/0) = [T21(0, (x + b1, z + b)) dF(z/0)
— [ZRL(0, (z + by, + b)) dF(z/0)
— J¥L0, (z + b1, z + bs)) dF (z/0)
o — (B + 1)P{|X] > N}

Ry — e Q.E.D.

Lemma 2. If (1) h(a, b) and F are continous, (2) h(a, b) — © asb — « or
a — — o, and (3) h(a, b) is non-decreasing in b for fired a, and h(a, b) is non-
increasing in a for fixed b, then condition (4.2) is satisfied.

Proor. The function Rx(b:, b) defined for b, < by as

R(by, bs) = [Iv[L(O, (z + by, = + b2))] dF(z/0)
Yol(z + b, ¢ 4 b)) + 1 — Iaibaren(0)]dF(2/0)

is (i) non-decreasing in N for each fixed (b, bs), (ii) continuous in (b, b2)
since h and F are continuous, and (iii) for sufficiently large N, Ry(by, by) —
as by — — o or by — . From (iii), there is an N, and compact set 4 in two
dimensions such that for (by, by) outside A, Ry,(b1, b2) = Ro + 1. From (i)
this inequality is valid for all N = No. Since infe, b, Ba(b1, b2) = Ro, (ii)
implies that the infimum of Ry(b, b2) is assumed at some point (b, 0,%) e A
when N = N,. Hence, there exists a limit point (b, b'). Since n > N > N,
implies

(4.7) Ry(b", ") £ Rau(b", b)) £ Ro,
we have Ry(bi!, ba') < Roforall N > Ny, but as N — oo, Ry(br', by') converges
to something at least Ry. Therefore, from (4.7) R.(b:", b.") converges to Ry ;
thus, there exists an N such that Ry(bi", bs") > Ro — e

CounteEr ExamprLe. Blackwell and Girshick point out that for some loss
functions, best invariant estimates exist and are not minimax. In analogy to
their suggestions, we present a loss function for which a best invariant interval
estimate exists but is not minimax.

Suppose the random variable X has a distribution function

fX|0) =1/(X—6)(X—0+1), X=0+10+2 .

Let © be the real line, and @ be the half plane {(a, b);a < b}, wherea > — .
Let the loss function be
(4.8) L, (a, b)) = max (2(b+a) —6,0) + 1 — Iwun(d).
For this problem, the risk of an invariant rule (X + b1, X + b) is
(4 9) EL(0, (X + b, X + b))

2 D xiieenso (X + (b + b)) ( X(X + )™

(4.6)

v v
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For all b, and b, this series diverges to + «. Now, consider a non-invariant rule
of the following form

d(z) = (X — C.|X|, X — Gy|X]), where 3(C, + Cy) > 1.
The risk function for this rule is. -
(4.10) R(8, d) < log 2[(3(Ca + Cb») + 1)/(3(Ca + Cy) — 1)].

Thus, the best invariant rule is not minimax. Moreover, this example does not
depend entirely on the fact that all invariant rules have infinite risk.

5. Invariant interval estimation of a scale parameter. We shall find the best
invariant rule for a scale parameter of the observable random variable, call it X,
for some density, call it f, by transforming the scale parameter problem to a
location parameter problem. Let @ be a real line, and 6,be a scale parameter of
the observable random variable X. We choose @ to be the set of all open intervals;

@ = {(a,b);a S b}.
Let the loss function be
(5.1) L(6, (a, b)) = h(a/6,b/0) + 1 — Iupn(6)

where h(a, b) is defined on {(a, b); a = b}.

This problem is invariant under the group § of translations ¢.,(X) = X,
where ¢; > 0, with §.,(8) = cif and §.,(a, b) = (aa, ab), the distribution of
ge,(X) given §.,(0) is the same as the distribution of X given 4, since 6 is a
scale parameter. Furthermore, the loss function

L(§c,(0), §or(a, b)) = h(ca/ch, cib/cd) + 1 — Ioa,000(if)
h(a/0,b/6) + 1 — Iap(6)

is invariant.

The above problem is identical to the problem of estimating a location param-
eter 8 = log 0 for the distribution of X’ = log X (X > 0) and of X' = log(—X)
(X < 0), and the loss function for the transformed problem is

L', (a, b)) = L(", (¢*,€)) = L(1, (™, &)).
Let us define L'(z, y) = L(¢", ¢¥), then
(5.2) L'(¢, (d,b)) = L'(0,(d — 6,0 —4¢))
where o’ = log a; b’ = log b. By using equation (3.3), the best invariant rule
for ¢’ is
(5.3) (X + b, X'+ )
where ( b{O, bs") is such that

(5.4) EL'(0, (X 4+ 5% X + b)) = infe,, 5,y BL'(0, (X' + b/, X' + b))
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for all b and by (b, < b,'), and E, is the expectation when §° = 0. Hence, the
best invariant estimate of log 8 is

(5.5) (log X + log by, log X + log b,")
where (b,°, b,") minimizes .
E(L(1, (5%, X)) /0" = 0) = E(L(1, (X, b.X))/6 = 1).

Thus, the best invariant estimate of 8 is (b’X, by’X) where ( b°, b) is that
value of (by, by) which minimizes E(L(1, (X, b:X))/0 = 1). Therefore, we
can state the following generalization to the above theory:

In the problem of estimating a scale parameter with loss function

L(6, (a,b)) = h(a/8,b/0) + 1 — L@an(6)

if BiL(1, (b,X, b.X)) exists for some (by, by), and if there exists a (b, by")
such that

E\L(1, (b"°X, b,°X)) = infe, sy B1L(1, (0:X, 5 X)),

where the infimum is taken over all (b1, by) for which E1L(1, (b:X, b.X)) exists,
and E; is the expectation when 6 = 1, then A& (X) = (b'X, b’X) is a best
invariant rule, and has a constant risk equal

EL(1, (b°X, b°X)) = E{h(b"X, b’X) + 1 — Ip0xp00x(1)}.
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